Barriers to and Facilitators of Engagement With mHealth Technology for Remote Measurement and Management of Depression: Qualitative Analysis
Jazyk angličtina Země Kanada Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
30698535
PubMed Central
PMC6372936
DOI
10.2196/11325
PII: v7i1e11325
Knihovny.cz E-zdroje
- Klíčová slova
- acceptability, barriers, depression, facilitators, feasibility, mHealth, qualitative,
- MeSH
- deprese psychologie terapie MeSH
- dospělí MeSH
- kvalitativní výzkum MeSH
- lidé středního věku MeSH
- lidé MeSH
- senioři MeSH
- telemedicína metody trendy MeSH
- zapojení pacienta metody psychologie trendy MeSH
- zjišťování skupinových postojů metody MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Itálie MeSH
- Španělsko MeSH
- Spojené království MeSH
BACKGROUND: Mobile technology has the potential to provide accurate, impactful data on the symptoms of depression, which could improve health management or assist in early detection of relapse. However, for this potential to be achieved, it is essential that patients engage with the technology. Although many barriers to and facilitators of the use of this technology are common across therapeutic areas and technology types, many may be specific to cultural and health contexts. OBJECTIVE: This study aimed to determine the potential barriers to and facilitators of engagement with mobile health (mHealth) technology for remote measurement and management of depression across three Western European countries. METHODS: Participants (N=25; 4:1 ratio of women to men; age range, 25-73 years) who experienced depression participated in five focus groups held in three countries (two in the United Kingdom, two in Spain, and one in Italy). The focus groups investigated the potential barriers to and facilitators of the use of mHealth technology. A systematic thematic analysis was used to extract themes and subthemes. RESULTS: Facilitators and barriers were categorized as health-related factors, user-related factors, and technology-related factors. A total of 58 subthemes of specific barriers and facilitators or moderators emerged. A core group of themes including motivation, potential impact on mood and anxiety, aspects of inconvenience, and ease of use was noted across all countries. CONCLUSIONS: Similarities in the barriers to and facilitators of the use of mHealth technology have been observed across Spain, Italy, and the United Kingdom. These themes provide guidance on ways to promote the design of feasible and acceptable cross-cultural mHealth tools.
Clinical Development Depression and Paediatrics H Lundbeck A S Copenhagen Denmark
Department of Psychiatry and Clinical Psychobiology University of Barcelona Barcelona Spain
Department of Psychology University of Milano Bicocca Milan Italy
Information Technology Department MSD Czech Republic Prague Czech Republic
Institute of Psychology Psychiatry and Neuroscience King's College London London United Kingdom
IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli Brescia Italy
Research Department QITERIA Investigación Social Aplicada Madrid Spain
Zobrazit více v PubMed
Cuijpers P, Schoevers RA. Increased mortality in depressive disorders: a review. Curr Psychiatry Rep. 2004 Dec;6(6):430–7. PubMed
Lenox-Smith A, Macdonald MTB, Reed C, Tylee A, Peveler R, Quail D, Wildgust HJ. Quality of Life in Depressed Patients in UK Primary Care: The FINDER Study. Neurol Ther. 2013 Dec;2(1-2):25–42. doi: 10.1007/s40120-013-0006-1. PubMed DOI PMC
Lerner D, Adler DA, Chang H, Lapitsky L, Hood MY, Perissinotto C, Reed J, McLaughlin TJ, Berndt ER, Rogers WH. Unemployment, job retention, and productivity loss among employees with depression. Psychiatr Serv. 2004 Dec;55(12):1371–8. doi: 10.1176/appi.ps.55.12.1371. PubMed DOI PMC
Barger SD, Messerli-Bürgy N, Barth J. Social relationship correlates of major depressive disorder and depressive symptoms in Switzerland: nationally representative cross sectional study. BMC Public Health. 2014 Mar 24;14:273. doi: 10.1186/1471-2458-14-273. PubMed DOI PMC
Hofmeijer-Sevink M, Batelaan NM, van Megen HJ, Penninx BW, Cath DC, van den Hout MA, van Balkom AJ. Clinical relevance of comorbidity in anxiety disorders: a report from the Netherlands Study of Depression and Anxiety (NESDA) J Affect Disord. 2012 Mar;137(1-3):106–12. doi: 10.1016/j.jad.2011.12.008. PubMed DOI
Boschloo L, Vogelzangs N, Smit JH, van den Brink W, Veltman DJ, Beekman AT, Penninx BW. Comorbidity and risk indicators for alcohol use disorders among persons with anxiety and/or depressive disorders: findings from the Netherlands Study of Depression and Anxiety (NESDA) J Affect Disord. 2011 Jun;131(1-3):233–42. doi: 10.1016/j.jad.2010.12.014. PubMed DOI
Hardeveld F, Spijker J, De Graaf R, Hendriks SM, Licht CM, Nolen WA, Penninx BW, Beekman AT. Recurrence of major depressive disorder across different treatment settings: results from the NESDA study. J Affect Disord. 2013 May;147(1-3):225–31. doi: 10.1016/j.jad.2012.11.008. PubMed DOI
Statista. 2016. [2018-11-29]. Number of smartphone users worldwide from 2014 to 2020 (in billions) https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/
Statista. 2017. [2018-11-29]. Number of connected wearable devices worldwide from 2016 to 2021 (in millions) https://www.statista.com/statistics/487291/global-connected-wearable-devices/
Wicks P, Hotopf M, Narayan VA, Basch E, Weatherall J, Gray M. It's a long shot, but it just might work! Perspectives on the future of medicine. BMC Med. 2016 Nov 07;14(1):176. doi: 10.1186/s12916-016-0727-y. PubMed DOI PMC
Sherdell L, Waugh CE, Gotlib IH. Anticipatory pleasure predicts motivation for reward in major depression. J Abnorm Psychol. 2012 Feb;121(1):51–60. doi: 10.1037/a0024945. PubMed DOI PMC
Anguera J, Jordan JT, Castaneda D, Gazzaley A, Areán PA. Conducting a fully mobile and randomised clinical trial for depression: access, engagement and expense. BMJ Innov. 2016 Jan;2(1):14–21. doi: 10.1136/bmjinnov-2015-000098. PubMed DOI PMC
Simblett S, Greer B, Matcham F, Curtis H, Polhemus A, Ferrão J, Gamble P, Wykes T. Barriers to and Facilitators of Engagement With Remote Measurement Technology for Managing Health: Systematic Review and Content Analysis of Findings. J Med Internet Res. 2018 Jul 12;20(7):e10480. doi: 10.2196/10480. PubMed DOI PMC
Rydén L, Stokoe G, Breithardt G, Lindemans F, Potgieter A, Task Force 2 of the Cardiovascular Round Table of the European Society of Cardiology Patient access to medical technology across Europe. Eur Heart J. 2004 Apr;25(7):611–6. doi: 10.1016/j.ehj.2004.02.015. PubMed DOI
Kessler R, Andrews G, Mroczek D, Ustun B, Wittchen H. The World Health Organization Composite International Diagnostic Interview short-form (CIDI-SF) Int. J. Method. Psychiat. Res. 2006 Nov;7(4):171–185. doi: 10.1002/mpr.47. DOI
Fusch PI, Ness LR. Are We There Yet? Data Saturation in Qualitative Research. The Qualitative Report. 2015;21(7):1408–1416. doi: 10.1177/1049732311401424. DOI
Craven M, Lang AR, Martin JL. Design, User Experience, and Usability. User Experience Design for Everyday Life Applications and Services. Cham: Springer; 2014. Developing mHealth Apps with Researchers: Multi-Stakeholder Design Considerations; pp. 15–24.
Beck AT, Alford BA. Depression: Causes and Treatment. Pennsylvania, PA: University of Pennsylvania Press, Inc; 2009.
Mohammadyari S, Singh H. Understanding the effect of e-learning on individual performance: The role of digital literacy. Computers & Education. 2015 Mar;82(C):11–25. doi: 10.1016/j.compedu.2014.10.025. DOI
Chang CC, Yan C, Tseng J. Perceived convenience in an extended technology acceptance model: Mobile technology and English learning for college students. AJET. 2012 Jul 26;28(5) doi: 10.14742/ajet.818. DOI
Iwarsson S, Ståhl A. Accessibility, usability and universal design--positioning and definition of concepts describing person-environment relationships. Disabil Rehabil. 2003 Jan 21;25(2):57–66. PubMed
Poushter J. Pew Research Center. 2016. [2018-11-29]. Smartphone Ownership and Internet Usage Continues to Climb in Emerging Economies http://www.pewglobal.org/2016/02/22/smartphone-ownership-and-internet-usage-continues-to-climb-in-emerging-economies/
Ben-Zeev D, Brenner CJ, Begale M, Duffecy J, Mohr DC, Mueser KT. Feasibility, acceptability, and preliminary efficacy of a smartphone intervention for schizophrenia. Schizophr Bull. 2014 Nov;40(6):1244–53. doi: 10.1093/schbul/sbu033. PubMed DOI PMC
Ben-Zeev D, Scherer EA, Gottlieb JD, Rotondi AJ, Brunette MF, Achtyes ED, Mueser KT, Gingerich S, Brenner CJ, Begale M, Mohr DC, Schooler N, Marcy P, Robinson DG, Kane JM. mHealth for Schizophrenia: Patient Engagement With a Mobile Phone Intervention Following Hospital Discharge. JMIR Ment Health. 2016 Jul 27;3(3):e34. doi: 10.2196/mental.6348. PubMed DOI PMC
Naslund JA, Aschbrenner KA, Barre LK, Bartels SJ. Feasibility of popular m-health technologies for activity tracking among individuals with serious mental illness. Telemed J E Health. 2015 Mar;21(3):213–6. doi: 10.1089/tmj.2014.0105. PubMed DOI PMC
Price M, Ruggiero KJ, Ferguson PL, Patel SK, Treiber F, Couillard D, Fahkry SM. A feasibility pilot study on the use of text messages to track PTSD symptoms after a traumatic injury. Gen Hosp Psychiatry. 2014;36(3):249–54. doi: 10.1016/j.genhosppsych.2014.02.004. PubMed DOI PMC
Simons Lucy, Valentine Althea Z, Falconer Caroline J, Groom Madeleine, Daley David, Craven Michael P, Young Zoe, Hall Charlotte, Hollis Chris. Developing mHealth Remote Monitoring Technology for Attention Deficit Hyperactivity Disorder: A Qualitative Study Eliciting User Priorities and Needs. JMIR Mhealth Uhealth. 2016 Mar 23;4(1):e31. doi: 10.2196/mhealth.5009. PubMed DOI PMC