Data Visualization for Chronic Neurological and Mental Health Condition Self-management: Systematic Review of User Perspectives
Status PubMed-not-MEDLINE Language English Country Canada Media electronic
Document type Journal Article, Review
PubMed
35482368
PubMed Central
PMC9100378
DOI
10.2196/25249
PII: v9i4e25249
Knihovny.cz E-resources
- Keywords
- data visualization, digital health, mental health, neurology, remote measurement technology, user-centered design,
- Publication type
- Journal Article MeSH
- Review MeSH
BACKGROUND: Remote measurement technologies (RMT) such as mobile health devices and apps are increasingly used by those living with chronic neurological and mental health conditions. RMT enables real-world data collection and regular feedback, providing users with insights about their own conditions. Data visualizations are an integral part of RMT, although little is known about visualization design preferences from the perspectives of those living with chronic conditions. OBJECTIVE: The aim of this review was to explore the experiences and preferences of individuals with chronic neurological and mental health conditions on data visualizations derived from RMT to manage health. METHODS: In this systematic review, we searched peer-reviewed literature and conference proceedings (PubMed, IEEE Xplore, EMBASE, Web of Science, Association for Computing Machinery Computer-Human Interface proceedings, and the Cochrane Library) for original papers published between January 2007 and September 2021 that reported perspectives on data visualization of people living with chronic neurological and mental health conditions. Two reviewers independently screened each abstract and full-text article, with disagreements resolved through discussion. Studies were critically appraised, and extracted data underwent thematic synthesis. RESULTS: We identified 35 eligible publications from 31 studies representing 12 conditions. Coded data coalesced into 3 themes: desire for data visualization, impact of visualizations on condition management, and visualization design considerations. Data visualizations were viewed as an integral part of users' experiences with RMT, impacting satisfaction and engagement. However, user preferences were diverse and often conflicting both between and within conditions. CONCLUSIONS: When used effectively, data visualizations are valuable, engaging components of RMT. They can provide structure and insight, allowing individuals to manage their own health more effectively. However, visualizations are not "one-size-fits-all," and it is important to engage with potential users during visualization design to understand when, how, and with whom the visualizations will be used to manage health.
Epidemiology Biostatistics and Prevention Institute University of Zürich Zürich Switzerland
Global Digital Analytics and Technologies Merck Sharpe and Dohme Kenilworth NJ United States
Institute of Psychiatry Psychology and Neuroscience King's College London London United Kingdom
Merck Research Labs Information Technology Merck Sharpe and Dohme Prague Czech Republic
Merck Research Labs Information Technology Merck Sharpe and Dohme Vienna Austria
Merck Research Labs Information Technology Merck Sharpe and Dohme Zurich Switzerland
RADAR CNS Patient Advisory Board London United Kingdom
School of Computer Science University of Nottingham Nottingham United Kingdom
See more in PubMed
Gurupur VP, Wan TTH. Challenges in implementing mHealth interventions: a technical perspective. Mhealth. 2017;3:32. doi: 10.21037/mhealth.2017.07.05. doi: 10.21037/mhealth.2017.07.05.mh-03-2017.07.05 PubMed DOI PMC
Mohammadzadeh N, Safdari R. Patient monitoring in mobile health: opportunities and challenges. Med Arch. 2014;68(1):57–60. doi: 10.5455/medarh.2014.68.57-60. PubMed DOI PMC
Nouri R, R Niakan Kalhori S, Ghazisaeedi M, Marchand G, Yasini M. Criteria for assessing the quality of mHealth apps: a systematic review. J Am Med Inform Assoc. 2018 Aug 01;25(8):1089–1098. doi: 10.1093/jamia/ocy050. 4996915 PubMed DOI PMC
Orlowski S, Matthews B, Bidargaddi N, Jones G, Lawn S, Venning A, Collin P. Mental Health Technologies: Designing With Consumers. JMIR Hum Factors. 2016 Jan 28;3(1):e4. doi: 10.2196/humanfactors.4336. v3i1e4 PubMed DOI PMC
Altman M, Huang TTK, Breland JY. Design Thinking in Health Care. Prev Chronic Dis. 2018 Sep 27;15:E117. doi: 10.5888/pcd15.180128. E117 PubMed DOI PMC
Palacholla RS, Fischer N, Coleman A, Agboola S, Kirley K, Felsted J, Katz C, Lloyd S, Jethwani K. Provider- and Patient-Related Barriers to and Facilitators of Digital Health Technology Adoption for Hypertension Management: Scoping Review. JMIR Cardio. 2019 Mar 26;3(1):e11951. doi: 10.2196/11951. v3i1e11951 PubMed DOI PMC
Simblett S, Greer B, Matcham F, Curtis H, Polhemus A, Ferrão José, Gamble P, Wykes T. Barriers to and Facilitators of Engagement With Remote Measurement Technology for Managing Health: Systematic Review and Content Analysis of Findings. J Med Internet Res. 2018 Jul 12;20(7):e10480. doi: 10.2196/10480. v20i7e10480 PubMed DOI PMC
Marcengo A, Rapp A. Visualization of human behavior data: the quantified self. In: Huang ML, Huang W, editors. Innovative Approaches of Data Visualization and Visual Analytics. Hershey, PA: IGI Global; 2014. pp. 236–235.
Few S. The Encyclopedia of Human-Computer Interaction, 2nd Ed. Aarhus, Denmark: The Interaction Design Foundation; 2010. Data visualization for human perception.
Woods L, Cummings E, Duff J, Walker K. Design Thinking for mHealth Application Co-Design to Support Heart Failure Self-Management. Stud Health Technol Inform. 2017;241:97–102. PubMed
Bate P, Robert G. Experience-based design: from redesigning the system around the patient to co-designing services with the patient. Qual Saf Health Care. 2006 Oct;15(5):307–10. doi: 10.1136/qshc.2005.016527. 15/5/307 PubMed DOI PMC
Schmidt JM, Irvine JM, Miller S. Data visualization. In: De Georgia M, Loparo K, editors. Neurocritical Care Informatics. Berlin, Heidelberg: Springer; 2019. pp. 135–147.
Schlee W, Hall DA, Edvall NK, Langguth B, Canlon B, Cederroth CR. Visualization of Global Disease Burden for the Optimization of Patient Management and Treatment. Front Med (Lausanne) 2017;4:86. doi: 10.3389/fmed.2017.00086. doi: 10.3389/fmed.2017.00086. PubMed DOI PMC
Park S, Bekemeier B, Flaxman A, Schultz M. Impact of data visualization on decision-making and its implications for public health practice: a systematic literature review. Inform Health Soc Care. 2021 Sep 28;:1–19. doi: 10.1080/17538157.2021.1982949. PubMed DOI
Chittaro L. Visualizing Information on Mobile Devices. Computer. 2006 Mar;39(3):40–45. doi: 10.1109/mc.2006.109. DOI
Ware C. In: Visual Thinking for Design. Kaufmann M, editor. Amsterdam: Elsevier; 2008.
Few S. Data visualization past, present and future. Perceptual Edge. 2009. [2020-06-29]. http://mail.perceptualedge.com/articles/Whitepapers/Data_Visualization.pdf .
Turchioe MR, Myers A, Isaac S, Baik D, Grossman LV, Ancker JS, Creber RM. A Systematic Review of Patient-Facing Visualizations of Personal Health Data. Appl Clin Inform. 2019 Aug;10(4):751–770. doi: 10.1055/s-0039-1697592. PubMed DOI PMC
Shamseer L, Moher D, Clarke M, Ghersi D, Liberati A, Petticrew M, Shekelle P, Stewart LA, PRISMA-P Group Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015: elaboration and explanation. BMJ. 2015 Jan 02;350:g7647. doi: 10.1136/bmj.g7647. PubMed DOI
Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, Shamseer L, Tetzlaff JM, Akl EA, Brennan SE, Chou R, Glanville J, Grimshaw JM, Hróbjartsson Asbjørn, Lalu MM, Li T, Loder EW, Mayo-Wilson E, McDonald S, McGuinness LA, Stewart LA, Thomas J, Tricco AC, Welch VA, Whiting P, Moher D. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ. 2021 Mar 29;372:n71. doi: 10.1136/bmj.n71. PubMed DOI PMC
Polhemus A, Novak J, Majid S, Simblett S, Wykes T, Dockendorf M, Temesi G. Service user preferences on data visualization by remote measurement technologies for chronic central nervous system disease management. PROSPERO: International Prospective Register of Systematic Reviews. 2019. [2020-06-29]. https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42019139319 .
Cohen J. A Coefficient of Agreement for Nominal Scales. Educational and Psychological Measurement. 2016 Jul 02;20(1):37–46. doi: 10.1177/001316446002000104. DOI
Kohl C, McIntosh EJ, Unger S, Haddaway NR, Kecke S, Schiemann J, Wilhelm R. Online tools supporting the conduct and reporting of systematic reviews and systematic maps: a case study on CADIMA and review of existing tools. Environ Evid. 2018 Feb 1;7(1):1–17. doi: 10.1186/s13750-018-0115-5. DOI
Davis MM, Freeman M, Kaye J, Vuckovic N, Buckley DI. A systematic review of clinician and staff views on the acceptability of incorporating remote monitoring technology into primary care. Telemed J E Health. 2014 May;20(5):428–38. doi: 10.1089/tmj.2013.0166. PubMed DOI PMC
Pace R, Pluye P, Bartlett G, Macaulay AC, Salsberg J, Jagosh J, Seller R. Testing the reliability and efficiency of the pilot Mixed Methods Appraisal Tool (MMAT) for systematic mixed studies review. Int J Nurs Stud. 2012 Jan;49(1):47–53. doi: 10.1016/j.ijnurstu.2011.07.002.S0020-7489(11)00266-5 PubMed DOI
Hong QN, Fàbregues S, Bartlett G, Boardman F, Cargo M, Dagenais P, Gagnon M, Griffiths F, Nicolau B, O’Cathain A, Rousseau M, Vedel I, Pluye P. The Mixed Methods Appraisal Tool (MMAT) version 2018 for information professionals and researchers. EFI. 2018 Dec 18;34(4):285–291. doi: 10.3233/EFI-180221. DOI
Malpass A, Shaw A, Sharp D, Walter F, Feder G, Ridd M, Kessler D. "Medication career" or "moral career"? The two sides of managing antidepressants: a meta-ethnography of patients' experience of antidepressants. Soc Sci Med. 2009 Jan;68(1):154–68. doi: 10.1016/j.socscimed.2008.09.068.S0277-9536(08)00513-3 PubMed DOI
Dixon-Woods M, Booth A, Sutton AJ. Synthesizing qualitative research: a review of published reports. Qualitative Research. 2016 Aug 15;7(3):375–422. doi: 10.1177/1468794107078517. DOI
Thomas J, Harden A. Methods for the thematic synthesis of qualitative research in systematic reviews. BMC Med Res Methodol. 2008 Jul 10;8:45. doi: 10.1186/1471-2288-8-45. 1471-2288-8-45 PubMed DOI PMC
Fuller-Tyszkiewicz M, Richardson B, Klein B, Skouteris H, Christensen H, Austin D, Castle D, Mihalopoulos C, O'Donnell R, Arulkadacham L, Shatte A, Ware A. A Mobile App-Based Intervention for Depression: End-User and Expert Usability Testing Study. JMIR Ment Health. 2018 Aug 23;5(3):e54. doi: 10.2196/mental.9445. v5i3e54 PubMed DOI PMC
Rohani D, Tuxen N, Lopategui A, Faurholt-Jepsen M, Kessing L, Bardram J. Personalizing mental health: a feasibility study of a mobile behavioral activation tool for depressed patients. 3th EAI International Conference on Pervasive Computing Technologies for Healthcare; May 20-23; Trento, Italy. Association for Computing Machinery; 2019. DOI
Bauer AM, Hodsdon S, Bechtel JM, Fortney JC. Applying the Principles for Digital Development: Case Study of a Smartphone App to Support Collaborative Care for Rural Patients With Posttraumatic Stress Disorder or Bipolar Disorder. J Med Internet Res. 2018 Jun 06;20(6):e10048. doi: 10.2196/10048. v20i6e10048 PubMed DOI PMC
Bauer AM, Hodsdon S, Hunter S, Choi Y, Bechtel J, Fortney JC. Lessons from the Deployment of the SPIRIT App to Support Collaborative Care for Rural Patients with Complex Psychiatric Conditions. Proc ACM Int Conf Ubiquitous Comput. 2017 Sep;2017:772–780. doi: 10.1145/3123024.3125610. PubMed DOI PMC
Bauer AM, Iles-Shih M, Ghomi RH, Rue T, Grover T, Kincler N, Miller M, Katon WJ. Acceptability of mHealth augmentation of Collaborative Care: A mixed methods pilot study. Gen Hosp Psychiatry. 2018;51:22–29. doi: 10.1016/j.genhosppsych.2017.11.010. S0163-8343(17)30287-6 PubMed DOI PMC
Matthews M, Voida S, Abdullah S, Doherty G, Choudhury T, Im S, Gay G. In situ design for mental illness: considering the pathology of bipolar disorder in mHealth design. 17th International Conference on Human-Computer Interaction with Mobile Devices and Services; August 24-27; Copenhagen, Denmark. Association for Computing Machinery; 2015. DOI
Matthews M, Abdullah S, Murnane E, Voida S, Choudhury T, Gay G, Frank E. Development and Evaluation of a Smartphone-Based Measure of Social Rhythms for Bipolar Disorder. Assessment. 2016 Aug;23(4):472–483. doi: 10.1177/1073191116656794. 1073191116656794 PubMed DOI PMC
Bardram J, Frost M, Szántó K, Faurholt-Jepsen M, Vinberg M, Kessing L. Designing mobile health technology for bipolar disorder: a field trial of the MONARCA system. SIGCHI Conference on Human Factors in Computing Systems; April 27-May 3; Paris, France. Association for Computing Machinery; 2013. DOI
Bardram J, Frost M, Szántó K, Marcu G. The MONARCA self-assessment system: a persuasive personal monitoring system for bipolar patients. 2nd ACM SIGHIT International Health Informatics Symposium; January 28-30; Miami, Florida, USA. Association for Computing Machinery; 2012. DOI
Jonassaint CR, Rao N, Sciuto A, Switzer GE, De Castro L, Kato GJ, Jonassaint JC, Hammal Z, Shah N, Wasan A. Abstract Animations for the Communication and Assessment of Pain in Adults: Cross-Sectional Feasibility Study. J Med Internet Res. 2018 Aug 03;20(8):e10056. doi: 10.2196/10056. v20i8e10056 PubMed DOI PMC
Adams P, Murnane E, Elfenbein M, Wethington E, Gay G. Supporting the self-management of chronic pain conditions with tailored momentary self-assessments. 2017 CHI Conference on Human Factors in Computing Systems; May 6-11; Denver, Colorado, USA. 2017. PubMed DOI PMC
Eisner E, Drake RJ, Berry N, Barrowclough C, Emsley R, Machin M, Bucci S. Development and Long-Term Acceptability of ExPRESS, a Mobile Phone App to Monitor Basic Symptoms and Early Signs of Psychosis Relapse. JMIR Mhealth Uhealth. 2019 Mar 29;7(3):e11568. doi: 10.2196/11568. v7i3e11568 PubMed DOI PMC
Quaedackers L, De Wit J, Pillen S, Van Gilst M, Batalas N, Lammers GJ, Markopoulos P, Overeem S. A Mobile App for Longterm Monitoring of Narcolepsy Symptoms: Design, Development, and Evaluation. JMIR Mhealth Uhealth. 2020 Jan 07;8(1):e14939. doi: 10.2196/14939. v8i1e14939 PubMed DOI PMC
Hoffman L, Benedetto E, Huang H, Grossman E, Kaluma D, Mann Z, Torous J. Augmenting Mental Health in Primary Care: A 1-Year Study of Deploying Smartphone Apps in a Multi-site Primary Care/Behavioral Health Integration Program. Front Psychiatry. 2019;10:94. doi: 10.3389/fpsyt.2019.00094. doi: 10.3389/fpsyt.2019.00094. PubMed DOI PMC
Ando H, Ashcroft-Kelso H, Halhead R, Chakrabarti B, Young CA, Cousins R, Angus RM. Experience of telehealth in people with motor neurone disease using noninvasive ventilation. Disabil Rehabil Assist Technol. 2021 Jul;16(5):490–496. doi: 10.1080/17483107.2019.1659864. PubMed DOI
Anderson K, Burford O, Emmerton L. Mobile Health Apps to Facilitate Self-Care: A Qualitative Study of User Experiences. PLoS One. 2016;11(5):e0156164. doi: 10.1371/journal.pone.0156164. PONE-D-16-02829 PubMed DOI PMC
Murnane EL, Cosley D, Chang P, Guha S, Frank E, Gay G, Matthews M. Self-monitoring practices, attitudes, and needs of individuals with bipolar disorder: implications for the design of technologies to manage mental health. J Am Med Inform Assoc. 2016 May;23(3):477–84. doi: 10.1093/jamia/ocv165.ocv165 PubMed DOI PMC
Giunti G, Kool J, Rivera Romero Octavio, Dorronzoro Zubiete Enrique. Exploring the Specific Needs of Persons with Multiple Sclerosis for mHealth Solutions for Physical Activity: Mixed-Methods Study. JMIR Mhealth Uhealth. 2018 Feb 09;6(2):e37. doi: 10.2196/mhealth.8996. v6i2e37 PubMed DOI PMC
Forchuk C, Reiss JP, O'Regan T, Ethridge P, Donelle L, Rudnick A. Client perceptions of the mental health engagement network: a qualitative analysis of an electronic personal health record. BMC Psychiatry. 2015 Oct 14;15:250. doi: 10.1186/s12888-015-0614-7. 10.1186/s12888-015-0614-7 PubMed DOI PMC
Erten-Uyumaz B, Ahuja M, Vacaretu T, Rama M, Overeem S, Visser T, Hu J, Feijs L. Design and evaluation of a negotiation-based sleep scheduler app for insomnia treatment. 13th EAI International Conference on Pervasive Computing Technologies for Healthcare; May 20-23; Trento, Italy. Association for Computing Machinery; 2019. DOI
Saunders KEA, Bilderbeck AC, Panchal P, Atkinson LZ, Geddes JR, Goodwin GM. Experiences of remote mood and activity monitoring in bipolar disorder: A qualitative study. Eur Psychiatry. 2017 Mar;41:115–121. doi: 10.1016/j.eurpsy.2016.11.005. S0924-9338(16)30171-7 PubMed DOI PMC
McClelland GT, Fitzgerald M. A participatory mobile application (app) development project with mental health service users and clinicians. Health Education Journal. 2018 Jun 05;77(7):815–827. doi: 10.1177/0017896918773790. DOI
Wannheden C, Revenäs Åsa. How People with Parkinson's Disease and Health Care Professionals Wish to Partner in Care Using eHealth: Co-Design Study. J Med Internet Res. 2020 Sep 21;22(9):e19195. doi: 10.2196/19195. v22i9e19195 PubMed DOI PMC
Van Tiem J, Moeckli J, Suiter N, Fuhrmeister L, Pham K, Dindo L, Turvey C. "A link to the outside:" Patient perspectives on a mobile texting program to improve depression self-management. Patient Educ Couns. 2021 Sep;104(9):2154–2158. doi: 10.1016/j.pec.2021.02.018.S0738-3991(21)00116-6 PubMed DOI
Elsborg M, Bruun A, Jensen R. Supporting anxiety patients? self-reflection through visualization of physiological data. 32nd Australian Conference on Human-Computer Interaction; December 2-4; Sydney, Australia. Association for Computing Machinery; 2020. DOI
Ruzic L, Sanford JA. Needs Assessment—mHealth Applications for People Aging with Multiple Sclerosis. J Healthc Inform Res. 2018 May 10;2(1-2):71–98. doi: 10.1007/s41666-018-0023-z. PubMed DOI PMC
Herbst E, McCaslin SE, Hassanbeigi Daryani S, Laird KT, Hopkins LB, Pennington D, Kuhn E. A Qualitative Examination of Stay Quit Coach, A Mobile Application for Veteran Smokers With Posttraumatic Stress Disorder. Nicotine Tob Res. 2020 Apr 17;22(4):560–569. doi: 10.1093/ntr/ntz037.5381152 PubMed DOI
Schleimer E, Pearce J, Barnecut A, Rowles W, Lizee A, Klein A, Block VJ, Santaniello A, Renschen A, Gomez R, Keshavan A, Gelfand JM, Henry RG, Hauser SL, Bove R. A Precision Medicine Tool for Patients With Multiple Sclerosis (the Open MS BioScreen): Human-Centered Design and Development. J Med Internet Res. 2020 Jul 06;22(7):e15605. doi: 10.2196/15605. v22i7e15605 PubMed DOI PMC
Daus H, Kislicyn N, Heuer S, Backenstrass M. Disease management apps and technical assistance systems for bipolar disorder: Investigating the patients´ point of view. J Affect Disord. 2018 Mar 15;229:351–357. doi: 10.1016/j.jad.2017.12.059.S0165-0327(17)31456-8 PubMed DOI
Yoo S, Lim K, Baek H, Jang S, Hwang G, Kim H, Hwang H. Developing a mobile epilepsy management application integrated with an electronic health record for effective seizure management. Int J Med Inform. 2020 Feb;134:104051. doi: 10.1016/j.ijmedinf.2019.104051.S1386-5056(19)30745-2 PubMed DOI
Ando H, Ashcroft-Kelso H, Halhead R, Chakrabarti B, Young CA, Cousins R, Angus RM. Experience of telehealth in people with motor neurone disease using noninvasive ventilation. Disabil Rehabil Assist Technol. 2021 Jul;16(5):490–496. doi: 10.1080/17483107.2019.1659864. PubMed DOI
Garzo A, Silva PA, Garay-Vitoria N, Hernandez E, Cullen S, Cochen De Cock V, Ihalainen P, Villing R. Design and development of a gait training system for Parkinson's disease. PLoS One. 2018;13(11):e0207136. doi: 10.1371/journal.pone.0207136. PONE-D-18-16600 PubMed DOI PMC
Buitenweg DC, Bongers IL, van de Mheen D, van Oers HA, van Nieuwenhuizen C. Cocreative Development of the QoL-ME: A Visual and Personalized Quality of Life Assessment App for People With Severe Mental Health Problems. JMIR Ment Health. 2019 Mar 28;6(3):e12378. doi: 10.2196/12378. v6i3e12378 PubMed DOI PMC
Ospina-Pinillos L, Davenport T, Mendoza Diaz A, Navarro-Mancilla A, Scott EM, Hickie IB. Using Participatory Design Methodologies to Co-Design and Culturally Adapt the Spanish Version of the Mental Health eClinic: Qualitative Study. J Med Internet Res. 2019 Aug 02;21(8):e14127. doi: 10.2196/14127. v21i8e14127 PubMed DOI PMC
Proudfoot J, Parker G, Hadzi Pavlovic Dusan, Manicavasagar V, Adler E, Whitton A. Community attitudes to the appropriation of mobile phones for monitoring and managing depression, anxiety, and stress. J Med Internet Res. 2010 Dec 19;12(5):e64. doi: 10.2196/jmir.1475. v12i5e64 PubMed DOI PMC
Farao J, Malila B, Conrad N, Mutsvangwa T, Rangaka MX, Douglas TS. A user-centred design framework for mHealth. PLoS One. 2020;15(8):e0237910. doi: 10.1371/journal.pone.0237910. PONE-D-20-01209 PubMed DOI PMC
Mummah SA, Robinson TN, King AC, Gardner CD, Sutton S. IDEAS (Integrate, Design, Assess, and Share): A Framework and Toolkit of Strategies for the Development of More Effective Digital Interventions to Change Health Behavior. J Med Internet Res. 2016 Dec 16;18(12):e317. doi: 10.2196/jmir.5927. v18i12e317 PubMed DOI PMC
Schnall R, Rojas M, Bakken S, Brown W, Carballo-Dieguez A, Carry M, Gelaude D, Mosley JP, Travers J. A user-centered model for designing consumer mobile health (mHealth) applications (apps) J Biomed Inform. 2016 Apr;60:243–51. doi: 10.1016/j.jbi.2016.02.002. S1532-0464(16)00024-1 PubMed DOI PMC
Polhemus AM, Novák Jan, Ferrao J, Simblett S, Radaelli M, Locatelli P, Matcham F, Kerz M, Weyer J, Burke P, Huang V, Dockendorf MF, Temesi G, Wykes T, Comi G, Myin-Germeys I, Folarin A, Dobson R, Manyakov NV, Narayan VA, Hotopf M. Human-Centered Design Strategies for Device Selection in mHealth Programs: Development of a Novel Framework and Case Study. JMIR Mhealth Uhealth. 2020 May 07;8(5):e16043. doi: 10.2196/16043. v8i5e16043 PubMed DOI PMC
Lee SY, Hwang H, Hawkins R, Pingree S. Interplay of Negative Emotion and Health Self-Efficacy on the Use of Health Information and Its Outcomes. Communication Research. 2008 Apr 14;35(3):358–381. doi: 10.1177/0093650208315962. DOI
Paterson BL. The shifting perspectives model of chronic illness. J Nurs Scholarsh. 2001;33(1):21–6. doi: 10.1111/j.1547-5069.2001.00021.x. PubMed DOI
Zhu H, Colgan J, Reddy M, Choe EK. Sharing Patient-Generated Data in Clinical Practices: An Interview Study. AMIA Annu Symp Proc. 2016;2016:1303–1312. PubMed PMC
Andrews JA, Craven MP, Jamnadas-Khoda J, Lang AR, Morriss R, Hollis C, RADAR-CNS Consortium Health Care Professionals' Views on Using Remote Measurement Technology in Managing Central Nervous System Disorders: Qualitative Interview Study. J Med Internet Res. 2020 Jul 24;22(7):e17414. doi: 10.2196/17414. v22i7e17414 PubMed DOI PMC
Caprani N, Doyle J, Komaba Y, Inomata A. Exploring healthcare professionals' preferences for visualising sensor data. 2015 British HCI Conference; July 13; Lincoln, Lincolnshire, United Kingdom. Association for Computing Machinery; 2015. DOI
Noblit GW, Hare RD. Meta-Ethnography: Synthesizing Qualitative Studies. Newbury Park, California, USA: SAGE Publications, Inc; 1988.
Innovative Medicines Initiative. [2022-01-25]. https://www.imi.europa.eu/