Importance of Mesoporous Silica Particle Size in the Stabilization of Amorphous Pharmaceuticals-The Case of Simvastatin

. 2020 Apr 22 ; 12 (4) : . [epub] 20200422

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32331310

Grantová podpora
2015/16/W/NZ7/00404 (SYMFONIA 3) Narodowym Centrum Nauki

Odkazy

PubMed 32331310
PubMed Central PMC7238159
DOI 10.3390/pharmaceutics12040384
PII: pharmaceutics12040384
Knihovny.cz E-zdroje

In this paper, the role of mesoporous silica (MS) particle size in the stabilization of amorphous simvastatin (SVT) is revealed. For inhibiting recrystallization of the supercooled drug, the two MS materials (Syloid® XDP 3050 and Syloid® 244 FP) were employed. The crystallization tendency of SVT alone and in mixture with the MS materials was investigated by Differential Scanning Calorimetry (DSC) and Broadband Dielectric Spectroscopy (BDS). Neither confinement of the SVT molecules inside the MS pores nor molecular interactions between functional groups of the SVT molecules and the surface of the stabilizing excipient could explain the observed stabilization effect. The stabilization effect might be correlated with diffusion length of the SVT molecules in the MS materials that depended on the particle size. Moreover, MS materials possessing different particle sizes could offer free spaces with different sizes, which might influence crystal growth of SVT. All of these factors must be considered when mesoporous materials are used for stabilizing pharmaceutical glasses.

Zobrazit více v PubMed

Baird J.A., Taylor L.S. Evaluation of amorphous solid dispersion properties using thermal analysis techniques. Adv. Drug Deliv. Rev. 2012;64:396–421. doi: 10.1016/j.addr.2011.07.009. PubMed DOI

Liu X., Fahr A. Drug delivery strategies for poorly water-soluble drugs. Expert Opin. Drug Deliv. 2007;4:403–416. PubMed

Williams H., Trevaskis N., Charman S., Shanker R., Charman W., Pouton C., Porter C. Strategies to address low drug solubility in discovery and development. Pharmacol. Rev. 2013;65:315–499. doi: 10.1124/pr.112.005660. PubMed DOI

Takagi T., Ramachandran C., Bermejo M., Yamashita S., Yu L.X., Amidon G.L. A provisional biopharmaceutical classification of the top 200 oral drug products in the United States, Great Britain, Spain, and Japan. Mol. Pharm. 2006;3:631–643. doi: 10.1021/mp0600182. PubMed DOI

Kalepu S., Nekkanti V. Insoluble drug delivery strategies: Review of recent advances and business prospects. Acta Pharm. Sin. B. 2016;5:442–453. doi: 10.1016/j.apsb.2015.07.003. PubMed DOI PMC

Ozaki S., Kushida I., Yamashita T., Hasebe T., Shirai O., Kano K. Evaluation of drug supersaturation by thermodynamic and kinetic approaches for the prediction of oral absorbability in amorphous pharmaceuticals. J. Pharm. Sci. 2012;101:4220–4230. doi: 10.1002/jps.23306. PubMed DOI

Almeida E Sousa L., Reutzel-Edens S.M., Stephenson G.A., Taylor L.S. Assessment of the amorphous “solubility” of a group of diverse drugs using new experimental and theoretical approaches. Mol. Pharm. 2015;12:484–495. doi: 10.1021/mp500571m. PubMed DOI

Bogner R.H., Murdande S.B., Pikal M.J., Shanker R.M. Solubility advantage of amorphous pharmaceuticals: II. application of quantitative thermodynamic relationships for prediction of solubility enhancement in structurally diverse insoluble pharmaceuticals. Pharm. Res. 2010;27:2704–2714. PubMed

Paradkar A.R., Chauhan B., Yamamura S., Pawar A.P. Preparation and characterization of glassy celecoxib. Drug Dev. Ind. Pharm. 2003;29:739–744. doi: 10.1081/DDC-120021773. PubMed DOI

Chmiel K., Knapik-Kowalczuk J., Jurkiewicz K., Sawicki W., Jachowicz R., Paluch M. A New Method to Identify Physically Stable Concentration of Amorphous Solid Dispersions (I): Case of Flutamide + Kollidon VA64. Mol. Pharm. 2017;14:3370–3380. doi: 10.1021/acs.molpharmaceut.7b00382. PubMed DOI

Kawakami K. Modification of physicochemical characteristics of active pharmaceutical ingredients and application of supersaturatable dosage forms for improving bioavailability of poorly absorbed drugs. Adv. Drug Deliv. Rev. 2012;64:480–495. doi: 10.1016/j.addr.2011.10.009. PubMed DOI

Lehmkemper K., Kyeremateng S.O., Heinzerling O., Degenhardt M., Sadowski G. Long-Term Physical Stability of PVP- and PVPVA-Amorphous Solid Dispersions. Mol. Pharm. 2017;14:157–171. doi: 10.1021/acs.molpharmaceut.6b00763. PubMed DOI

Szklarz G., Adrjanowicz K., Knapik-Kowalczuk J., Jurkiewicz K., Paluch M. Crystallization of supercooled fenofibrate studied at ambient and elevated pressures. Phys. Chem. Chem. Phys. 2017;19:9879–9888. doi: 10.1039/C7CP00823F. PubMed DOI

Yoshioka M., Hancock B.C., Zografi G. Crystallization of indomethacin from the amorphous state below and above its glass transition temperature. J. Pharm. Sci. 1994;83:1700–1705. doi: 10.1002/jps.2600831211. PubMed DOI

Kawakami K., Harada T., Miura K., Yoshihashi Y., Yonemochi E., Terada K., Moriyama H. Relationship between crystallization tendencies during cooling from melt and isothermal storage: Toward a general understanding of physical stability of pharmaceutical glasses. Mol. Pharm. 2014;11:1835–1843. doi: 10.1021/mp400679m. PubMed DOI

Knapik J., Wojnarowska Z., Grzybowska K., Tajber L., Mesallati H., Paluch K.J., Paluch M. Molecular Dynamics and Physical Stability of Amorphous Nimesulide Drug and Its Binary Drug-Polymer Systems. Mol. Pharm. 2016;13:1937–1946. doi: 10.1021/acs.molpharmaceut.6b00115. PubMed DOI

Knapik-Kowalczuk J., Tu W., Chmiel K., Rams-Baron M., Paluch M. Co-Stabilization of Amorphous Pharmaceuticals—The Case of Nifedipine and Nimodipine. Mol. Pharm. 2018;15:2455–2465. doi: 10.1021/acs.molpharmaceut.8b00308. PubMed DOI

Kawakami K. Ultraslow Cooling for the Stabilization of Pharmaceutical Glasses. J. Phys. Chem. B. 2019;123:4996–5003. doi: 10.1021/acs.jpcb.9b02122. PubMed DOI

Grzybowska K., Chmiel K., Knapik-Kowalczuk J., Grzybowski A., Jurkiewicz K., Paluch M. Molecular factors governing the liquid and glassy states recrystallization of celecoxib in binary mixtures with excipients of different molecular weights. Mol. Pharm. 2017;14:1154–1168. doi: 10.1021/acs.molpharmaceut.6b01056. PubMed DOI

Knapik J., Wojnarowska Z., Grzybowska K., Jurkiewicz K., Tajber L., Paluch M. Molecular dynamics and physical stability of coamorphous ezetimib and indapamide mixtures. Mol. Pharm. 2015;12:3610–3619. doi: 10.1021/acs.molpharmaceut.5b00334. PubMed DOI

Knapik-Kowalczuk J., Wojnarowska Z., Rams-Baron M., Jurkiewicz K., Cielecka-Piontek J., Ngai K.L., Paluch M. Atorvastatin as a Promising Crystallization Inhibitor of Amorphous Probucol: Dielectric Studies at Ambient and Elevated Pressure. Mol. Pharm. 2017;14:2670–2680. doi: 10.1021/acs.molpharmaceut.7b00152. PubMed DOI

Grzybowska K., Paluch M., Grzybowski A., Wojnarowska Z., Hawelek L., Kolodziejczyk K., Ngai K.L. Molecular dynamics and physical stability of amorphous anti-inflammatory drug: Celecoxib. J. Phys. Chem. B. 2010;114:12792–12801. doi: 10.1021/jp1040212. PubMed DOI

Priemel P.A., Laitinen R., Barthold S., Grohganz H., Lehto V.P., Rades T., Strachan C.J. Inhibition of surface crystallisation of amorphous indomethacin particles in physical drug-polymer mixtures. Int. J. Pharm. 2013;456:301–306. doi: 10.1016/j.ijpharm.2013.08.046. PubMed DOI

Lehmkemper K., Kyeremateng S.O., Degenhardt M., Sadowski G. Influence of Low-Molecular-Weight Excipients on the Phase Behavior of PVPVA64 Amorphous Solid Dispersions. Pharm. Res. 2018;35:25. doi: 10.1007/s11095-017-2316-y. PubMed DOI

Shi Q., Moinuddin S.M., Cai T. Advances in coamorphous drug delivery systems. Acta Pharm. Sin. B. 2019;9:19–35. doi: 10.1016/j.apsb.2018.08.002. PubMed DOI PMC

Azaı T., Tourné-Péteilh C., Aussenac F., Baccile N., Coelho C., Devoisselle J.-M., Babonneau F. Solid-State NMR Study of Ibuprofen Confined in MCM-41 Material. Chem. Mater. 2006;18:6382–6390. doi: 10.1021/cm061551c. DOI

Bahl D., Bogner R.H. Amorphization of indomethacin by co-grinding with Neusilin US2: Amorphization kinetics, physical stability and mechanism. Pharm. Res. 2006;23:2317–2325. doi: 10.1007/s11095-006-9062-x. PubMed DOI

Andersson J., Rosenholm J., Areva S., Lindén M. Influences of material characteristics on ibuprofen drug loading and release profiles from ordered micro- and mesoporous silica matrices. Chem. Mater. 2004;16:4160–4167. doi: 10.1021/cm0401490. DOI

Bremmell K.E., Prestidge C.A. Enhancing oral bioavailability of poorly soluble drugs with mesoporous silica based systems: Opportunities and challenges. Drug Dev. Ind. Pharm. 2019;45:349–358. doi: 10.1080/03639045.2018.1542709. PubMed DOI

Bukara K., Schueller L., Rosier J., Martens M.A., Daems T., Verheyden L., Eelen S., Van Speybroeck M., Libanati C., Martens J.A., et al. Ordered mesoporous silica to enhance the bioavailability of poorly water-soluble drugs: Proof of concept in man. Eur. J. Pharm. Biopharm. 2016;108:220–225. doi: 10.1016/j.ejpb.2016.08.020. PubMed DOI

Cassano D., Mapanao A.K., Summa M., Vlamidis Y., Giannone G., Santi M., Guzzolino E., Pitto L., Poliseno L., Bertorelli R., et al. Biosafety and Biokinetics of Noble Metals: The Impact of Their Chemical Nature. ACS Appl. Bio Mater. 2019;2:4464–4470. doi: 10.1021/acsabm.9b00630. PubMed DOI

Croissant J.G., Fatieiev Y., Khashab N.M. Degradability and Clearance of Silicon, Organosilica, Silsesquioxane, Silica Mixed Oxide, and Mesoporous Silica Nanoparticles. Adv. Mater. 2017;29:1604634. doi: 10.1002/adma.201604634. PubMed DOI

Genina N., Hadi B., Löbmann K. Hot Melt Extrusion as Solvent-Free Technique for a Continuous Manufacturing of Drug-Loaded Mesoporous Silica. J. Pharm. Sci. 2018;107:149–155. doi: 10.1016/j.xphs.2017.05.039. PubMed DOI

Rengarajan G.T., Enke D., Steinhart M., Beiner M. Stabilization of the amorphous state of pharmaceuticals in nanopores. J. Mater. Chem. 2008;18:2537–2539. doi: 10.1039/b804266g. DOI

Knapik J., Wojnarowska Z., Grzybowska K., Jurkiewicz K., Stankiewicz A., Paluch M. Stabilization of the Amorphous Ezetimibe Drug by Confining Its Dimension. Mol. Pharm. 2016;13:1308–1316. doi: 10.1021/acs.molpharmaceut.5b00903. PubMed DOI

Laitinen R., Löbmann K., Strachan C.J., Grohganz H., Rades T. Emerging trends in the stabilization of amorphous drugs. Int. J. Pharm. 2013;453:65–79. doi: 10.1016/j.ijpharm.2012.04.066. PubMed DOI

Riikonen J., Xu W., Lehto V.P. Mesoporous systems for poorly soluble drugs—Recent trends. Int. J. Pharm. 2018;536:178–186. doi: 10.1016/j.ijpharm.2017.11.054. PubMed DOI

Bavnhøj C.G., Knopp M.M., Madsen C.M., Löbmann K. The role interplay between mesoporous silica pore volume and surface area and their effect on drug loading capacity. Int. J. Pharm. X. 2019;1:100008. doi: 10.1016/j.ijpx.2019.100008. PubMed DOI PMC

Hempel N.J., Brede K., Olesen N.E., Genina N., Knopp M.M., Löbmann K. A fast and reliable DSC-based method to determine the monomolecular loading capacity of drugs with good glass-forming ability in mesoporous silica. Int. J. Pharm. 2018;544:153–157. doi: 10.1016/j.ijpharm.2018.04.035. PubMed DOI

Mellaerts R., Aerts C.A., Van Humbeeck J., Augustijns P., Van Den Mooter G., Martens J.A. Enhanced release of itraconazole from ordered mesoporous SBA-15 silica materials. Chem. Commun. 2007:1375–1377. doi: 10.1039/b616746b. PubMed DOI

Antonino R.S.C.M.Q., Ruggiero M., Song Z., Nascimento T.L., Lima E.M., Bohr A., Knopp M.M., Löbmann K. Impact of drug loading in mesoporous silica-amorphous formulations on the physical stability of drugs with high recrystallization tendency. Int. J. Pharm. X. 2019;1:100026. doi: 10.1016/j.ijpx.2019.100026. PubMed DOI PMC

Kumar D., Sailaja Chirravuri S.V., Shastri N.R. Impact of surface area of silica particles on dissolution rate and oral bioavailability of poorly water soluble drugs: A case study with aceclofenac. Int. J. Pharm. 2014;461:459–468. doi: 10.1016/j.ijpharm.2013.12.017. PubMed DOI

Yani Y., Chow P.S., Tan R.B.H. Pore size effect on the stabilization of amorphous drug in a mesoporous material: Insights from molecular simulation. Microporous Mesoporous Mater. 2016;221:117–122. doi: 10.1016/j.micromeso.2015.09.029. DOI

Rao M., Mandage Y., Thanki K., Bhise S. Dissolution improvement of simvastatin by surface solid dispersion technology. Dissolution Technol. 2010;17:27–34. doi: 10.14227/DT170210P27. DOI

Vraníková B., Niederquell A., Ditzinger F., Šklubalová Z., Kuentz M. Mechanistic aspects of drug loading in liquisolid systems with hydrophilic lipid-based mixtures. Int. J. Pharm. 2020;578:119099. doi: 10.1016/j.ijpharm.2020.119099. PubMed DOI

Rao S., Tan A., Boyd B.J., Prestidge C.A. Synergistic role of self-emulsifying lipids and nanostructured porous silica particles in optimizing the oral delivery of lovastatin. Nanomedicine. 2014;9:2745–2759. doi: 10.2217/nnm.14.37. PubMed DOI

Kremer F., Schonhals A. Broadband Dielectric Spectroscopy. Springer; Berlin/Heidelberg, Germany: 2003.

Grzybowska K., Capaccioli S., Paluch M. Recent developments in the experimental investigations of relaxations in pharmaceuticals by dielectric techniques at ambient and elevated pressure. Adv. Drug Deliv. Rev. 2016;100:158–182. doi: 10.1016/j.addr.2015.12.008. PubMed DOI

Descamps M. Disordered Pharmaceutical Materials. Wiley-VCH Verlag GmbH & Co. KGaA; Weinheim, Germany: 2016.

Rams-Baron M., Jachowicz R., Boldyreva E., Zhou D., Jamroz W., Paluch M. Amorphous Drugs. Springer International Publishing; Cham, Switzerland: 2018.

Watson E.S., O’Neill M.J., Justin J., Brenner N. A Differential Scanning Calorimeter for Quantitative Differential Thermal Analysis. Anal. Chem. 1964;36:1233–1238. doi: 10.1021/ac60213a019. DOI

Höhne G.W.H., Hemminger W.F., Flammersheim H.-J. Differential Scanning Calorimetry. Springer; Berlin/Heidelberg, Germany: 2003.

Kolodziejczyk K., Grzybowska K., Wojnarowska Z., Dulski M., Hawelek L., Paluch M. Isothermal cold crystallization kinetics study of sildenafil. Cryst. Growth Des. 2014;14:3199–3209. doi: 10.1021/cg401364e. DOI

Avramov I., Avramova K., Rüssel C. New method to analyze data on overall crystallization kinetics. J. Cryst. Growth. 2005;285:394–399. doi: 10.1016/j.jcrysgro.2005.08.024. DOI

Rams-Baron M., Jachowicz R., Boldyreva E., Zhou D., Jamroz W., Paluch M. Amorphous Drugs: Benefits and Challenges. Springer International Publishing; Cham, Switzerland: 2018.

Dantuluri A.K.R., Amin A., Puri V., Bansal A.K. Role of r-Relaxation on Crystallization of Amorphous Celecoxib above T g Probed by Dielectric Spectroscopy. Mol. Pharm. 2011;8:814–822. doi: 10.1021/mp100411v. PubMed DOI

Tu W., Knapik-Kowalczuk J., Chmiel K., Paluch M. Glass Transition Dynamics and Physical Stability of Amorphous Griseofulvin in Binary Mixtures with Low-T g Excipients. Mol. Pharm. 2019;16:3626–3635. doi: 10.1021/acs.molpharmaceut.9b00476. PubMed DOI

Hargis M.J., Grady B.P. Effect of sample size on isothermal crystallization measurements performed in a differential scanning calorimeter: A method to determine avrami parameters without sample thickness effects. Thermochim. Acta. 2006;443:147–158. doi: 10.1016/j.tca.2005.12.027. DOI

Kawakami K. Surface effects on the crystallization of ritonavir glass. J. Pharm. Sci. 2015;104:276–279. doi: 10.1002/jps.24229. PubMed DOI

Wu T., Sun Y., Li N., De Villiers M.M., Yu L. Inhibiting surface crystallization of amorphous indomethacin by nanocoating. Langmuir. 2007;23:5148–5153. doi: 10.1021/la070050i. PubMed DOI

Kawakami K., Harada T., Yoshihashi Y., Yonemochi E., Terada K., Moriyama H. Correlation between Glass-Forming Ability and Fragility of Pharmaceutical Compounds. J. Phys. Chem. B. 2015;119:4873–4880. doi: 10.1021/jp509646z. PubMed DOI

Havriliak S., Negami S. A complex plane representation of dielectric and mechanical relaxation processes in some polymers. Polymer. 1967;8:161–210. doi: 10.1016/0032-3861(67)90021-3. DOI

Vogel H. Das Temperaturabhangigkeitgesetz der Viskosität von Flüssigkeiten. J. Phys. Z. 1921;22:645–646.

Fulcher G.S. Analysis of Recent Measurements of the Viscosity of Glasses. J. Am. Ceram. Soc. 1925;8:339–355. doi: 10.1111/j.1151-2916.1925.tb16731.x. DOI

Tammann G., Hesse W. Die Abhängigkeit der Viscosität von der Temperatur bie unterkühlten Flüssigkeiten. Z. Anorg. Allg. Chem. 1926;156:245–257. doi: 10.1002/zaac.19261560121. DOI

Böhmer R., Ngai K.L., Angell C.A., Plazek D.J. Nonexponential relaxations in strong and fragile glass formers. J. Chem. Phys. 1993;99:4201–4209. doi: 10.1063/1.466117. DOI

Kawakami K. Handbook of Thermal Analysis and Calorimetry. Volume 6. Elsevier; Amsterdam, The Netherlands: 2018. Pharmaceutical Applications of Thermal Analysis; pp. 613–641.

Knapik J., Wojnarowska Z., Grzybowska K., Hawelek L., Sawicki W., Wlodarski K., Markowski J., Paluch M. Physical stability of the amorphous anticholesterol agent (Ezetimibe): The role of molecular mobility. Mol. Pharm. 2014;11:4280–4290. doi: 10.1021/mp500498e. PubMed DOI

Tanaka H. Relationship among glass-forming ability, fragility, and short-range bond ordering of liquids. J. Non. Cryst. Solids. 2005;351:678–690. doi: 10.1016/j.jnoncrysol.2005.01.070. DOI

Williams G., Watts D.C. Non-symmetrical dielectric relaxation behaviour arising from a simple empirical decay function. Trans. Faraday Soc. 1970;66:80. doi: 10.1039/tf9706600080. DOI

Shamblin S.L., Tang X., Chang L., Hancock B., Pikal M.J. Characterization of the Time Scales of Molecular Motion in Pharmaceutically Important Glasses. J. Phys. Chem. B. 1999;103:4113–4121. doi: 10.1021/jp983964+. DOI

Paluch M., Knapik J., Wojnarowska Z., Grzybowski A., Ngai K.L. Universal Behavior of Dielectric Responses of Glass Formers: Role of Dipole-Dipole Interactions. Phys. Rev. Lett. 2016;116:025702. doi: 10.1103/PhysRevLett.116.025702. PubMed DOI

Knapik-Kowalczuk J., Wojnarowska Z., Chmiel K., Rams-Baron M., Tajber L., Paluch M. Can storage time improve the physical stability of amorphous pharmaceuticals with tautomerization ability exposed to compression? The case of chloramphenicol drug. Mol. Pharm. 2018;15:1928–1940. doi: 10.1021/acs.molpharmaceut.8b00099. PubMed DOI

Knapik-Kowalczuk J., Gündüz M.G., Chmiel K., Jurkiewicz K., Kurek M., Tajber L., Jachowicz R., Paluch M. Molecular dynamics, viscoelastic properties and physical stability studies of a new amorphous dihydropyridine derivative with T-type calcium channel blocking activity. Eur. J. Pharm. Sci. 2020;141:105083. doi: 10.1016/j.ejps.2019.105083. PubMed DOI

Adrjanowicz K., Zakowiecki D., Kaminski K., Hawelek L., Grzybowska K., Tarnacka M., Paluch M., Cal K. Molecular dynamics in supercooled liquid and glassy states of antibiotics: Azithromycin, clarithromycin and roxithromycin studied by dielectric spectroscopy. Advantages given by the amorphous state. Mol. Pharm. 2012;9:1748–1763. doi: 10.1021/mp300067r. PubMed DOI

Vogel M., Tschirwitz C., Schneider G., Koplin C., Medick P., Rössler E. A2H NMR and dielelectric spectroscopy study of the slow β-process in organic glass formers. J. Non. Cryst. Solids. 2002;307–310:326–335. doi: 10.1016/S0022-3093(02)01492-8. DOI

Grzybowska K., Paluch M., Wlodarczyk P., Grzybowski A., Kaminski K., Hawelek L., Zakowiecki D., Kasprzycka A., Jankowska-Sumara I. Enhancement of amorphous celecoxib stability by mixing it with octaacetylmaltose: The molecular dynamics study. Mol. Pharm. 2012;9:894–904. doi: 10.1021/mp200436q. PubMed DOI

Kolodziejczyk K., Paluch M., Grzybowska K., Grzybowski A., Wojnarowska Z., Hawelek L., Ziolo J.D. Relaxation dynamics and crystallization study of sildenafil in the liquid and glassy states. Mol. Pharm. 2013;10:2270–2282. doi: 10.1021/mp300479r. PubMed DOI

Descamps M., Willart J.-F. Scaling laws and size effects for amorphous crystallization kinetics: Constraints imposed by nucleation and growth specificities. Int. J. Pharm. 2018;542:186–195. doi: 10.1016/j.ijpharm.2018.03.001. PubMed DOI

Delcourt O., Descamps M., Hilhorst H.J. Size effect in a nucleation and growth transformation. Ferroelectrics. 1991;124:109–114. doi: 10.1080/00150199108209423. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...