Rapid Characterization of Biomolecules' Thermal Stability in a Segmented Flow-Through Optofluidic Microsystem
Status PubMed-not-MEDLINE Language English Country Great Britain, England Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
32332774
PubMed Central
PMC7181606
DOI
10.1038/s41598-020-63620-5
PII: 10.1038/s41598-020-63620-5
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Optofluidic devices combining optics and microfluidics have recently attracted attention for biomolecular analysis due to their high detection sensitivity. Here, we show a silicon chip with tubular microchannels buried inside the substrate featuring temperature gradient (∇T) along the microchannel. We set up an optical fluorescence system consisting of a power-modulated laser light source of 470 nm coupled to the microchannel serving as a light guide via optical fiber. Fluorescence was detected on the other side of the microchannel using a photomultiplier tube connected to an optical fiber via a fluorescein isothiocyanate filter. The PMT output was connected to a lock-in amplifier for signal processing. We performed a melting curve analysis of a short dsDNA - SYBR Green I complex with a known melting temperature (TM) in a flow-through configuration without gradient to verify the functionality of the proposed detection system. We then used the segmented flow configuration and measured the fluorescence amplitude of a droplet exposed to ∇T of ≈ 2.31 °C mm-1, determining the heat transfer time as ≈ 554 ms. The proposed platform can be used as a fast and cost-effective system for performing either MCA of dsDNAs or for measuring protein unfolding for drug-screening applications.
See more in PubMed
Dolan EB, Haugh MG, Tallon D, Casey C, McNamara LM. Heat-shock-induced cellular responses to temperature elevations occurring during orthopaedic cutting. J R Soc. 2012;9:3503–3513. doi: 10.1098/rsif.2012.0520. PubMed DOI PMC
Vergara M, et al. Differential Effect of Culture Temperature and Specific Growth Rate on CHO Cell Behavior in Chemostat Culture. PLOS ONE. 2014;9:e93865. doi: 10.1371/journal.pone.0093865. PubMed DOI PMC
Katava, M. et al. Critical structural fluctuations of proteins upon thermal unfolding challenge the Lindemann criterion. Proc. Natl. Acad. Sci. USA, 201707357, 10.1073/pnas.1707357114 (2017). PubMed PMC
Tanaka J, et al. KRAS genotyping by digital PCR combined with melting curve analysis. Sci Rep. 2019;9:2626. doi: 10.1038/s41598-019-38822-1. PubMed DOI PMC
Miralles V, Huerre A, Malloggi F, Jullien M-C. A Review of Heating and Temperature Control in Microfluidic Systems: Techniques and Applications. Diagnostics. 2013;3:33–67. doi: 10.3390/diagnostics3010033. PubMed DOI PMC
Sohel Murshed SM, Tan S-H, Nguyen N-T. Temperature dependence of interfacial properties and viscosity of nanofluids for droplet-based microfluidics. J. Phys. D. 2008;41:085502. doi: 10.1088/0022-3727/41/8/085502. DOI
Murshed SMS, Tan SH, Nguyen NT, Wong TN, Yobas L. Microdroplet formation of water and nanofluids in heat-induced microfluidic T-junction. Microfluid Nanofluid. 2009;6:253–259. doi: 10.1007/s10404-008-0323-3. DOI
Verneuil E, Cordero M, Gallaire F, Baroud CN. Laser-Induced Force on a Microfluidic Drop: Origin and Magnitude. Langmuir. 2009;25:5127–5134. doi: 10.1021/la8041605. PubMed DOI
Yesiloz G, Boybay MS, Ren CL. Effective Thermo-Capillary Mixing in Droplet Microfluidics Integrated with a Microwave Heater. Anal Chem. 2017;89:1978–1984. doi: 10.1021/acs.analchem.6b04520. PubMed DOI
Khater A, Mohammadi M, Mohamad A, Nezhad AS. Dynamics of temperature-actuated droplets within microfluidics. Sci Rep. 2019;9:3832. doi: 10.1038/s41598-019-40069-9. PubMed DOI PMC
Ho PC, Nguyen N-T. Numerical study of thermocoalescence of microdroplets in a microfluidic chamber. Phys. Fluids. 2013;25:082006. doi: 10.1063/1.4819134. DOI
Liu J-H, Hsia K-C, Yokokawa R, Lu Y-W. Microtubule polymerization in alignment by an on-chip temperature gradient platform. Sens. Actuator B-Chem. 2019;298:126813. doi: 10.1016/j.snb.2019.126813. DOI
Li K-C, Ding S-T, Lin E-C, Wang LA, Lu Y-W. Melting analysis on microbeads in rapid temperature-gradient inside microchannels for single nucleotide polymorphisms detection. Biomicrofluidics. 2014;8:064109–064109. doi: 10.1063/1.4902907. PubMed DOI PMC
Dodge A, Turcatti G, Lawrence I, de Rooij NF, Verpoorte E. A Microfluidic Platform Using Molecular Beacon-Based Temperature Calibration for Thermal Dehybridization of Surface-Bound DNA. Anal Chem. 2004;76:1778–1787. doi: 10.1021/ac034377+. PubMed DOI
Neuzil P, Pipper J, Hsieh TM. Disposable real-time microPCR device: lab-on-a-chip at a low cost. Mol. Biosyst. 2006;2:292–298. doi: 10.1039/B605957K. PubMed DOI
Davies E, Christodoulides P, Florides G, Kalli K. Microfluidic Flows and Heat Transfer and Their Influence on Optical Modes in Microstructure Fibers. Materials. 2014;7:7566–7582. doi: 10.3390/ma7117566. PubMed DOI PMC
Toh KC, Chen XY, Chai JC. Numerical computation of fluid flow and heat transfer in microchannels. Int. J. Heat Mass Transf. 2002;45:5133–5141. doi: 10.1016/S0017-9310(02)00223-5. DOI
Hajmohammadi MR, Alipour P, Parsa H. Microfluidic effects on the heat transfer enhancement and optimal design of microchannels heat sinks. Int. J. Heat Mass Transf. 2018;126:808–815. doi: 10.1016/j.ijheatmasstransfer.2018.06.037. DOI
Novak L, Neuzil P, Pipper J, Zhang Y, Lee S. An integrated fluorescence detection system for lab-on-a-chip applications. Lab Chip. 2007;7:27–29. doi: 10.1039/B611745G. PubMed DOI
Ahrberg CD, Ilic BR, Manz A, Neužil P. Handheld real-time PCR device. Lab Chip. 2016;16:586–592. doi: 10.1039/C5LC01415H. PubMed DOI PMC
Ahrberg CD, Manz A, Neužil P. Palm-sized device for point-of-care Ebola detection. Anal Chem. 2016;88:4803–4807. doi: 10.1021/acs.analchem.6b00278. PubMed DOI
Neuzil P, et al. Rapid detection of viral RNA by a pocket-size real-time PCR system. Lab Chip. 2010;10:2632–2634. doi: 10.1039/c004921b. PubMed DOI
Ozcelik D, Cai H, Leake KD, Hawkins AR, Schmidt H. Optofluidic bioanalysis: fundamentals and applications. Nanophotonics. 2017;6:647–661. doi: 10.1515/nanoph-2016-0156. PubMed DOI PMC
Fan X, White IM. Optofluidic microsystems for chemical and biological analysis. Nat Photonics. 2011;5:591–597. doi: 10.1038/nphoton.2011.206. PubMed DOI PMC
Song C, Tan SH. A Perspective on the Rise of Optofluidics and the Future. Micromachines (Basel) 2017;8:152. doi: 10.3390/mi8050152. DOI
Persichetti G, Grimaldi IA, Testa G, Bernini R. Multifunctional optofluidic lab-on-chip platform for Raman and fluorescence spectroscopic microfluidic analysis. Lab Chip. 2017;17:2631–2639. doi: 10.1039/C7LC00460E. PubMed DOI
Yang T, Stavrakis S, deMello A. A High-Sensitivity, Integrated Absorbance and Fluorescence Detection Scheme for Probing Picoliter-Volume Droplets in Segmented Flows. Anal Chem. 2017;89:12880–12887. doi: 10.1021/acs.analchem.7b03526. PubMed DOI
Cai H, et al. Optofluidic analysis system for amplification-free, direct detection of Ebola infection. Sci Rep. 2015;5:14494–14494. doi: 10.1038/srep14494. PubMed DOI PMC
Scherr SM, et al. Real-Time Capture and Visualization of Individual Viruses in Complex Media. ACS Nano. 2016;10:2827–2833. doi: 10.1021/acsnano.5b07948. PubMed DOI PMC
Zhu H, Mavandadi S, Coskun AF, Yaglidere O, Ozcan A. Optofluidic fluorescent imaging cytometry on a cell phone. Anal Chem. 2011;83:6641–6647. doi: 10.1021/ac201587a. PubMed DOI PMC
Balram KC, et al. The Nanolithography Toolbox. J. Res. Natl. Inst. Stand. 2016;121:464–475. doi: 10.6028/jres.121.024. PubMed DOI PMC
Gablech I, et al. Fabrication of buried microfluidic channels with observation windows using femtosecond laser photoablation and parylene-C coating. Microfluid Nanofluid. 2018;22:105. doi: 10.1007/s10404-018-2125-6. DOI
Ilic B, Czaplewski D, Zalalutdinov M, Schmidt B, Craighead H. Fabrication of flexible polymer tubes for micro and nanofluidic applications. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena. 2002;20:2459–2465. doi: 10.1116/1.1526356. DOI
Laerme, F., Schilp, A., Funk, K. & Offenberg, M. In Technical Digest. IEEE International MEMS 99 Conference. Twelfth IEEE International Conference on Micro Electro Mechanical Systems (Cat. No. 99CH36291). 211–216 (IEEE).
Reismann M, Bretschneider JC, Plessen GV, Simon U. Reversible Photothermal Melting of DNA in DNA–Gold-Nanoparticle Networks. Small. 2008;4:607–610. doi: 10.1002/smll.200701317. PubMed DOI
Castro ER, et al. Determination of dynamic contact angles within microfluidic devices. Microfluid Nanofluid. 2018;22:51. doi: 10.1007/s10404-018-2066-0. DOI
Svatos V, Gablech I, Ilic BR, Pekarek J, Neuzil P. In situ observation of carbon nanotube layer growth on microbolometers with substrates at ambient temperature. J. Appl. Phys. 2018;123:7. doi: 10.1063/1.5016465. PubMed DOI PMC
Svatoš V, Gablech I, Pekárek J, Klempa J, Neužil P. Precise determination of thermal parameters of a microbolometer. Infrared Phys Techn. 2018;93:286–290. doi: 10.1016/j.infrared.2018.07.037. DOI
Zhu H, et al. Heat transfer time determination based on DNA melting curve analysis. Microfluidics and Nanofluidics. 2020;24:7. doi: 10.1007/s10404-019-2308-9. DOI
Neuzil P, Cheng F, Soon JBW, Qian LL, Reboud J. Non-contact fluorescent bleaching-independent method for temperature measurement in microfluidic systems based on DNA melting curves. Lab Chip. 2010;10:2818–2821. doi: 10.1039/c005243d. PubMed DOI
Bartsch MS, et al. The rotary zone thermal cycler: a low-power system enabling automated rapid PCR. PloS one. 2015;10:e0118182–e0118182. doi: 10.1371/journal.pone.0118182. PubMed DOI PMC
Baaske P, Duhr S, Braun D. Melting curve analysis in a snapshot. Applied Physics Letters. 2007;91:133901. doi: 10.1063/1.2790806. DOI