Study of Physico-Chemical Changes of CdTe QDs after Their Exposure to Environmental Conditions
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
DG16P02R017
Program of Applied Research and Development of National and Cultural Identity Project DG16P02R017 "Viticulture and Enology for maintaining and restoring cultural identity wine regions in Moravia".
PubMed
32365860
PubMed Central
PMC7279304
DOI
10.3390/nano10050865
PII: nano10050865
Knihovny.cz E-zdroje
- Klíčová slova
- UV radiation, electrochemistry detection, fluorometric detection, quantum dots,
- Publikační typ
- časopisecké články MeSH
The irradiance of ultraviolet (UV) radiation is a physical parameter that significantly influences biological molecules by affecting their molecular structure. The influence of UV radiation on nanoparticles has not been investigated much. In this work, the ability of cadmium telluride quantum dots (CdTe QDs) to respond to natural UV radiation was examined. The average size of the yellow QDs was 4 nm, and the sizes of green, red and orange QDs were 2 nm. Quantum yield of green CdTe QDs-MSA (mercaptosuccinic acid)-A, yellow CdTe QDs-MSA-B, orange CdTe QDs-MSA-C and red CdTe QDs-MSA-D were 23.0%, 16.0%, 18.0% and 7.0%, respectively. Green, yellow, orange and red CdTe QDs were replaced every day and exposed to daily UV radiation for 12 h for seven consecutive days in summer with UV index signal integration ranging from 1894 to 2970. The rising dose of UV radiation led to the release of cadmium ions and the change in the size of individual QDs. The shifts were evident in absorption signals (shifts of the absorbance maxima of individual CdTe QDs-MSA were in the range of 6-79 nm), sulfhydryl (SH)-group signals (after UV exposure, the largest changes in the differential signal of the SH groups were observed in the orange, green, and yellow QDs, while in red QDs, there were almost no changes), fluorescence, and electrochemical signals. Yellow, orange and green QDs showed a stronger response to UV radiation than red ones.
Department of Research and Development Prevention Medicals 742 13 Studenka Butovice Czech Republic
School of Pharmacy and Life Sciences Robert Gordon University Aberdeen AB10 7QB UK
Zobrazit více v PubMed
Cavan E.L., Belcher A., Atkinson A., Hill S.L., Kawaguchi S., McCormack S., Meyer B., Nicol S., Ratnarajah L., Schmidt K., et al. The importance of Antarctic krill in biogeochemical cycles. Nat. Commun. 2019;10:13. doi: 10.1038/s41467-019-12668-7. PubMed DOI PMC
Saupe E.E., Myers C.E., Peterson A.T., Soberon J., Singarayer J., Valdes P., Qiao H.J. Spatio-temporal climate change contributes to latitudinal diversity gradients. Nat. Ecol. Evol. 2019;3:1419–1429. doi: 10.1038/s41559-019-0962-7. PubMed DOI
Kline D.I., Teneva L., Okamoto D.K., Schneider K., Caldeira K., Miard T., Chai A., Marker M., Dunbar R.B., Mitchell B.G., et al. Living coral tissue slows skeletal dissolution related to ocean acidification. Nat. Ecol. Evol. 2019;3:1438–1444. doi: 10.1038/s41559-019-0988-x. PubMed DOI
Witze A. The weather observers on climate change’s front lines. Nature. 2019;573:317–318. doi: 10.1038/d41586-019-02632-2. PubMed DOI
Baker H.S., Millar R.J., Karoly D.J., Beyerle U., Guillod B.P., Mitchell D., Shiogama H., Sparrow S., Woollings T., Allen M.R. Higher CO2 concentrations increase extreme event risk in a 1.5 degrees C world. Nat. Clim. Chang. 2018;8:604. doi: 10.1038/s41558-018-0190-1. DOI
Chen H., Gong Y., Han R. Cadmium telluride quantum dots (CdTe-QDs) and enhanced ultraviolet-B (UV-B) radiation trigger antioxidant enzyme metabolism and programmed cell death in wheat seedlings. PLoS ONE. 2014;9:e110400. doi: 10.1371/journal.pone.0110400. PubMed DOI PMC
Hu M.Z., Zhu T. Semiconductor nanocrystal quantum dot synthesis approaches towards large-scale industrial production for energy applications. Nanoscale Res. Lett. 2015;10:469. doi: 10.1186/s11671-015-1166-y. PubMed DOI PMC
Nie Z.H., Petukhova A., Kumacheva E. Properties and emerging applications of self-assembled structures made from inorganic nanoparticles. Nat. Nanotechnol. 2010;5:15–25. doi: 10.1038/nnano.2009.453. PubMed DOI
Yang C., Xie H., Li Y., Zhang J.-K., Su B.-L. Direct and rapid quantum dots labelling of Escherichia coli cells. J. Colloid Interface Sci. 2013;393:438–444. doi: 10.1016/j.jcis.2012.10.036. PubMed DOI
Wang Q., Wang B., Ma M., Cai Z. A Sensitive and Selective Fluorimetric Method of Quick Determination of Sialic Acids in Egg Products by Lectin-CdTe Quantum Dots as Nanoprobe. J. Food Sci. 2014;79 doi: 10.1111/1750-3841.12706. PubMed DOI
Huy B.T., Seo M.-H., Zhang X., Lee Y.-I. Selective optosensing of clenbuterol and melamine using molecularly imprinted polymer-capped CdTe quantum dots. Biosen. Bioelectron. 2014;57:310–316. PubMed
Nayak P.K., Mahesh S., Snaith H.J., Cahen D. Photovoltaic solar cell technologies: Analysing the state of the art. Nat. Rev. Mater. 2019;4:269–285. doi: 10.1038/s41578-019-0097-0. DOI
Agrawal S., Morarka A., Bodas D., Paknikar K. Multiplexed detection of waterborne pathogens in circular microfluidics. Appl. Biochem. Biotechnol. 2012;167:1668–1677. doi: 10.1007/s12010-012-9597-8. PubMed DOI
Breger J., Delehanty J.B., Medintz I.L. Continuing progress toward controlled intracellular delivery of semiconductor quantum dots. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2015;7:131–151. doi: 10.1002/wnan.1281. PubMed DOI PMC
Chen L., Zhang X., Zhou G., Xiang X., Ji X., Zheng Z., He Z., Wang H. Simultaneous determination of human enterovirus 71 and coxsackievirus B3 by dual-color quantum dots and homogeneous immunoassay. Anal. Chem. 2012;84:3200–3207. doi: 10.1021/ac203172x. PubMed DOI
Djikanović D., Kalauzi A., Jeremić M., Xu J., Mićić M., Whyte J.D., Leblanc R.M., Radotić K. Interaction of the CdSe quantum dots with plant cell walls. Colloid Surf. B Biointerfaces. 2012;91:41–47. doi: 10.1016/j.colsurfb.2011.10.032. PubMed DOI
Lv S., Chen F., Chen C., Chen X., Gong H., Cai C. A novel CdTe quantum dots probe amplified resonance light scattering signals to detect microRNA-122. Talanta. 2017;165:659–663. doi: 10.1016/j.talanta.2017.01.020. PubMed DOI
Peng C.-W., Liu X.-L., Chen C., Liu X., Yang X.-Q., Pang D.-W., Zhu X.-B., Li Y. Patterns of cancer invasion revealed by QDs-based quantitative multiplexed imaging of tumor microenvironment. Biomaterials. 2011;32:2907–2917. doi: 10.1016/j.biomaterials.2010.12.053. PubMed DOI
Alvand Z.M., Rajabi H.R., Mirzaei A., Masoumiasl A., Sadatfaraji H. Rapid and green synthesis of cadmium telluride quantum dots with low toxicity based on a plant-mediated approach after microwave and ultrasonic assisted extraction: Synthesis, characterization, biological potentials and comparison study. Mater. Sci. Eng. C-Mater. Biol. Appl. 2019;98:535–544. doi: 10.1016/j.msec.2019.01.010. PubMed DOI
Smith A.M., Nie S. Chemical analysis and cellular imaging with quantum dots. Analyst. 2004;129:672–677. doi: 10.1039/b404498n. PubMed DOI
Vikesland P.J. Nanosensors for water quality monitoring. Nat. Nanotechnol. 2018;13:651–660. doi: 10.1038/s41565-018-0209-9. PubMed DOI
Sturzenbaum S.R., Hockner M., Panneerselvam A., Levitt J., Bouillard J.S., Taniguchi S., Dailey L.A., Khanbeigi R.A., Rosca E.V., Thanou M., et al. Biosynthesis of luminescent quantum dots in an earthworm. Nat. Nanotechnol. 2013;8:57–60. doi: 10.1038/nnano.2012.232. PubMed DOI
Mahmoudi M., Azadmanesh K., Shokrgozar M.A., Journeay W.S., Laurent S. Effect of nanoparticles on the cell life cycle. Chem. Rev. 2011;111:3407–3432. doi: 10.1021/cr1003166. PubMed DOI
Zhang H. (64)Cu-1,4,7,10-Tetraazacyclododecane-1,4,7,10-Tetraacetic Acid-Quantum Dot-Vascular Endothelial Growth Factor. National Center for Biotechnology Information (US); Bethesda, MD, USA: 2004. PubMed
Bilan R., Nabiev I., Sukhanova A. Quantum Dot-Based Nanotools for Bioimaging, Diagnostics, and Drug Delivery. ChemBioChem. 2016;17:2103–2114. doi: 10.1002/cbic.201600357. PubMed DOI
Foubert A., Beloglazova N.V., Rajkovic A., Sas B., Madder A., Goryacheva I.Y., De Saeger S. Bioconjugation of quantum dots: Review & impact on future application. Trac-Trends Anal. Chem. 2016;83:31–48. doi: 10.1016/j.trac.2016.07.008. DOI
Moulick A., Blazkova I., Milosavljevic V., Fohlerova Z., Hubalek J., Kopel P., Vaculovicova M., Adam V., Kizek R. Application of CdTe/ZnSe Quantum Dots in In Vitro Imaging of Chicken Tissue and Embryo. Photochem. Photobiol. 2015;91:417–423. doi: 10.1111/php.12398. PubMed DOI
Fisher A.A.E., Osborne M.A., Day I.J., Lucena Alcalde G. Measurement of ligand coverage on cadmium selenide nanocrystals and its influence on dielectric dependent photoluminescence intermittency. Commun. Chem. 2019;2:63. doi: 10.1038/s42004-019-0164-x. DOI
Esteve-Turrillas F.A., Abad-Fuentes A. Applications of quantum dots as probes in immunosensing of small-sized analytes. Biosen. Bioelectron. 2013;41:12–29. doi: 10.1016/j.bios.2012.09.025. PubMed DOI
Algar W.R., Tavares A.J., Krull U.J. Beyond labels: A review of the application of quantum dots as integrated components of assays, bioprobes, and biosensors utilizing optical transduction. Anal. Chim. Acta. 2010;673:1–25. doi: 10.1016/j.aca.2010.05.026. PubMed DOI
Stanisavljevic M., Krizkova S., Vaculovicova M., Kizek R., Adam V. Quantum dots-fluorescence resonance energy transfer-based nanosensors and their application. Biosens. Bioelectron. 2015;74:562–574. doi: 10.1016/j.bios.2015.06.076. PubMed DOI
Tsipotan A.S., Gerasimova M.A., Aleksandrovsky A.S., Zharkov S.M., Slabko V.V. Effect of visible and UV irradiation on the aggregation stability of CdTe quantum dots. J. Nanopart. Res. 2016;18:324. doi: 10.1007/s11051-016-3638-0. DOI
Derfus A.M., Chan W.C., Bhatia S.N. Probing the cytotoxicity of semiconductor quantum dots. Nano Lett. 2004;4:11–18. doi: 10.1021/nl0347334. PubMed DOI PMC
Yu Y., Lai Y., Zheng X., Wu J., Long Z., Liang C. Synthesis of functionalized CdTe/CdS QDs for spectrofluorimetric detection of BSA. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2007;68:1356–1361. doi: 10.1016/j.saa.2007.02.016. PubMed DOI
Song Y., Cao X., Guo Y., Chen P., Zhao Q., Shen G. Fabrication of mesoporous CdTe/ZnO@ SiO2 core/shell nanostructures with tunable dual emission and ultrasensitive fluorescence response to metal ions. Chem. Mater. 2008;21:68–77. doi: 10.1021/cm801925j. DOI
Sun X., Liu B., Xu Y. Dual-emission quantum dots nanocomposites bearing an internal standard and visual detection for Hg 2+ Analyst. 2012;137:1125–1129. doi: 10.1039/c2an16026a. PubMed DOI
Wu H., Liu G., Wang J., Lin Y. Quantum-dots based electrochemical immunoassay of interleukin-1α. Electrochem. Commun. 2007;9:1573–1577. doi: 10.1016/j.elecom.2007.02.024. DOI
Zhao D., Chan W., He Z., Qiu T. Quantum dot− ruthenium complex dyads: Recognition of double-strand DNA through dual-color fluorescence detection. Anal. Chem. 2009;81:3537–3543. doi: 10.1021/ac9000892. PubMed DOI
Kim K.E., Kim T.G., Sung Y.M. Fluorescent cholesterol sensing using enzyme-modified CdSe/ZnS quantum dots. J. Nanopart. Res. 2012;14 doi: 10.1007/s11051-012-1179-8. DOI
Wang G.-L., Jiao H.-J., Zhu X.-Y., Dong Y.-M., Li Z.-J. Enhanced fluorescence sensing of melamine based on thioglycolic acid-capped CdS quantum dots. Talanta. 2012;93:398–403. doi: 10.1016/j.talanta.2012.02.062. PubMed DOI
Wang X., Lv Y., Hou X. A potential visual fluorescence probe for ultratrace arsenic (III) detection by using glutathione-capped CdTe quantum dots. Talanta. 2011;84:382–386. doi: 10.1016/j.talanta.2011.01.012. PubMed DOI
Nejdl L., Richtera L., Xhaxhiu K., Kensova R., Kudr J., Ruttkay-Nedecky B., Kynicky J., Wawrzak D., Adam V., Kizek R., et al. UV Tuning of Cadmium Telluride Quantum Dots (CdTe QDs)-Assessed by Spectroscopy and Electrochemistry. Int. J. Electrochem. Sci. 2016;11:175–188.
Aldana J., Wang Y.A., Peng X. Photochemical instability of CdSe nanocrystals coated by hydrophilic thiols. J. Am. Chem. Soc. 2001;123:8844–8850. doi: 10.1021/ja016424q. PubMed DOI
Chen Y., Chen Z., He Y., Lin H., Sheng P., Liu C., Luo S., Cai Q. L-cysteine-capped CdTe QD-based sensor for simple and selective detection oftrinitrotoluene. Nanotechnology. 2010;21:125502. doi: 10.1088/0957-4484/21/12/125502. PubMed DOI
Kim J., Huy B.T., Sakthivel K., Choi H.J., Joo W.H., Shin S.K., Lee M.J., Lee Y.-I. Highly fluorescent CdTe quantum dots with reduced cytotoxicity-A Robust biomarker. Sens. Biosens. Res. 2015;3:46–52. doi: 10.1016/j.sbsr.2014.12.001. DOI
Wuister S.F., Swart I., van Driel F., Hickey S.G., de Mello Donegá C. Highly luminescent water-soluble CdTe quantum dots. Nano Lett. 2003;3:503–507. doi: 10.1021/nl034054t. DOI
Melichar L., Jarosova M., Kopel P., Adam V., Kizek R. Synthesis of Quantum Dots by Microwave Irradiation. Tanger Ltd.; Slezská Ostrava: 2014. pp. 187–191.
Shen M., Jia W.P., You Y.J., Hu Y., Li F., Tian S.D., Li J., Jin Y.X., Han D.M. Luminescent properties of CdTe quantum dots synthesized using 3-mercaptopropionic acid reduction of tellurium dioxide directly. Nanoscale Res. Lett. 2013;8:6. doi: 10.1186/1556-276X-8-253. PubMed DOI PMC
Lima M.J.A., Reis B.F. Photogeneration of silver nanoparticles induced by UV radiation and their use as a sensor for the determination of chloride in fuel ethanol using a flow-batch system. Talanta. 2019;201:373–378. doi: 10.1016/j.talanta.2019.03.118. PubMed DOI
Miao Y.P., Yang P., Zhao J., Du Y.Y., He H.Y., Liu Y.S. Photodegradation of Mercaptopropionic Acid- and Thioglycollic Acid-Capped CdTe Quantum Dots in Buffer Solutions. J. Nanosci. Nanotechnol. 2015;15:4462–4469. doi: 10.1166/jnn.2015.9800. PubMed DOI
Sousa J.C.L., Vivas M.G., Ferrari J.L., Mendonca C.R., Schiavon M.A. Determination of particle size distribution of water-soluble CdTe quantum dots by optical spectroscopy. RSC Adv. 2014;4:36024–36030. doi: 10.1039/C4RA05979D. DOI
Anbarasi A., Kalpana R., Arivarasan A., Jayavel R., Venkataraman B. Detection of UV Rays Using CdTe Quantum Dots. Int. J. Meas. Technol. Instr. Eng. 2015;5:15–27. doi: 10.4018/IJMTIE.2015010102. DOI
Gao F., Lv C., Han J., Li X., Wang Q., Zhang J., Chen C., Li Q., Sun X., Zheng J. CdTe–montmorillonite nanocomposites: Control synthesis, UV radiation-dependent photoluminescence, and enhanced latent fingerprint detection. J. Phys. Chem. C. 2011;115:21574–21583. doi: 10.1021/jp205021j. DOI
Lan G.-Y., Lin Y.-W., Huang Y.-F., Chang H.-T. Photo-assisted synthesis of highly fluorescent ZnSe (S) quantum dots in aqueous solution. J. Mater. Chem. 2007;17:2661–2666. doi: 10.1039/b702469j. DOI
Alivisatos A.P. Perspectives on the physical chemistry of semiconductor nanocrystals. J. Phys. Chem. 1996;100:13226–13239. doi: 10.1021/jp9535506. DOI
Spanhel L., Haase M., Weller H., Henglein A. Photochemistry of colloidal semiconductors. 20. Surface modification and stability of strong luminescing CdS particles. J. Am. Chem. Soc. 1987;109:5649–5655. doi: 10.1021/ja00253a015. DOI
Gaponik N., Talapin D.V., Rogach A.L., Hoppe K., Shevchenko E.V., Kornowski A., Eychmüller A., Weller H. Thiol-capping of CdTe nanocrystals: An alternative to organometallic synthetic routes. J. Phys. Chem. B. 2002;106:7177–7185. doi: 10.1021/jp025541k. DOI
Shavel A., Gaponik N., Eychmüller A. Efficient UV-blue photoluminescing thiol-stabilized water-soluble alloyed ZnSe (S) nanocrystals. J. Phys. Chem. B. 2004;108:5905–5908. doi: 10.1021/jp037941t. DOI
Talapin D.V., Gaponik N., Borchert H., Rogach A.L., Haase M., Weller H. Etching of colloidal InP nanocrystals with fluorides: Photochemical nature of the process resulting in high photoluminescence efficiency. J. Phys. Chem. B. 2002;106:12659–12663. doi: 10.1021/jp026380n. DOI
Ma J., Chen J.-Y., Guo J., Wang C., Yang W., Xu L., Wang P. Photostability of thiol-capped CdTe quantum dots in living cells: The effect of photo-oxidation. Nanotechnology. 2006;17:2083. doi: 10.1088/0957-4484/17/9/002. DOI
Ma J., Chen J.-Y., Zhang Y., Wang P.-N., Guo J., Yang W.-L., Wang C.-C. Photochemical instability of thiol-capped CdTe quantum dots in aqueous solution and living cells: Process and mechanism. J. Phys. Chem. B. 2007;111:12012–12016. doi: 10.1021/jp073351+. PubMed DOI
Gaponenko S.V. Optical Properties of Semiconductor Nanocrystals. Volume 23 Cambridge University Press; Cambridge, UK: 1998.
Dabbousi B.O., Rodriguez-Viejo J., Mikulec F.V., Heine J.R., Mattoussi H., Ober R., Jensen K.F., Bawendi M.G. (CdSe) ZnS core− shell quantum dots: Synthesis and characterization of a size series of highly luminescent nanocrystallites. J. Phys. Chem. B. 1997;101:9463–9475. doi: 10.1021/jp971091y. DOI
Karpov S., Slabko V., Chiganova G. Physical principles of the photostimulated aggregation of metal sols. Colloid J. 2002;64:425–442. doi: 10.1023/A:1016811818799. DOI
Rouhana L.L., Jaber J.A., Schlenoff J.B. Aggregation-resistant water-soluble gold nanoparticles. Langmuir. 2007;23:12799–12801. doi: 10.1021/la702151q. PubMed DOI
Zhou J., Beattie D.A., Ralston J., Sedev R. Colloid stability of thymine-functionalized gold nanoparticles. Langmuir. 2007;23:12096–12103. doi: 10.1021/la7019878. PubMed DOI
Zhou J., Sedev R., Beattie D., Ralston J. Light-induced aggregation of colloidal gold nanoparticles capped by thymine derivatives. Langmuir. 2008;24:4506–4511. doi: 10.1021/la703746w. PubMed DOI
Ibrahim S.A., Ahmed W., Youssef T. Photoluminescence and photostability investigations of biocompatible semiconductor nanocrystals coated with glutathione using low laser power. J. Nanopart. Res. 2014;16:2445. doi: 10.1007/s11051-014-2445-8. DOI
Karpov S., Bas’ ko A., Popov A., Slabko V. Optical spectra of silver colloids within the framework of fractal physics. Colloid J. 2000;62:699–713. doi: 10.1023/A:1026626708186. DOI