Human-Centered Design Strategies for Device Selection in mHealth Programs: Development of a Novel Framework and Case Study
Jazyk angličtina Země Kanada Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
G0901434
Medical Research Council - United Kingdom
MC_PC_17214
Medical Research Council - United Kingdom
PubMed
32379055
PubMed Central
PMC7243134
DOI
10.2196/16043
PII: v8i5e16043
Knihovny.cz E-zdroje
- Klíčová slova
- design thinking, device selection, human-centric design, patient centricity, remote measurement technologies, remote patient monitoring, technology selection,
- MeSH
- lidé MeSH
- technologie MeSH
- telemedicína * MeSH
- zdravotnický personál MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
BACKGROUND: Despite the increasing use of remote measurement technologies (RMT) such as wearables or biosensors in health care programs, challenges associated with selecting and implementing these technologies persist. Many health care programs that use RMT rely on commercially available, "off-the-shelf" devices to collect patient data. However, validation of these devices is sparse, the technology landscape is constantly changing, relative benefits between device options are often unclear, and research on patient and health care provider preferences is often lacking. OBJECTIVE: To address these common challenges, we propose a novel device selection framework extrapolated from human-centered design principles, which are commonly used in de novo digital health product design. We then present a case study in which we used the framework to identify, test, select, and implement off-the-shelf devices for the Remote Assessment of Disease and Relapse-Central Nervous System (RADAR-CNS) consortium, a research program using RMT to study central nervous system disease progression. METHODS: The RADAR-CNS device selection framework describes a human-centered approach to device selection for mobile health programs. The framework guides study designers through stakeholder engagement, technology landscaping, rapid proof of concept testing, and creative problem solving to develop device selection criteria and a robust implementation strategy. It also describes a method for considering compromises when tensions between stakeholder needs occur. RESULTS: The framework successfully guided device selection for the RADAR-CNS study on relapse in multiple sclerosis. In the initial stage, we engaged a multidisciplinary team of patients, health care professionals, researchers, and technologists to identify our primary device-related goals. We desired regular home-based measurements of gait, balance, fatigue, heart rate, and sleep over the course of the study. However, devices and measurement methods had to be user friendly, secure, and able to produce high quality data. In the second stage, we iteratively refined our strategy and selected devices based on technological and regulatory constraints, user feedback, and research goals. At several points, we used this method to devise compromises that addressed conflicting stakeholder needs. We then implemented a feedback mechanism into the study to gather lessons about devices to improve future versions of the RADAR-CNS program. CONCLUSIONS: The RADAR device selection framework provides a structured yet flexible approach to device selection for health care programs and can be used to systematically approach complex decisions that require teams to consider patient experiences alongside scientific priorities and logistical, technical, or regulatory constraints.
Department of Engineering and Applied Science University of Bergamo Bergamo Italy
Epidemiology Biostatistics and Prevention Institute University of Zürich Zürich Switzerland
Institute of Psychiatry Psychology and Neuroscience King's College London London United Kingdom
Janssen Pharmaceutica NV Beerse Belgium
Merck Research Labs Information Technology Merck Sharpe and Dohme Prague Czech Republic
Merck Research Labs Information Technology Merck Sharpe and Dohme Singapore Singapore
Neurology Services San Raffaele Hospital Multiple Sclerosis Centre Milan Italy
Pharmacokinetics Pharmacodynamics and Drug Metabolism Merck and Co Inc Kenilworth NJ United States
Zobrazit více v PubMed
Noah B, Keller MS, Mosadeghi S, Stein L, Johl S, Delshad S, Tashjian VC, Lew D, Kwan JT, Jusufagic A, Spiegel BMR. Impact of remote patient monitoring on clinical outcomes: an updated meta-analysis of randomized controlled trials. NPJ Digit Med. 2018;1:20172. doi: 10.1038/s41746-017-0002-4. PubMed DOI PMC
Dorsey ER, Topol EJ. State of Telehealth. N Engl J Med. 2016 Jul 14;375(2):154–61. doi: 10.1056/NEJMra1601705. PubMed DOI
Marziniak M, Brichetto G, Feys P, Meyding-Lamadé U, Vernon K, Meuth SG. The use of digital and remote communication technologies as a tool for multiple sclerosis management: narrative review. JMIR Rehabil Assist Technol. 2018 Apr 24;5(1):e5. doi: 10.2196/rehab.7805. PubMed DOI PMC
Polhemus AM, Kadhim H, Barnes S, Zebrowski SE, Simmonds A, Masand SN, Banner J, Dupont M. Accelerating adoption of patient-facing technologies in clinical trials: a pharmaceutical industry perspective on opportunities and challenges. Ther Innov Regul Sci. 2019 Jan;53(1):8–24. doi: 10.1177/2168479018801566. PubMed DOI
Davis MM, Freeman M, Kaye J, Vuckovic N, Buckley DI. A systematic review of clinician and staff views on the acceptability of incorporating remote monitoring technology into primary care. Telemed J E Health. 2014 May;20(5):428–38. doi: 10.1089/tmj.2013.0166. PubMed DOI PMC
Perry B, Herrington W, Goldsack JC, Grandinetti CA, Vasisht KP, Landray MJ, Bataille L, DiCicco RA, Bradley C, Narayan A, Papadopoulos EJ, Sheth N, Skodacek K, Stem K, Strong TV, Walton MK, Corneli A. Use of mobile devices to measure outcomes in clinical research, 2010-2016: a systematic literature review. Digit Biomark. 2018;2(1):11–30. doi: 10.1159/000486347. PubMed DOI PMC
Vegesna A, Tran M, Angelaccio M, Arcona S. Remote patient monitoring via non-invasive digital technologies: a systematic review. Telemed J E Health. 2017 Jan;23(1):3–17. doi: 10.1089/tmj.2016.0051. PubMed DOI PMC
Marcolino MS, Oliveira JAQ, D'Agostino M, Ribeiro AL, Alkmim MBM, Novillo-Ortiz D. The impact of mHealth interventions: systematic review of systematic reviews. JMIR Mhealth Uhealth. 2018 Jan 17;6(1):e23. doi: 10.2196/mhealth.8873. PubMed DOI PMC
Lobelo F, Kelli HM, Tejedor SC, Pratt M, McConnell MV, Martin SS, Welk GJ. The wild wild west: a framework to integrate mHealth software applications and wearables to support physical activity assessment, counseling and interventions for cardiovascular disease risk reduction. Prog Cardiovasc Dis. 2016;58(6):584–94. doi: 10.1016/j.pcad.2016.02.007. PubMed DOI PMC
Wilson K, Bell C, Wilson L, Witteman H. Agile research to complement agile development: a proposal for an mHealth research lifecycle. NPJ Digit Med. 2018;1:46. doi: 10.1038/s41746-018-0053-1. PubMed DOI PMC
Chu AHY, Ng SHX, Paknezhad M, Gauterin A, Koh D, Brown MS, Müller-Riemenschneider F. Comparison of wrist-worn Fitbit Flex and waist-worn ActiGraph for measuring steps in free-living adults. PLoS One. 2017;12(2):e0172535. doi: 10.1371/journal.pone.0172535. PubMed DOI PMC
Dooley EE, Golaszewski NM, Bartholomew JB. Estimating accuracy at exercise intensities: a comparative study of self-monitoring heart rate and physical activity wearable devices. JMIR Mhealth Uhealth. 2017 Mar 16;5(3):e34. doi: 10.2196/mhealth.7043. PubMed DOI PMC
Rosenberger ME, Buman MP, Haskell WL, McConnell MV, Carstensen LL. Twenty-four hours of sleep, sedentary behavior, and physical activity with nine wearable devices. Med Sci Sports Exerc. 2016 Mar;48(3):457–65. doi: 10.1249/MSS.0000000000000778. PubMed DOI PMC
Ferguson T, Rowlands AV, Olds T, Maher C. The validity of consumer-level, activity monitors in healthy adults worn in free-living conditions: a cross-sectional study. Int J Behav Nutr Phys Act. 2015 Mar 27;12(1):42. doi: 10.1186/s12966-015-0201-9. PubMed DOI PMC
Ko PT, Kientz JA, Choe EK, Kay M, Landis CA, Watson NF. Consumer sleep technologies: a review of the landscape. J Clin Sleep Med. 2015 Dec 15;11(12):1455–61. doi: 10.5664/jcsm.5288. doi: 10.5664/jcsm.5288. PubMed DOI PMC
Brooke SM, An H, Kang S, Noble JM, Berg KE, Lee J. Concurrent validity of wearable activity trackers under free-living conditions. J Strength Cond Res. 2017 Apr;31(4):1097–1106. doi: 10.1519/JSC.0000000000001571. PubMed DOI
Wang R, Blackburn G, Desai M, Phelan D, Gillinov L, Houghtaling P, Gillinov M. Accuracy of wrist-worn heart rate monitors. JAMA Cardiol. 2017 Jan 01;2(1):104–106. doi: 10.1001/jamacardio.2016.3340. PubMed DOI
Gillinov S, Etiwy M, Wang R, Blackburn G, Phelan D, Gillinov AM, Houghtaling P, Javadikasgari H, Desai MY. Variable accuracy of wearable heart rate monitors during aerobic exercise. Med Sci Sports Exerc. 2017 Aug;49(8):1697–1703. doi: 10.1249/MSS.0000000000001284. PubMed DOI
Murakami H, Kawakami R, Nakae S, Nakata Y, Ishikawa-Takata K, Tanaka S, Miyachi M. Accuracy of wearable devices for estimating total energy expenditure: comparison with metabolic chamber and doubly labeled water method. JAMA Intern Med. 2016 May 01;176(5):702–3. doi: 10.1001/jamainternmed.2016.0152. PubMed DOI
Clinical Trials Transformation Initiative. 2018. [2019-05-30]. CTTI Recommendations: Advancing the Use of Mobile Technologies for Data Capture & Improved Clinical Trials https://www.ctti-clinicaltrials.org/files/mobile-devices-recommendations.pdf.
Gagnon M, Ngangue P, Payne-Gagnon J, Desmartis M. m-Health adoption by healthcare professionals: a systematic review. J Am Med Inform Assoc. 2016 Jan;23(1):212–20. doi: 10.1093/jamia/ocv052. PubMed DOI PMC
Simblett S, Greer B, Matcham F, Curtis H, Polhemus A, Ferrão J, Gamble P, Wykes T. Barriers to and facilitators of engagement with remote measurement technology for managing health: systematic review and content analysis of findings. J Med Internet Res. 2018 Jul 12;20(7):e10480. doi: 10.2196/10480. PubMed DOI PMC
Parker SJ, Jessel S, Richardson JE, Reid MC. Older adults are mobile too!Identifying the barriers and facilitators to older adults' use of mHealth for pain management. BMC Geriatr. 2013 May 06;13:43. doi: 10.1186/1471-2318-13-43. PubMed DOI PMC
Altman M, Huang TT, Breland JY. Design thinking in health care. Prev Chronic Dis. 2018 Sep 27;15:E117. doi: 10.5888/pcd15.180128. PubMed DOI PMC
Donnelly S, Reginatto B, Kearns O, Mc Carthy M, Byrom B, Muehlhausen W, Caulfield B. The burden of a remote trial in a nursing home setting: qualitative study. J Med Internet Res. 2018 Jun 19;20(6):e220. doi: 10.2196/jmir.9638. PubMed DOI PMC
O'Connor S, Hanlon P, O'Donnell CA, Garcia S, Glanville J, Mair FS. Understanding factors affecting patient and public engagement and recruitment to digital health interventions: a systematic review of qualitative studies. BMC Med Inform Decis Mak. 2016 Sep 15;16(1):120. doi: 10.1186/s12911-016-0359-3. PubMed DOI PMC
Byrom B, Watson C, Doll H, Coons SJ, Eremenco S, Ballinger R, Mc Carthy M, Crescioni M, O'Donohoe P, Howry C, ePRO Consortium Selection of and evidentiary considerations for wearable devices and their measurements for use in regulatory decision making: recommendations from the ePRO Consortium. Value Health. 2018 Jun;21(6):631–639. doi: 10.1016/j.jval.2017.09.012. PubMed DOI
Clinical Trials Transformation Initiative. 2018. [2019-05-30]. Framework of Specifications to Consider During Mobile Technology Selection https://www.ctti-clinicaltrials.org/sites/www.ctti-clinicaltrials.org/files/technology-selection-tool.pdf.
Ostrovsky A, Deen N, Simon A, Mate K. Institute for Healthcare Improvement. Cambridge, MA: 2014. [2019-05-30]. A framework for selecting digital health technology: IHI innovation report http://www.ihi.org/resources/Pages/Publications/AFrameworkforSelectingDigitalHealthTechnology.aspx.
Ross J, Stevenson F, Lau R, Murray E. Factors that influence the implementation of e-health: a systematic review of systematic reviews (an update) Implement Sci. 2016 Oct 26;11(1):146. doi: 10.1186/s13012-016-0510-7. PubMed DOI PMC
TransCelerate BioPharma, Inc. 2018. [2019-05-30]. Patient technology implementation framework https://transceleratebiopharmainc.com/patient-technology-implementation-framework/
Mummah SA, Robinson TN, King AC, Gardner CD, Sutton S. IDEAS (Integrate, Design, Assess, and Share): a framework and toolkit of strategies for the development of more effective digital interventions to change health behavior. J Med Internet Res. 2016 Dec 16;18(12):e317. doi: 10.2196/jmir.5927. PubMed DOI PMC
van Gemert-Pijnen JE, Nijland N, van Limburg M, Ossebaard HC, Kelders SM, Eysenbach G, Seydel ER. A holistic framework to improve the uptake and impact of eHealth technologies. J Med Internet Res. 2011 Dec 05;13(4):e111. doi: 10.2196/jmir.1672. PubMed DOI PMC
Schnall R, Rojas M, Bakken S, Brown W, Carballo-Dieguez A, Carry M, Gelaude D, Mosley JP, Travers J. A user-centered model for designing consumer mobile health (mHealth) applications (apps) J Biomed Inform. 2016 Apr;60:243–51. doi: 10.1016/j.jbi.2016.02.002. PubMed DOI PMC
Wilhide CC, Peeples MM, Anthony KRC. Evidence-based mHealth chronic disease mobile app intervention design: development of a framework. JMIR Res Protoc. 2016 Feb 16;5(1):e25. doi: 10.2196/resprot.4838. PubMed DOI PMC
Sadegh SS, Khakshour Saadat P, Sepehri MM, Assadi V. A framework for m-health service development and success evaluation. Int J Med Inform. 2018 Apr;112:123–130. doi: 10.1016/j.ijmedinf.2018.01.003. PubMed DOI
Eslami Andargoli A, Scheepers H, Rajendran D, Sohal A. Health information systems evaluation frameworks: A systematic review. Int J Med Inform. 2017 Jan;97:195–209. doi: 10.1016/j.ijmedinf.2016.10.008. PubMed DOI
Norman D. The Design Of Everyday Things. New York, NY: Basic Books; 2013.
Design Kit. IDEO.org; 2019. [2019-02-28]. What is human-centered design? http://www.designkit.org/human-centered-design.
Design Council News and Opinion. London, UK: Design Council; 2015. [2019-02-27]. What is the framework for innovation? Design Council's evolved Double Diamond https://www.designcouncil.org.uk/news-opinion/design-process-what-double-diamond.
Ries E. The Lean Startup: How Today's Entrepreneurs Use Continuous Innovation To Create Radically Successful Businesses. New York: Crown Business; 2011.
Hevner A. A three cycle view of design science research. Scand J Inf Syst. 2007;19(2):7.
Van Velsen L, Wentzel J, Van Gemert-Pijnen GJE. Designing eHealth that matters via a multidisciplinary requirements development approach. JMIR Res Protoc. 2013 Jun 24;2(1):e21. doi: 10.2196/resprot.2547. PubMed DOI PMC
Standford DSchool. 2018. [2019-02-28]. Design thinking bootleg https://dschool.stanford.edu/resources/design-thinking-bootleg.
Woods L, Cummings E, Duff J, Walker K. Partnering in Digital Health Design: Engaging the Multidisciplinary Team in a Needs Analysis. Stud Health Technol Inform. 2018;252:176–181. PubMed
Woods L, Cummings E, Duff J, Walker K. Design thinking for mHealth application co-design to support heart failure self-management. Stud Health Technol Inform. 2017;241:97–102. PubMed
Bate P, Robert G. Experience-based design: from redesigning the system around the patient to co-designing services with the patient. Qual Saf Health Care. 2006 Oct;15(5):307–10. doi: 10.1136/qshc.2005.016527. PubMed DOI PMC
U.S. Food and Drug Administration. 2018. [2019-05-30]. Patient-focused drug development: collecting comprehensive and representative input, guidance for industry, food and drug administration staff, and other stakeholders https://www.fda.gov/downloads/drugs/guidancecomplianceregulatoryinformation/guidances/ucm610442.pdf.
James Lind Alliance. 2018. [2019-01-23]. The PSPs http://www.jla.nihr.ac.uk/priority-setting-partnerships/
Lewis JR. Psychometric evaluation of the PSSUQ using data from five years of usability studies. International Journal of Human-Computer Interaction. 2002 Sep;14(3-4):463–488. doi: 10.1080/10447318.2002.9669130. DOI
Chin WW, Johnson N, Schwarz A. A fast form approach to measuring technology acceptance and other constructs. MIS Quarterly. 2008;32(4):687. doi: 10.2307/25148867. DOI
Matcham F, Barattieri di San Pietro C, Bulgari V, de Girolamo G, Dobson R, Eriksson H, Folarin AA, Haro JM, Kerz M, Lamers F, Li Q, Manyakov NV, Mohr DC, Myin-Germeys I, Narayan V, Bwjh P, Ranjan Y, Rashid Z, Rintala A, Siddi S, Simblett SK, Wykes T, Hotopf M, RADAR-CNS consortium Remote assessment of disease and relapse in major depressive disorder (RADAR-MDD): a multi-centre prospective cohort study protocol. BMC Psychiatry. 2019 Feb 18;19(1):72. doi: 10.1186/s12888-019-2049-z. PubMed DOI PMC
RADAR-CNS Consortium. 2019. [2019-01-23]. RADAR-CNS: Remote Assessment of Disease and Relapse https://www.radar-cns.org/
RADAR-CNS Consortium. 2019. [2019-02-28]. Patient Advisory Board | RADAR-CNS https://www.radar-cns.org/patient-engagement/patient-advisory-board.
Simblett SK, Evans J, Greer B, Curtis H, Matcham F, Radaelli M, Mulero P, Arévalo MJ, Polhemus A, Ferrao J, Gamble P, Comi G, Wykes T, RADAR-CNS consortium Engaging across dimensions of diversity: A cross-national perspective on mHealth tools for managing relapsing remitting and progressive multiple sclerosis. Mult Scler Relat Disord. 2019 Jul;32:123–132. doi: 10.1016/j.msard.2019.04.020. PubMed DOI
Bruno E, Simblett S, Lang A, Biondi A, Odoi C, Schulze-Bonhage A, Wykes T, Richardson MP, RADAR-CNS Consortium Wearable technology in epilepsy: the views of patients, caregivers, and healthcare professionals. Epilepsy Behav. 2018 Aug;85:141–149. doi: 10.1016/j.yebeh.2018.05.044. PubMed DOI
Simblett S, Matcham F, Siddi S, Bulgari V, Barattieri di San Pietro C, Hortas López J, Ferrão J, Polhemus A, Haro JM, de Girolamo G, Gamble P, Eriksson H, Hotopf M, Wykes T, RADAR-CNS Consortium Barriers to and facilitators of engagement with mHealth technology for remote measurement and management of depression: qualitative analysis. JMIR Mhealth Uhealth. 2019 Jan 30;7(1):e11325. doi: 10.2196/11325. PubMed DOI PMC
DasMahapatra P, Chiauzzi E, Bhalerao R, Rhodes J. Free-living physical activity monitoring in adult US patients with multiple sclerosis using a consumer wearable device. Digit Biomark. 2018 Apr 13;2(1):47–63. doi: 10.1159/000488040. PubMed DOI PMC
Block VJ, Lizée A, Crabtree-Hartman E, Bevan CJ, Graves JS, Bove R, Green AJ, Nourbakhsh B, Tremblay M, Gourraud P-A, Ng MY, Pletcher MJ, Olgin JE, Marcus GM, Allen DD, Cree BAC, Gelfand JM. Continuous daily assessment of multiple sclerosis disability using remote step count monitoring. J Neurol. 2017 Feb;264(2):316–326. doi: 10.1007/s00415-016-8334-6. PubMed DOI PMC
Sasaki JE, Sandroff B, Bamman M, Motl RW. Motion sensors in multiple sclerosis: Narrative review and update of applications. Expert Rev Med Devices. 2017 Nov;14(11):891–900. doi: 10.1080/17434440.2017.1386550. PubMed DOI PMC