Study of Physico-Chemical Changes of CdTe QDs after Their Exposure to Environmental Conditions

. 2020 Apr 30 ; 10 (5) : . [epub] 20200430

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32365860

Grantová podpora
DG16P02R017 Program of Applied Research and Development of National and Cultural Identity Project DG16P02R017 "Viticulture and Enology for maintaining and restoring cultural identity wine regions in Moravia".

The irradiance of ultraviolet (UV) radiation is a physical parameter that significantly influences biological molecules by affecting their molecular structure. The influence of UV radiation on nanoparticles has not been investigated much. In this work, the ability of cadmium telluride quantum dots (CdTe QDs) to respond to natural UV radiation was examined. The average size of the yellow QDs was 4 nm, and the sizes of green, red and orange QDs were 2 nm. Quantum yield of green CdTe QDs-MSA (mercaptosuccinic acid)-A, yellow CdTe QDs-MSA-B, orange CdTe QDs-MSA-C and red CdTe QDs-MSA-D were 23.0%, 16.0%, 18.0% and 7.0%, respectively. Green, yellow, orange and red CdTe QDs were replaced every day and exposed to daily UV radiation for 12 h for seven consecutive days in summer with UV index signal integration ranging from 1894 to 2970. The rising dose of UV radiation led to the release of cadmium ions and the change in the size of individual QDs. The shifts were evident in absorption signals (shifts of the absorbance maxima of individual CdTe QDs-MSA were in the range of 6-79 nm), sulfhydryl (SH)-group signals (after UV exposure, the largest changes in the differential signal of the SH groups were observed in the orange, green, and yellow QDs, while in red QDs, there were almost no changes), fluorescence, and electrochemical signals. Yellow, orange and green QDs showed a stronger response to UV radiation than red ones.

Zobrazit více v PubMed

Cavan E.L., Belcher A., Atkinson A., Hill S.L., Kawaguchi S., McCormack S., Meyer B., Nicol S., Ratnarajah L., Schmidt K., et al. The importance of Antarctic krill in biogeochemical cycles. Nat. Commun. 2019;10:13. doi: 10.1038/s41467-019-12668-7. PubMed DOI PMC

Saupe E.E., Myers C.E., Peterson A.T., Soberon J., Singarayer J., Valdes P., Qiao H.J. Spatio-temporal climate change contributes to latitudinal diversity gradients. Nat. Ecol. Evol. 2019;3:1419–1429. doi: 10.1038/s41559-019-0962-7. PubMed DOI

Kline D.I., Teneva L., Okamoto D.K., Schneider K., Caldeira K., Miard T., Chai A., Marker M., Dunbar R.B., Mitchell B.G., et al. Living coral tissue slows skeletal dissolution related to ocean acidification. Nat. Ecol. Evol. 2019;3:1438–1444. doi: 10.1038/s41559-019-0988-x. PubMed DOI

Witze A. The weather observers on climate change’s front lines. Nature. 2019;573:317–318. doi: 10.1038/d41586-019-02632-2. PubMed DOI

Baker H.S., Millar R.J., Karoly D.J., Beyerle U., Guillod B.P., Mitchell D., Shiogama H., Sparrow S., Woollings T., Allen M.R. Higher CO2 concentrations increase extreme event risk in a 1.5 degrees C world. Nat. Clim. Chang. 2018;8:604. doi: 10.1038/s41558-018-0190-1. DOI

Chen H., Gong Y., Han R. Cadmium telluride quantum dots (CdTe-QDs) and enhanced ultraviolet-B (UV-B) radiation trigger antioxidant enzyme metabolism and programmed cell death in wheat seedlings. PLoS ONE. 2014;9:e110400. doi: 10.1371/journal.pone.0110400. PubMed DOI PMC

Hu M.Z., Zhu T. Semiconductor nanocrystal quantum dot synthesis approaches towards large-scale industrial production for energy applications. Nanoscale Res. Lett. 2015;10:469. doi: 10.1186/s11671-015-1166-y. PubMed DOI PMC

Nie Z.H., Petukhova A., Kumacheva E. Properties and emerging applications of self-assembled structures made from inorganic nanoparticles. Nat. Nanotechnol. 2010;5:15–25. doi: 10.1038/nnano.2009.453. PubMed DOI

Yang C., Xie H., Li Y., Zhang J.-K., Su B.-L. Direct and rapid quantum dots labelling of Escherichia coli cells. J. Colloid Interface Sci. 2013;393:438–444. doi: 10.1016/j.jcis.2012.10.036. PubMed DOI

Wang Q., Wang B., Ma M., Cai Z. A Sensitive and Selective Fluorimetric Method of Quick Determination of Sialic Acids in Egg Products by Lectin-CdTe Quantum Dots as Nanoprobe. J. Food Sci. 2014;79 doi: 10.1111/1750-3841.12706. PubMed DOI

Huy B.T., Seo M.-H., Zhang X., Lee Y.-I. Selective optosensing of clenbuterol and melamine using molecularly imprinted polymer-capped CdTe quantum dots. Biosen. Bioelectron. 2014;57:310–316. PubMed

Nayak P.K., Mahesh S., Snaith H.J., Cahen D. Photovoltaic solar cell technologies: Analysing the state of the art. Nat. Rev. Mater. 2019;4:269–285. doi: 10.1038/s41578-019-0097-0. DOI

Agrawal S., Morarka A., Bodas D., Paknikar K. Multiplexed detection of waterborne pathogens in circular microfluidics. Appl. Biochem. Biotechnol. 2012;167:1668–1677. doi: 10.1007/s12010-012-9597-8. PubMed DOI

Breger J., Delehanty J.B., Medintz I.L. Continuing progress toward controlled intracellular delivery of semiconductor quantum dots. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2015;7:131–151. doi: 10.1002/wnan.1281. PubMed DOI PMC

Chen L., Zhang X., Zhou G., Xiang X., Ji X., Zheng Z., He Z., Wang H. Simultaneous determination of human enterovirus 71 and coxsackievirus B3 by dual-color quantum dots and homogeneous immunoassay. Anal. Chem. 2012;84:3200–3207. doi: 10.1021/ac203172x. PubMed DOI

Djikanović D., Kalauzi A., Jeremić M., Xu J., Mićić M., Whyte J.D., Leblanc R.M., Radotić K. Interaction of the CdSe quantum dots with plant cell walls. Colloid Surf. B Biointerfaces. 2012;91:41–47. doi: 10.1016/j.colsurfb.2011.10.032. PubMed DOI

Lv S., Chen F., Chen C., Chen X., Gong H., Cai C. A novel CdTe quantum dots probe amplified resonance light scattering signals to detect microRNA-122. Talanta. 2017;165:659–663. doi: 10.1016/j.talanta.2017.01.020. PubMed DOI

Peng C.-W., Liu X.-L., Chen C., Liu X., Yang X.-Q., Pang D.-W., Zhu X.-B., Li Y. Patterns of cancer invasion revealed by QDs-based quantitative multiplexed imaging of tumor microenvironment. Biomaterials. 2011;32:2907–2917. doi: 10.1016/j.biomaterials.2010.12.053. PubMed DOI

Alvand Z.M., Rajabi H.R., Mirzaei A., Masoumiasl A., Sadatfaraji H. Rapid and green synthesis of cadmium telluride quantum dots with low toxicity based on a plant-mediated approach after microwave and ultrasonic assisted extraction: Synthesis, characterization, biological potentials and comparison study. Mater. Sci. Eng. C-Mater. Biol. Appl. 2019;98:535–544. doi: 10.1016/j.msec.2019.01.010. PubMed DOI

Smith A.M., Nie S. Chemical analysis and cellular imaging with quantum dots. Analyst. 2004;129:672–677. doi: 10.1039/b404498n. PubMed DOI

Vikesland P.J. Nanosensors for water quality monitoring. Nat. Nanotechnol. 2018;13:651–660. doi: 10.1038/s41565-018-0209-9. PubMed DOI

Sturzenbaum S.R., Hockner M., Panneerselvam A., Levitt J., Bouillard J.S., Taniguchi S., Dailey L.A., Khanbeigi R.A., Rosca E.V., Thanou M., et al. Biosynthesis of luminescent quantum dots in an earthworm. Nat. Nanotechnol. 2013;8:57–60. doi: 10.1038/nnano.2012.232. PubMed DOI

Mahmoudi M., Azadmanesh K., Shokrgozar M.A., Journeay W.S., Laurent S. Effect of nanoparticles on the cell life cycle. Chem. Rev. 2011;111:3407–3432. doi: 10.1021/cr1003166. PubMed DOI

Zhang H. (64)Cu-1,4,7,10-Tetraazacyclododecane-1,4,7,10-Tetraacetic Acid-Quantum Dot-Vascular Endothelial Growth Factor. National Center for Biotechnology Information (US); Bethesda, MD, USA: 2004. PubMed

Bilan R., Nabiev I., Sukhanova A. Quantum Dot-Based Nanotools for Bioimaging, Diagnostics, and Drug Delivery. ChemBioChem. 2016;17:2103–2114. doi: 10.1002/cbic.201600357. PubMed DOI

Foubert A., Beloglazova N.V., Rajkovic A., Sas B., Madder A., Goryacheva I.Y., De Saeger S. Bioconjugation of quantum dots: Review & impact on future application. Trac-Trends Anal. Chem. 2016;83:31–48. doi: 10.1016/j.trac.2016.07.008. DOI

Moulick A., Blazkova I., Milosavljevic V., Fohlerova Z., Hubalek J., Kopel P., Vaculovicova M., Adam V., Kizek R. Application of CdTe/ZnSe Quantum Dots in In Vitro Imaging of Chicken Tissue and Embryo. Photochem. Photobiol. 2015;91:417–423. doi: 10.1111/php.12398. PubMed DOI

Fisher A.A.E., Osborne M.A., Day I.J., Lucena Alcalde G. Measurement of ligand coverage on cadmium selenide nanocrystals and its influence on dielectric dependent photoluminescence intermittency. Commun. Chem. 2019;2:63. doi: 10.1038/s42004-019-0164-x. DOI

Esteve-Turrillas F.A., Abad-Fuentes A. Applications of quantum dots as probes in immunosensing of small-sized analytes. Biosen. Bioelectron. 2013;41:12–29. doi: 10.1016/j.bios.2012.09.025. PubMed DOI

Algar W.R., Tavares A.J., Krull U.J. Beyond labels: A review of the application of quantum dots as integrated components of assays, bioprobes, and biosensors utilizing optical transduction. Anal. Chim. Acta. 2010;673:1–25. doi: 10.1016/j.aca.2010.05.026. PubMed DOI

Stanisavljevic M., Krizkova S., Vaculovicova M., Kizek R., Adam V. Quantum dots-fluorescence resonance energy transfer-based nanosensors and their application. Biosens. Bioelectron. 2015;74:562–574. doi: 10.1016/j.bios.2015.06.076. PubMed DOI

Tsipotan A.S., Gerasimova M.A., Aleksandrovsky A.S., Zharkov S.M., Slabko V.V. Effect of visible and UV irradiation on the aggregation stability of CdTe quantum dots. J. Nanopart. Res. 2016;18:324. doi: 10.1007/s11051-016-3638-0. DOI

Derfus A.M., Chan W.C., Bhatia S.N. Probing the cytotoxicity of semiconductor quantum dots. Nano Lett. 2004;4:11–18. doi: 10.1021/nl0347334. PubMed DOI PMC

Yu Y., Lai Y., Zheng X., Wu J., Long Z., Liang C. Synthesis of functionalized CdTe/CdS QDs for spectrofluorimetric detection of BSA. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2007;68:1356–1361. doi: 10.1016/j.saa.2007.02.016. PubMed DOI

Song Y., Cao X., Guo Y., Chen P., Zhao Q., Shen G. Fabrication of mesoporous CdTe/ZnO@ SiO2 core/shell nanostructures with tunable dual emission and ultrasensitive fluorescence response to metal ions. Chem. Mater. 2008;21:68–77. doi: 10.1021/cm801925j. DOI

Sun X., Liu B., Xu Y. Dual-emission quantum dots nanocomposites bearing an internal standard and visual detection for Hg 2+ Analyst. 2012;137:1125–1129. doi: 10.1039/c2an16026a. PubMed DOI

Wu H., Liu G., Wang J., Lin Y. Quantum-dots based electrochemical immunoassay of interleukin-1α. Electrochem. Commun. 2007;9:1573–1577. doi: 10.1016/j.elecom.2007.02.024. DOI

Zhao D., Chan W., He Z., Qiu T. Quantum dot− ruthenium complex dyads: Recognition of double-strand DNA through dual-color fluorescence detection. Anal. Chem. 2009;81:3537–3543. doi: 10.1021/ac9000892. PubMed DOI

Kim K.E., Kim T.G., Sung Y.M. Fluorescent cholesterol sensing using enzyme-modified CdSe/ZnS quantum dots. J. Nanopart. Res. 2012;14 doi: 10.1007/s11051-012-1179-8. DOI

Wang G.-L., Jiao H.-J., Zhu X.-Y., Dong Y.-M., Li Z.-J. Enhanced fluorescence sensing of melamine based on thioglycolic acid-capped CdS quantum dots. Talanta. 2012;93:398–403. doi: 10.1016/j.talanta.2012.02.062. PubMed DOI

Wang X., Lv Y., Hou X. A potential visual fluorescence probe for ultratrace arsenic (III) detection by using glutathione-capped CdTe quantum dots. Talanta. 2011;84:382–386. doi: 10.1016/j.talanta.2011.01.012. PubMed DOI

Nejdl L., Richtera L., Xhaxhiu K., Kensova R., Kudr J., Ruttkay-Nedecky B., Kynicky J., Wawrzak D., Adam V., Kizek R., et al. UV Tuning of Cadmium Telluride Quantum Dots (CdTe QDs)-Assessed by Spectroscopy and Electrochemistry. Int. J. Electrochem. Sci. 2016;11:175–188.

Aldana J., Wang Y.A., Peng X. Photochemical instability of CdSe nanocrystals coated by hydrophilic thiols. J. Am. Chem. Soc. 2001;123:8844–8850. doi: 10.1021/ja016424q. PubMed DOI

Chen Y., Chen Z., He Y., Lin H., Sheng P., Liu C., Luo S., Cai Q. L-cysteine-capped CdTe QD-based sensor for simple and selective detection oftrinitrotoluene. Nanotechnology. 2010;21:125502. doi: 10.1088/0957-4484/21/12/125502. PubMed DOI

Kim J., Huy B.T., Sakthivel K., Choi H.J., Joo W.H., Shin S.K., Lee M.J., Lee Y.-I. Highly fluorescent CdTe quantum dots with reduced cytotoxicity-A Robust biomarker. Sens. Biosens. Res. 2015;3:46–52. doi: 10.1016/j.sbsr.2014.12.001. DOI

Wuister S.F., Swart I., van Driel F., Hickey S.G., de Mello Donegá C. Highly luminescent water-soluble CdTe quantum dots. Nano Lett. 2003;3:503–507. doi: 10.1021/nl034054t. DOI

Melichar L., Jarosova M., Kopel P., Adam V., Kizek R. Synthesis of Quantum Dots by Microwave Irradiation. Tanger Ltd.; Slezská Ostrava: 2014. pp. 187–191.

Shen M., Jia W.P., You Y.J., Hu Y., Li F., Tian S.D., Li J., Jin Y.X., Han D.M. Luminescent properties of CdTe quantum dots synthesized using 3-mercaptopropionic acid reduction of tellurium dioxide directly. Nanoscale Res. Lett. 2013;8:6. doi: 10.1186/1556-276X-8-253. PubMed DOI PMC

Lima M.J.A., Reis B.F. Photogeneration of silver nanoparticles induced by UV radiation and their use as a sensor for the determination of chloride in fuel ethanol using a flow-batch system. Talanta. 2019;201:373–378. doi: 10.1016/j.talanta.2019.03.118. PubMed DOI

Miao Y.P., Yang P., Zhao J., Du Y.Y., He H.Y., Liu Y.S. Photodegradation of Mercaptopropionic Acid- and Thioglycollic Acid-Capped CdTe Quantum Dots in Buffer Solutions. J. Nanosci. Nanotechnol. 2015;15:4462–4469. doi: 10.1166/jnn.2015.9800. PubMed DOI

Sousa J.C.L., Vivas M.G., Ferrari J.L., Mendonca C.R., Schiavon M.A. Determination of particle size distribution of water-soluble CdTe quantum dots by optical spectroscopy. RSC Adv. 2014;4:36024–36030. doi: 10.1039/C4RA05979D. DOI

Anbarasi A., Kalpana R., Arivarasan A., Jayavel R., Venkataraman B. Detection of UV Rays Using CdTe Quantum Dots. Int. J. Meas. Technol. Instr. Eng. 2015;5:15–27. doi: 10.4018/IJMTIE.2015010102. DOI

Gao F., Lv C., Han J., Li X., Wang Q., Zhang J., Chen C., Li Q., Sun X., Zheng J. CdTe–montmorillonite nanocomposites: Control synthesis, UV radiation-dependent photoluminescence, and enhanced latent fingerprint detection. J. Phys. Chem. C. 2011;115:21574–21583. doi: 10.1021/jp205021j. DOI

Lan G.-Y., Lin Y.-W., Huang Y.-F., Chang H.-T. Photo-assisted synthesis of highly fluorescent ZnSe (S) quantum dots in aqueous solution. J. Mater. Chem. 2007;17:2661–2666. doi: 10.1039/b702469j. DOI

Alivisatos A.P. Perspectives on the physical chemistry of semiconductor nanocrystals. J. Phys. Chem. 1996;100:13226–13239. doi: 10.1021/jp9535506. DOI

Spanhel L., Haase M., Weller H., Henglein A. Photochemistry of colloidal semiconductors. 20. Surface modification and stability of strong luminescing CdS particles. J. Am. Chem. Soc. 1987;109:5649–5655. doi: 10.1021/ja00253a015. DOI

Gaponik N., Talapin D.V., Rogach A.L., Hoppe K., Shevchenko E.V., Kornowski A., Eychmüller A., Weller H. Thiol-capping of CdTe nanocrystals: An alternative to organometallic synthetic routes. J. Phys. Chem. B. 2002;106:7177–7185. doi: 10.1021/jp025541k. DOI

Shavel A., Gaponik N., Eychmüller A. Efficient UV-blue photoluminescing thiol-stabilized water-soluble alloyed ZnSe (S) nanocrystals. J. Phys. Chem. B. 2004;108:5905–5908. doi: 10.1021/jp037941t. DOI

Talapin D.V., Gaponik N., Borchert H., Rogach A.L., Haase M., Weller H. Etching of colloidal InP nanocrystals with fluorides: Photochemical nature of the process resulting in high photoluminescence efficiency. J. Phys. Chem. B. 2002;106:12659–12663. doi: 10.1021/jp026380n. DOI

Ma J., Chen J.-Y., Guo J., Wang C., Yang W., Xu L., Wang P. Photostability of thiol-capped CdTe quantum dots in living cells: The effect of photo-oxidation. Nanotechnology. 2006;17:2083. doi: 10.1088/0957-4484/17/9/002. DOI

Ma J., Chen J.-Y., Zhang Y., Wang P.-N., Guo J., Yang W.-L., Wang C.-C. Photochemical instability of thiol-capped CdTe quantum dots in aqueous solution and living cells: Process and mechanism. J. Phys. Chem. B. 2007;111:12012–12016. doi: 10.1021/jp073351+. PubMed DOI

Gaponenko S.V. Optical Properties of Semiconductor Nanocrystals. Volume 23 Cambridge University Press; Cambridge, UK: 1998.

Dabbousi B.O., Rodriguez-Viejo J., Mikulec F.V., Heine J.R., Mattoussi H., Ober R., Jensen K.F., Bawendi M.G. (CdSe) ZnS core− shell quantum dots: Synthesis and characterization of a size series of highly luminescent nanocrystallites. J. Phys. Chem. B. 1997;101:9463–9475. doi: 10.1021/jp971091y. DOI

Karpov S., Slabko V., Chiganova G. Physical principles of the photostimulated aggregation of metal sols. Colloid J. 2002;64:425–442. doi: 10.1023/A:1016811818799. DOI

Rouhana L.L., Jaber J.A., Schlenoff J.B. Aggregation-resistant water-soluble gold nanoparticles. Langmuir. 2007;23:12799–12801. doi: 10.1021/la702151q. PubMed DOI

Zhou J., Beattie D.A., Ralston J., Sedev R. Colloid stability of thymine-functionalized gold nanoparticles. Langmuir. 2007;23:12096–12103. doi: 10.1021/la7019878. PubMed DOI

Zhou J., Sedev R., Beattie D., Ralston J. Light-induced aggregation of colloidal gold nanoparticles capped by thymine derivatives. Langmuir. 2008;24:4506–4511. doi: 10.1021/la703746w. PubMed DOI

Ibrahim S.A., Ahmed W., Youssef T. Photoluminescence and photostability investigations of biocompatible semiconductor nanocrystals coated with glutathione using low laser power. J. Nanopart. Res. 2014;16:2445. doi: 10.1007/s11051-014-2445-8. DOI

Karpov S., Bas’ ko A., Popov A., Slabko V. Optical spectra of silver colloids within the framework of fractal physics. Colloid J. 2000;62:699–713. doi: 10.1023/A:1026626708186. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...