• This record comes from PubMed

Data Visualization Preferences in Remote Measurement Technology for Individuals Living With Depression, Epilepsy, and Multiple Sclerosis: Qualitative Study

. 2024 Oct 18 ; 26 () : e43954. [epub] 20241018

Language English Country Canada Media electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Links

PubMed 39423366
PubMed Central PMC11530729
DOI 10.2196/43954
PII: v26i1e43954
Knihovny.cz E-resources

BACKGROUND: Remote measurement technology (RMT) involves the use of wearable devices and smartphone apps to measure health outcomes in everyday life. RMT with feedback in the form of data visual representations can facilitate self-management of chronic health conditions, promote health care engagement, and present opportunities for intervention. Studies to date focus broadly on multiple dimensions of service users' design preferences and RMT user experiences (eg, health variables of perceived importance and perceived quality of medical advice provided) as opposed to data visualization preferences. OBJECTIVE: This study aims to explore data visualization preferences and priorities in RMT, with individuals living with depression, those with epilepsy, and those with multiple sclerosis (MS). METHODS: A triangulated qualitative study comparing and thematically synthesizing focus group discussions with user reviews of existing self-management apps and a systematic review of RMT data visualization preferences. A total of 45 people participated in 6 focus groups across the 3 health conditions (depression, n=17; epilepsy, n=11; and MS, n=17). RESULTS: Thematic analysis validated a major theme around design preferences and recommendations and identified a further four minor themes: (1) data reporting, (2) impact of visualization, (3) moderators of visualization preferences, and (4) system-related factors and features. CONCLUSIONS: When used effectively, data visualizations are valuable, engaging components of RMT. Easy to use and intuitive data visualization design was lauded by individuals with neurological and psychiatric conditions. Apps design needs to consider the unique requirements of service users. Overall, this study offers RMT developers a comprehensive outline of the data visualization preferences of individuals living with depression, epilepsy, and MS.

See more in PubMed

Chiauzzi E, Rodarte C, DasMahapatra P. Patient-centered activity monitoring in the self-management of chronic health conditions. BMC Med. 2015;13(1):77. doi: 10.1186/s12916-015-0319-2. 10.1186/s12916-015-0319-2 PubMed DOI PMC

Simblett S, Greer B, Matcham F, Curtis H, Polhemus A, Ferrão J, Gamble P, Wykes T. Barriers to and facilitators of engagement with remote measurement technology for managing health: systematic review and content analysis of findings. J Med Internet Res. 2018;20(7):e10480. doi: 10.2196/10480. v20i7e10480 PubMed DOI PMC

Simblett S, Matcham F, Siddi S, Bulgari V, di San Pietro CB, López JH, Ferrão J, Polhemus A, Haro JM, de Girolamo G, Gamble P, Eriksson H, Hotopf M, Wykes T. Barriers to and facilitators of engagement with mHealth technology for remote measurement and management of depression: qualitative analysis. JMIR Mhealth Uhealth. 2019;7(1):e11325. doi: 10.2196/11325. v7i1e11325 PubMed DOI PMC

Simblett SK, Bruno E, Siddi S, Matcham F, Giuliano L, López JH, Biondi A, Curtis H, Ferrão J, Polhemus A, Zappia M, Callen A, Gamble P, Wykes T. Patient perspectives on the acceptability of mHealth technology for remote measurement and management of epilepsy: a qualitative analysis. Epilepsy Behav. 2019;97:123–129. doi: 10.1016/j.yebeh.2019.05.035.S1525-5050(19)30123-4 PubMed DOI

Simblett SK, Evans J, Greer B, Curtis H, Matcham F, Radaelli M, Mulero P, Arévalo MJ, Polhemus A, Ferrao J, Gamble P, Comi G, Wykes T. Engaging across dimensions of diversity: a cross-national perspective on mHealth tools for managing relapsing remitting and progressive multiple sclerosis. Mult Scler Relat Disord. 2019;32:123–132. doi: 10.1016/j.msard.2019.04.020.S2211-0348(19)30180-4 PubMed DOI

Backonja U, Chi N, Choi Y, Hall AK, Le T, Kang Y, Demiris G. Visualization approaches to support healthy aging: a systematic review. J Innov Health Inform. 2016;23(3):860. doi: 10.14236/jhi.v23i3.860. PubMed DOI PMC

Bardram JE, Frost M, Szántó K, Marcu G. The MONARCA self-assessment system: a persuasive personal monitoring system for bipolar patients. Proceedings of the 2nd ACM SIGHIT International Health Informatics Symposium; January, 2012; Florida, Miami, USA. 2012. pp. 21–30. DOI

Eisner E, Drake RJ, Berry N, Barrowclough C, Emsley R, Machin M, Bucci S. Development and long-term acceptability of express, a mobile phone app to monitor basic symptoms and early signs of psychosis relapse. JMIR Mhealth Uhealth. 2019;7(3):e11568. doi: 10.2196/11568. v7i3e11568 PubMed DOI PMC

Schleimer E, Pearce J, Barnecut A, Rowles W, Lizee A, Klein A, Block VJ, Santaniello A, Renschen A, Gomez R, Keshavan A, Gelfand JM, Henry RG, Hauser SL, Bove R. A precision medicine tool for patients with multiple sclerosis (the open MS bioscreen): human-centered design and development. J Med Internet Res. 2020;22(7):e15605. doi: 10.2196/15605. v22i7e15605 PubMed DOI PMC

Rohani DA, Tuxen N, Lopategui AQ, Faurholt-Jepsen M, Kessing LV, Bardram JE. Personalizing mental health: a feasibility study of a mobile behavioral activation tool for depressed patients. Proceedings of the 13th EAI International Conference on Pervasive Computing Technologies for Healthcare; May 20, 2019; New York, NY, United States. 2019.

Matthews M, Voida S, Abdullah S, Doherty G, Choudhury T, Im S, Gay G. In situ design for mental illness: considering the pathology of bipolar disorder in mHealth design. Proceedings of the 17th International Conference on Human-Computer Interaction with Mobile Devices and Services; August, 2015; New York, NY, United States. 2015. pp. 86–97. DOI

Murnane EL, Cosley D, Chang P, Guha S, Frank E, Gay G, Matthews M. Self-monitoring practices, attitudes, and needs of individuals with bipolar disorder: implications for the design of technologies to manage mental health. J Am Med Inform Assoc. 2016;23(3):477–484. doi: 10.1093/jamia/ocv165.ocv165 PubMed DOI PMC

Wannheden C, Revenäs Å. How people with Parkinson's disease and health care professionals wish to partner in care using eHealth: co-design study. J Med Internet Res. 2020;22(9):e19195. doi: 10.2196/19195. v22i9e19195 PubMed DOI PMC

Marzano L, Bardill A, Fields B, Herd K, Veale D, Grey N, Moran P. The application of mHealth to mental health: opportunities and challenges. Lancet Psychiatry. 2015;2(10):942–948. doi: 10.1016/S2215-0366(15)00268-0.S2215-0366(15)00268-0 PubMed DOI

Forchuk C, Reiss JP, O'Regan T, Ethridge P, Donelle L, Rudnick A. Client perceptions of the mental health engagement network: a qualitative analysis of an electronic personal health record. BMC Psychiatry. 2015;15:250. doi: 10.1186/s12888-015-0614-7. 10.1186/s12888-015-0614-7 PubMed DOI PMC

Garzo A, Silva PA, Garay-Vitoria N, Hernandez E, Cullen S, De Cock VC, Ihalainen P, Villing R. Design and development of a gait training system for Parkinson's disease. PLoS One. 2018;13(11):e0207136. doi: 10.1371/journal.pone.0207136. PONE-D-18-16600 PubMed DOI PMC

McClelland GT, Fitzgerald M. A participatory mobile application (app) development project with mental health service users and clinicians. Health Educ J. 2018;77(7):815–827. doi: 10.1177/0017896918773790. DOI

Yoo S, Lim K, Baek H, Jang S, Hwang G, Kim H, Hwang H. Developing a mobile epilepsy management application integrated with an electronic health record for effective seizure management. Int J Med Inform. 2020;134:104051. doi: 10.1016/j.ijmedinf.2019.104051.S1386-5056(19)30745-2 PubMed DOI

Giunti G, Kool J, Romero OR, Zubiete ED. Exploring the specific needs of persons with multiple sclerosis for mHealth solutions for physical activity: mixed-methods study. JMIR Mhealth Uhealth. 2018;6(2):e37. doi: 10.2196/mhealth.8996. v6i2e37 PubMed DOI PMC

Erten-Uyumaz B, Ahuja M, Vacaretu T, Rama MD, Overeem S, Visser T, Hu J, Feijs L. Design and evaluation of a negotiation-based sleep scheduler app for insomnia treatment. Proceedings of the 13th EAI International Conference on Pervasive Computing Technologies for Healthcare; May 20, 2019; New York, NY, United States. 2019. pp. 225–233. DOI

Proudfoot J, Parker G, Pavlovic DH, Manicavasagar V, Adler E, Whitton A. Community attitudes to the appropriation of mobile phones for monitoring and managing depression, anxiety, and stress. J Med Internet Res. 2010;12(5):e64. doi: 10.2196/jmir.1475. v12i5e64 PubMed DOI PMC

Quaedackers L, De Wit J, Pillen S, Van Gilst M, Batalas N, Lammers GJ, Markopoulos P, Overeem S. A mobile app for longterm monitoring of narcolepsy symptoms: design, development, and evaluation. JMIR Mhealth Uhealth. 2020;8(1):e14939. doi: 10.2196/14939. v8i1e14939 PubMed DOI PMC

Fuller-Tyszkiewicz M, Richardson B, Klein B, Skouteris H, Christensen H, Austin D, Castle D, Mihalopoulos C, O'Donnell R, Arulkadacham L, Shatte A, Ware A. A mobile app-based intervention for depression: end-user and expert usability testing study. JMIR Ment Health. 2018;5(3):e54. doi: 10.2196/mental.9445. v5i3e54 PubMed DOI PMC

Denzin NK. The Research Act: A Theoretical Introduction to Sociological Methods. Oxfordshire, England, UK: Routledge; 2017.

Noble H, Heale R. Triangulation in research, with examples. Evidence-Based Nurs. 2019;22(3):67–68. doi: 10.1136/ebnurs-2019-103145.ebnurs-2019-103145 PubMed DOI

Johnson M, O'Hara R, Hirst E, Weyman A, Turner J, Mason S, Quinn T, Shewan J, Siriwardena AN. Multiple triangulation and collaborative research using qualitative methods to explore decision making in pre-hospital emergency care. BMC Med Res Methodol. 2017;17(1):11. doi: 10.1186/s12874-017-0290-z. 10.1186/s12874-017-0290-z PubMed DOI PMC

Thurmond VA. The point of triangulation. J Nurs Scholarship. 2001;33(3):253–258. doi: 10.1111/j.1547-5069.2001.00253.x. PubMed DOI

Polhemus A, Novak J, Majid S, Simblett S, Morris D, Bruce S, Burke P, Dockendorf MF, Temesi G, Wykes T. Data visualization for chronic neurological and mental health condition self-management: systematic review of user perspectives. JMIR Ment Health. 2022;9(4):e25249. doi: 10.2196/25249. v9i4e25249 PubMed DOI PMC

Polhemus A, Simblett S, Dawe Lane E, Elliott B, Jilka S, Negbenose E, Burke P, Weyer J, Novak J, Dockendorf MF, Temesi G, Wykes T. Experiences of health tracking in mobile apps for multiple sclerosis: a qualitative content analysis of user reviews. Mult Scler Relat Disord. 2023;69:104435. doi: 10.1016/j.msard.2022.104435.S2211-0348(22)00939-7 PubMed DOI

Polhemus A, Simblett S, Dawe-Lane E, Gilpin G, Elliott B, Jilka S, Novak J, Nica RI, Temesi G, Wykes T. Health tracking via mobile apps for depression self-management: qualitative content analysis of user reviews. JMIR Hum Factors. 2022;9(4):e40133. doi: 10.2196/40133. v9i4e40133 PubMed DOI PMC

Matcham F, di San Pietro CB, Bulgari V, de Girolamo G, Dobson R, Eriksson H, Folarin AA, Haro JM, Kerz M, Lamers F, Li Q, Manyakov NV, Mohr DC, Myin-Germeys I, Narayan V, Bwjh P, Ranjan Y, Rashid Z, Rintala A, Siddi S, Simblett SK, Wykes T, Hotopf M. Remote assessment of disease and relapse in major depressive disorder (RADAR-MDD): a multi-centre prospective cohort study protocol. BMC Psychiatry. 2019;19(1):72. doi: 10.1186/s12888-019-2049-z. 10.1186/s12888-019-2049-z PubMed DOI PMC

Kroenke K, Spitzer RL, Williams JBW. The PHQ-9: validity of a brief depression severity measure. J Gen Intern Med. 2001;16(9):606–613. doi: 10.1046/j.1525-1497.2001.016009606.x. jgi01114 PubMed DOI PMC

Baker GA, Smith DF, Jacoby A, Hayes JA, Chadwick DW. Liverpool seizure severity scale revisited. Seizure. 1998;7(3):201–205. doi: 10.1016/s1059-1311(98)80036-8. S1059-1311(98)80036-8 PubMed DOI

Learmonth YC, Motl RW, Sandroff BM, Pula JH, Cadavid D. Validation of patient determined disease steps (PDDS) scale scores in persons with multiple sclerosis. BMC Neurol. 2013;13:37. doi: 10.1186/1471-2377-13-37. 1471-2377-13-37 PubMed DOI PMC

Bauer AM, Iles-Shih M, Ghomi RH, Rue T, Grover T, Kincler N, Miller M, Katon WJ. Acceptability of mHealth augmentation of collaborative care: a mixed methods pilot study. Gen Hosp Psychiatry. 2018;51:22–29. doi: 10.1016/j.genhosppsych.2017.11.010. S0163-8343(17)30287-6 PubMed DOI PMC

Choe EK, Dachselt R, Isenberg P, Lee B. Mobile data visualization (Dagstuhl seminar 19292) Dagstuhl Reports. 2019;9(7):78–93. doi: 10.4230/DagRep.9.7.78. DOI

Cummins N, Schuller BW. Five crucial challenges in digital health. Front Digit Health. 2020;2:536203. doi: 10.3389/fdgth.2020.536203. PubMed DOI PMC

RADAR-CNS (Remote Assessment of Disease and Relapse – Central Nervous System) King’s College London. www.radar-cns.org .

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...