NADPH oxidases and HIF1 promote cardiac dysfunction and pulmonary hypertension in response to glucocorticoid excess

. 2020 Jul ; 34 () : 101536. [epub] 20200411

Jazyk angličtina Země Nizozemsko Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid32413743
Odkazy

PubMed 32413743
PubMed Central PMC7226895
DOI 10.1016/j.redox.2020.101536
PII: S2213-2317(19)31519-8
Knihovny.cz E-zdroje

Cardiovascular side effects are frequent problems accompanying systemic glucocorticoid therapy, although the underlying mechanisms are not fully resolved. Reactive oxygen species (ROS) have been shown to promote various cardiovascular diseases although the link between glucocorticoid and ROS signaling has been controversial. As the family of NADPH oxidases has been identified as important source of ROS in the cardiovascular system we investigated the role of NADPH oxidases in response to the synthetic glucocorticoid dexamethasone in the cardiovascular system in vitro and in vivo in mice lacking functional NADPH oxidases due to a mutation in the gene coding for the essential NADPH oxidase subunit p22phox. We show that dexamethasone induced NADPH oxidase-dependent ROS generation, leading to vascular proliferation and angiogenesis due to activation of the transcription factor hypoxia-inducible factor-1 (HIF1). Chronic treatment of mice with low doses of dexamethasone resulted in the development of systemic hypertension, cardiac hypertrophy and left ventricular dysfunction, as well as in pulmonary hypertension and pulmonary vascular remodeling. In contrast, mice deficient in p22phox-dependent NADPH oxidases were protected against these cardiovascular side effects. Mechanistically, dexamethasone failed to upregulate HIF1α levels in these mice, while vascular HIF1α deficiency prevented pulmonary vascular remodeling. Thus, p22phox-dependent NADPH oxidases and activation of the HIF pathway are critical elements in dexamethasone-induced cardiovascular pathologies and might provide interesting targets to limit cardiovascular side effects in patients on chronic glucocorticoid therapy.

Zobrazit více v PubMed

Cain D.W., Cidlowski J.A. Immune regulation by glucocorticoids. Nat. Rev. Immunol. 2017;17(4):233–247. PubMed PMC

Fardet L., Feve B. Systemic glucocorticoid therapy: a review of its metabolic and cardiovascular adverse events. Drugs. 2014;74(15):1731–1745. PubMed

Baid S., Nieman L.K. Glucocorticoid excess and hypertension. Curr. Hypertens. Rep. 2004;6(6):493–499. PubMed

Peppa M., Krania M., Raptis S.A. Hypertension and other morbidities with Cushing's syndrome associated with corticosteroids: a review. Integrated Blood Pres. Contr. 2011;4:7–16. PubMed PMC

Pimenta E., Wolley M., Stowasser M. Adverse cardiovascular outcomes of corticosteroid excess. Endocrinology. 2012;153(11):5137–5142. PubMed

Wei L., MacDonald T.M., Walker B.R. Taking glucocorticoids by prescription is associated with subsequent cardiovascular disease. Ann. Intern. Med. 2004;141(10):764–770. PubMed

Kadmiel M., Cidlowski J.A. Glucocorticoid receptor signaling in health and disease. Trends Pharmacol. Sci. 2013;34(9):518–530. PubMed PMC

Lee S.R., Kim H.K., Youm J.B., Dizon L.A., Song I.S., Jeong S.H. Non-genomic effect of glucocorticoids on cardiovascular system. Pflueg. Arch. Eur. J. Physiol. 2012;464(6):549–559. PubMed

Beato M. Gene regulation by steroid hormones. Cell. 1989;56(3):335–344. PubMed

Girod J.P., Brotman D.J. Does altered glucocorticoid homeostasis increase cardiovascular risk? Cardiovasc. Res. 2004;64(2):217–226. PubMed

Sapolsky R.M., Romero L.M., Munck A.U. How do glucocorticoids influence stress responses? Integrating permissive, suppressive, stimulatory, and preparative actions. Endocr. Rev. 2000;21(1):55–89. PubMed

Munck A., Naray-Fejes-Toth A. Glucocorticoids and stress: permissive and suppressive actions. Ann. N. Y. Acad. Sci. 1994;746:115–130. discussion 31-3. PubMed

Duque Ede A., Munhoz C.D. The pro-inflammatory effects of glucocorticoids in the brain. Front. Endocrinol. 2016;7:78. PubMed PMC

Geer E.B., Islam J., Buettner C. Mechanisms of glucocorticoid-induced insulin resistance: focus on adipose tissue function and lipid metabolism. Endocrinol Metab. Clin. N. Am. 2014;43(1):75–102. PubMed PMC

Lefer A.M. Influence of corticosteroids on mechanical performance of isolated rat papillary muscles. Am. J. Physiol. 1968;214(3):518–524. PubMed

Oakley R.H., Cidlowski J.A. Glucocorticoid signaling in the heart: a cardiomyocyte perspective. J. Steroid Biochem. Mol. Biol. 2015;153:27–34. PubMed PMC

Goodwin J.E., Geller D.S. Glucocorticoid-induced hypertension. Pediatr. Nephrol. 2012;27(7):1059–1066. PubMed

Goodwin J.E., Zhang J., Geller D.S. A critical role for vascular smooth muscle in acute glucocorticoid-induced hypertension. J. Am. Soc. Nephrol. : JASN (J. Am. Soc. Nephrol.) 2008;19(7):1291–1299. PubMed PMC

Goodwin J.E., Zhang J., Gonzalez D., Albinsson S., Geller D.S. Knockout of the vascular endothelial glucocorticoid receptor abrogates dexamethasone-induced hypertension. J. Hypertens. 2011;29(7):1347–1356. PubMed PMC

Sugamura K., Keaney J.F., Jr. Reactive oxygen species in cardiovascular disease. Free Radical Biol. Med. 2011;51(5):978–992. PubMed PMC

Kietzmann T., Petry A., Shvetsova A., Gerhold J.M., Gorlach A. The epigenetic landscape related to reactive oxygen species formation in the cardiovascular system. Br. J. Pharmacol. 2017;174(12):1533–1554. PubMed PMC

Brown D.I., Griendling K.K. Regulation of signal transduction by reactive oxygen species in the cardiovascular system. Circ. Res. 2015;116(3):531–549. PubMed PMC

Madamanchi N.R., Runge M.S. Redox signaling in cardiovascular health and disease. Free Radical Biol. Med. 2013;61:473–501. PubMed PMC

Sirker A., Zhang M., Shah A.M. NADPH oxidases in cardiovascular disease: insights from in vivo models and clinical studies. Basic Res. Cardiol. 2011;106(5):735–747. PubMed PMC

Lassegue B., San Martin A., Griendling K.K. Biochemistry, physiology, and pathophysiology of NADPH oxidases in the cardiovascular system. Circ. Res. 2012;110(10):1364–1390. PubMed PMC

Babior B.M. NADPH oxidase: an update. Blood. 1999;93(5):1464–1476. PubMed

Bedard K., Krause K.H. The NOX family of ROS-generating NADPH oxidases: physiology and pathophysiology. Physiol. Rev. 2007;87(1):245–313. PubMed

Marumo T., Schini-Kerth V.B., Brandes R.P., Busse R. Glucocorticoids inhibit superoxide anion production and p22 phox mRNA expression in human aortic smooth muscle cells. Hypertension. 1998;32(6):1083–1088. PubMed

Gero D., Szabo C. Glucocorticoids suppress mitochondrial oxidant production via upregulation of uncoupling protein 2 in hyperglycemic endothelial cells. PloS One. 2016;11(4) PubMed PMC

Colton C.A., Chernyshev O.N. Inhibition of microglial superoxide anion production by isoproterenol and dexamethasone. Neurochem. Int. 1996;29(1):43–53. PubMed

Huo Y., Rangarajan P., Ling E.A., Dheen S.T. Dexamethasone inhibits the Nox-dependent ROS production via suppression of MKP-1-dependent MAPK pathways in activated microglia. BMC Neurosci. 2011;12:49. PubMed PMC

Condino-Neto A., Whitney C., Newburger P.E. Dexamethasone but not indomethacin inhibits human phagocyte nicotinamide adenine dinucleotide phosphate oxidase activity by down-regulating expression of genes encoding oxidase components. J. Immunol. 1998;161(9):4960–4967. PubMed

Roshol H., Skrede K.K., Ce A.E., Wiik P. Dexamethasone and methylprednisolone affect rat peritoneal phagocyte chemiluminescence after administration in vivo. Eur. J. Pharmacol. 1995;286(1):9–17. PubMed

Iuchi T., Akaike M., Mitsui T., Ohshima Y., Shintani Y., Azuma H. Glucocorticoid excess induces superoxide production in vascular endothelial cells and elicits vascular endothelial dysfunction. Circ. Res. 2003;92(1):81–87. PubMed

Siuda D., Tobias S., Rus A., Xia N., Forstermann U., Li H. Dexamethasone upregulates Nox1 expression in vascular smooth muscle cells. Pharmacology. 2014;94(1–2):13–20. PubMed

Zhang Y., Croft K.D., Mori T.A., Schyvens C.G., McKenzie K.U., Whitworth J.A. The antioxidant tempol prevents and partially reverses dexamethasone-induced hypertension in the rat. Am. J. Hypertens. 2004;17(3):260–265. PubMed

Safaeian L., Zabolian H. Antioxidant effects of bovine lactoferrin on dexamethasone-induced hypertension in rat. ISRN Pharmacol. 2014;2014:943523. PubMed PMC

Chaumais M.C., Ranchoux B., Montani D., Dorfmuller P., Tu L., Lecerf F. N-acetylcysteine improves established monocrotaline-induced pulmonary hypertension in rats. Respir. Res. 2014;15:65. PubMed PMC

Hu L., Zhang Y., Lim P.S., Miao Y., Tan C., McKenzie K.U. Apocynin but not L-arginine prevents and reverses dexamethasone-induced hypertension in the rat. Am. J. Hypertens. 2006;19(4):413–418. PubMed

Kracun D., Riess F., Kanchev I., Gawaz M., Gorlach A. The beta3-integrin binding protein beta3-endonexin is a novel negative regulator of hypoxia-inducible factor-1. Antioxidants Redox Signal. 2014;20(13):1964–1976. PubMed PMC

Djordjevic T., Hess J., Herkert O., Gorlach A., BelAiba R.S. Rac regulates thrombin-induced tissue factor expression in pulmonary artery smooth muscle cells involving the nuclear factor-kappaB pathway. Antioxidants Redox Signal. 2004;6(4):713–720. PubMed

Ades E.W., Candal F.J., Swerlick R.A., George V.G., Summers S., Bosse D.C. HMEC-1: establishment of an immortalized human microvascular endothelial cell line. J. Invest. Dermatol. 1992;99(6):683–690. PubMed

Kietzmann T., Cornesse Y., Brechtel K., Modaressi S., Jungermann K. Perivenous expression of the mRNA of the three hypoxia-inducible factor alpha-subunits, HIF1alpha, HIF2alpha and HIF3alpha, in rat liver. Biochem. J. 2001;354(Pt 3):531–537. PubMed PMC

Gorlach A., Diebold I., Schini-Kerth V.B., Berchner-Pfannschmidt U., Roth U., Brandes R.P. Thrombin activates the hypoxia-inducible factor-1 signaling pathway in vascular smooth muscle cells: role of the p22(phox)-containing NADPH oxidase. Circ. Res. 2001;89(1):47–54. PubMed

Chalupsky K., Kracun D., Kanchev I., Bertram K., Gorlach A. Folic acid promotes recycling of tetrahydrobiopterin and protects against hypoxia-induced pulmonary hypertension by recoupling endothelial nitric oxide synthase. Antioxidants Redox Signal. 2015;23(14):1076–1091. PubMed PMC

Dikalov S.I., Kirilyuk I.A., Voinov M., Grigor'ev I.A. EPR detection of cellular and mitochondrial superoxide using cyclic hydroxylamines. Free Radic. Res. 2011;45(4):417–430. PubMed PMC

Zhang Z., Trautz B., Kracun D., Vogel F., Weitnauer M., Hochkogler K. Stabilization of p22phox by hypoxia promotes pulmonary hypertension. Antioxidants Redox Signal. 2019;30(1):56–73. PubMed

Nakano Y., Longo-Guess C.M., Bergstrom D.E., Nauseef W.M., Jones S.M., Banfi B. Mutation of the Cyba gene encoding p22phox causes vestibular and immune defects in mice. J. Clin. Invest. 2008;118(3):1176–1185. PubMed PMC

Ryan H.E., Poloni M., McNulty W., Elson D., Gassmann M., Arbeit J.M. Hypoxia-inducible factor-1alpha is a positive factor in solid tumor growth. Canc. Res. 2000;60(15):4010–4015. PubMed

Coelho-Filho O.R., Shah R.V., Mitchell R., Neilan T.G., Moreno H., Jr., Simonson B. Quantification of cardiomyocyte hypertrophy by cardiac magnetic resonance: implications for early cardiac remodeling. Circulation. 2013;128(11):1225–1233. PubMed PMC

Wolf C.M., Moskowitz I.P., Arno S., Branco D.M., Semsarian C., Bernstein S.A. Somatic events modify hypertrophic cardiomyopathy pathology and link hypertrophy to arrhythmia. Proc. Natl. Acad. Sci. U.S.A. 2005;102(50):18123–18128. PubMed PMC

Limbourg F.P., Liao J.K. Nontranscriptional actions of the glucocorticoid receptor. J. Mol. Med. 2003;81(3):168–174. PubMed PMC

Aoyama T., Paik Y.H., Watanabe S., Laleu B., Gaggini F., Fioraso-Cartier L. Nicotinamide adenine dinucleotide phosphate oxidase in experimental liver fibrosis: GKT137831 as a novel potential therapeutic agent. Hepatology. 2012;56(6):2316–2327. PubMed PMC

Ushio-Fukai M. Redox signaling in angiogenesis: role of NADPH oxidase. Cardiovasc. Res. 2006;71(2):226–235. PubMed

Pugh C.W., Ratcliffe P.J. Regulation of angiogenesis by hypoxia: role of the HIF system. Nat. Med. 2003;9(6):677–684. PubMed

Agirbasli M. Pivotal role of plasminogen-activator inhibitor 1 in vascular disease. Int. J. Clin. Pract. 2005;59(1):102–106. PubMed

Rey S., Semenza G.L. Hypoxia-inducible factor-1-dependent mechanisms of vascularization and vascular remodelling. Cardiovasc. Res. 2010;86(2):236–242. PubMed PMC

Furst R., Zahler S., Vollmar A.M. Dexamethasone-induced expression of endothelial mitogen-activated protein kinase phosphatase-1 involves activation of the transcription factors activator protein-1 and 3',5'-cyclic adenosine 5'-monophosphate response element-binding protein and the generation of reactive oxygen species. Endocrinology. 2008;149(7):3635–3642. PubMed

Zhu F.B., Wang J.Y., Zhang Y.L., Quan R.F., Yue Z.S., Zeng L.R. Curculigoside regulates proliferation, differentiation, and pro-inflammatory cytokines levels in dexamethasone-induced rat calvarial osteoblasts. Int. J. Clin. Exp. Med. 2015;8(8):12337–12346. PubMed PMC

Li J., He C., Tong W., Zou Y., Li D., Zhang C. Tanshinone IIA blocks dexamethasone-induced apoptosis in osteoblasts through inhibiting Nox4-derived ROS production. Int. J. Clin. Exp. Pathol. 2015;8(10):13695–13706. PubMed PMC

Guo B., Zhang W., Xu S., Lou J., Wang S., Men X. GSK-3beta mediates dexamethasone-induced pancreatic beta cell apoptosis. Life Sci. 2016;144:1–7. PubMed PMC

Kraaij M.D., van der Kooij S.W., Reinders M.E., Koekkoek K., Rabelink T.J., van Kooten C. Dexamethasone increases ROS production and T cell suppressive capacity by anti-inflammatory macrophages. Mol. Immunol. 2011;49(3):549–557. PubMed

Park G.B., Choi Y., Kim Y.S., Lee H.K., Kim D., Hur D.Y. ROS and ERK1/2-mediated caspase-9 activation increases XAF1 expression in dexamethasone-induced apoptosis of EBV-transformed B cells. Int. J. Oncol. 2013;43(1):29–38. PubMed PMC

Karamouzis I., Berardelli R., D'Angelo V., Fussotto B., Zichi C., Giordano R. Enhanced oxidative stress and platelet activation in patients with Cushing's syndrome. Clin. Endocrinol. 2015;82(4):517–524. PubMed

Prazny M., Jezkova J., Horova E., Lazarova V., Hana V., Kvasnicka J. Impaired microvascular reactivity and endothelial function in patients with Cushing's syndrome: influence of arterial hypertension. Physiol. Res. 2008;57(1):13–22. PubMed

Luan G., Li G., Ma X., Jin Y., Hu N., Li J. Dexamethasone-induced mitochondrial dysfunction and insulin resistance-study in 3T3-L1 adipocytes and mitochondria isolated from mouse liver. Molecules. 2019;24(10) PubMed PMC

Koziel R., Pircher H., Kratochwil M., Lener B., Hermann M., Dencher N.A. Mitochondrial respiratory chain complex I is inactivated by NADPH oxidase Nox4. Biochem. J. 2013;452(2):231–239. PubMed

Pan J., Kao Y.L., Joshi S., Jeetendran S., Dipette D., Singh U.S. Activation of Rac1 by phosphatidylinositol 3-kinase in vivo: role in activation of mitogen-activated protein kinase (MAPK) pathways and retinoic acid-induced neuronal differentiation of SH-SY5Y cells. J. Neurochem. 2005;93(3):571–583. PubMed

Rezende F., Lowe O., Helfinger V., Prior K.K., Walter M., Zukunft S. Unchanged NADPH oxidase activity in nox1-nox2-nox4 triple knockout mice: what do NADPH-stimulated chemiluminescence assays really detect? Antioxidants Redox Signal. 2016;24(7):392–399. PubMed

BelAiba R.S., Djordjevic T., Petry A., Diemer K., Bonello S., Banfi B. NOX5 variants are functionally active in endothelial cells. Free Radical Biol. Med. 2007;42(4):446–459. PubMed

Huang Y., Cai G.Q., Peng J.P., Shen C. Glucocorticoids induce apoptosis and matrix metalloproteinase-13 expression in chondrocytes through the NOX4/ROS/p38 MAPK pathway. J. Steroid Biochem. Mol. Biol. 2018;181:52–62. PubMed

Sun L., Chen Y., Shen X., Xu T., Yin Y., Zhang H. Inhibition of NOX2-NLRP1 signaling pathway protects against chronic glucocorticoids exposure-induced hippocampal neuronal damage. Int. Immunopharm. 2019;74:105721. PubMed

Bai S.C., Xu Q., Li H., Qin Y.F., Song L.C., Wang C.G. NADPH oxidase isoforms are involved in glucocorticoid-induced preosteoblast apoptosis. Oxidative Med. Cell. Longev. 2019;2019:9192413. PubMed PMC

Semenza G.L. Hypoxia-inducible factors in physiology and medicine. Cell. 2012;148(3):399–408. PubMed PMC

Pouyssegur J., Mechta-Grigoriou F. Redox regulation of the hypoxia-inducible factor. Biol. Chem. 2006;387(10–11):1337–1346. PubMed

Gorlach A., Kietzmann T. Superoxide and derived reactive oxygen species in the regulation of hypoxia-inducible factors. Methods Enzymol. 2007;435:421–446. PubMed

Agani F., Jiang B.H. Oxygen-independent regulation of HIF-1: novel involvement of PI3K/AKT/mTOR pathway in cancer. Curr. Cancer Drug Targets. 2013;13(3):245–251. PubMed

Gorlach A., Dimova E.Y., Petry A., Martinez-Ruiz A., Hernansanz-Agustin P., Rolo A.P. Reactive oxygen species, nutrition, hypoxia and diseases: problems solved? Redox Biol. 2015;6:372–385. PubMed PMC

Dery M.A., Michaud M.D., Richard D.E. Hypoxia-inducible factor 1: regulation by hypoxic and non-hypoxic activators. Int. J. Biochem. Cell Biol. 2005;37(3):535–540. PubMed

Wagner A.E., Huck G., Stiehl D.P., Jelkmann W., Hellwig-Burgel T. Dexamethasone impairs hypoxia-inducible factor-1 function. Biochem. Biophys. Res. Commun. 2008;372(2):336–340. PubMed

Lim W., Park C., Shim M.K., Lee Y.H., Lee Y.M., Lee Y. Glucocorticoids suppress hypoxia-induced COX-2 and hypoxia inducible factor-1alpha expression through the induction of glucocorticoid-induced leucine zipper. Br. J. Pharmacol. 2014;171(3):735–745. PubMed PMC

Gaber T., Schellmann S., Erekul K.B., Fangradt M., Tykwinska K., Hahne M. Macrophage migration inhibitory factor counterregulates dexamethasone-mediated suppression of hypoxia-inducible factor-1 alpha function and differentially influences human CD4+ T cell proliferation under hypoxia. J. Immunol. 2011;186(2):764–774. PubMed

Simko V., Takacova M., Debreova M., Laposova K., Ondriskova-Panisova E., Pastorekova S. Dexamethasone downregulates expression of carbonic anhydrase IX via HIF-1alpha and NF-kappaB-dependent mechanisms. Int. J. Oncol. 2016;49(4):1277–1288. PubMed PMC

Kodama T., Shimizu N., Yoshikawa N., Makino Y., Ouchida R., Okamoto K. Role of the glucocorticoid receptor for regulation of hypoxia-dependent gene expression. J. Biol. Chem. 2003;278(35):33384–33391. PubMed

Vettori A., Greenald D., Wilson G.K., Peron M., Facchinello N., Markham E. Glucocorticoids promote Von Hippel Lindau degradation and hif-1alpha stabilization. Proc. Natl. Acad. Sci. U.S.A. 2017;114(37):9948–9953. PubMed PMC

Giannoni E., Chiarugi P. Redox circuitries driving Src regulation. Antioxidants Redox Signal. 2014;20(13):2011–2025. PubMed

Martens B., Drebert Z. Glucocorticoid-mediated effects on angiogenesis in solid tumors. J. Steroid Biochem. Mol. Biol. 2019;188:147–155. PubMed

Whitehead M., Wickremasinghe S., Osborne A., Van Wijngaarden P., Martin K.R. Diabetic retinopathy: a complex pathophysiology requiring novel therapeutic strategies. Expet Opin. Biol. Ther. 2018;18(12):1257–1270. PubMed PMC

Luo J.C., Shin V.Y., Liu E.S., Ye Y.N., Wu W.K., So W.H. Dexamethasone delays ulcer healing by inhibition of angiogenesis in rat stomachs. Eur. J. Pharmacol. 2004;485(1–3):275–281. PubMed

Luedi M.M., Singh S.K., Mosley J.C., Hassan I.S.A., Hatami M., Gumin J. Dexamethasone-mediated oncogenicity in vitro and in an animal model of glioblastoma. J. Neurosurg. 2018:1–10. PubMed

Badruddoja M.A., Krouwer H.G., Rand S.D., Rebro K.J., Pathak A.P., Schmainda K.M. Antiangiogenic effects of dexamethasone in 9L gliosarcoma assessed by MRI cerebral blood volume maps. Neuro Oncol. 2003;5(4):235–243. PubMed PMC

Cheng X., Yan Y., Chen J.L., Ma Z.L., Yang R.H., Wang G. Dexamethasone exposure accelerates endochondral ossification of chick embryos via angiogenesis. Toxicol. Sci. : Off. J. Soc. Toxicol. 2016;149(1):167–177. PubMed

Chen Y., Chen S., Kawazoe N., Chen G. Promoted angiogenesis and osteogenesis by dexamethasone-loaded calcium phosphate nanoparticles/collagen composite scaffolds with microgroove networks. Sci. Rep. 2018;8(1):14143. PubMed PMC

Chen W.L., Lin C.T., Yao C.C., Huang Y.H., Chou Y.B., Yin H.S. In-vitro effects of dexamethasone on cellular proliferation, apoptosis, and Na+-K+-ATPase activity of bovine corneal endothelial cells. Ocul. Immunol. Inflamm. 2006;14(4):215–223. PubMed

Price L.C., Shao D., Meng C., Perros F., Garfield B.E., Zhu J. Dexamethasone induces apoptosis in pulmonary arterial smooth muscle cells. Respir. Res. 2015;16:114. PubMed PMC

Hettmannsperger U., Tenorio S., Orfanos C.E., Detmar M. Corticosteroids induce proliferation but do not influence TNF- or IL-1 beta-induced ICAM-1 expression of human dermal microvascular endothelial cells in vitro. Arch. Dermatol. Res. 1993;285(6):347–351. PubMed

Volk K.A., Roghair R.D., Jung F., Scholz T.D., Lamb F.S., Segar J.L. Coronary endothelial function and vascular smooth muscle proliferation are programmed by early-gestation dexamethasone exposure in sheep. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2010;298(6):R1607–R1614. PubMed PMC

Gogiraju R., Bochenek M.L., Schafer K. Angiogenic endothelial cell signaling in cardiac hypertrophy and heart failure. Front. Cardiovasc. Med. 2019;6:20. PubMed PMC

Montezano A.C., Touyz R.M. Reactive oxygen species, vascular Noxs, and hypertension: focus on translational and clinical research. Antioxidants Redox Signal. 2014;20(1):164–182. PubMed PMC

Liu S.F., Kuo H.C., Tseng C.W., Huang H.T., Chen Y.C., Tseng C.C. Leukocyte mitochondrial DNA copy number is associated with chronic obstructive pulmonary disease. PloS One. 2015;10(9) PubMed PMC

Pandey V.G., Jain S., Rana A., Puri N., Arudra S.K., Mopidevi B. Dexamethasone promotes hypertension by allele-specific regulation of the human angiotensinogen gene. J. Biol. Chem. 2015;290(9):5749–5758. PubMed PMC

Sangeetha K.N., Lakshmi B.S., Niranjali Devaraj S. Dexamethasone promotes hypertrophy of H9C2 cardiomyocytes through calcineurin B pathway, independent of NFAT activation. Mol. Cell. Biochem. 2016;411(1–2):241–252. PubMed

Roy S.G., De P., Mukherjee D., Chander V., Konar A., Bandyopadhyay D. Excess of glucocorticoid induces cardiac dysfunction via activating angiotensin II pathway. Cell. Physiol. Biochem. : Int. J. Exp. Cell. Physiol. Biochem. Pharmacol. 2009;24(1–2):1–10. PubMed

Halliday H.L. Update on postnatal steroids. Neonatology. 2017;111(4):415–422. PubMed

Kamenicky P., Redheuil A., Roux C., Salenave S., Kachenoura N., Raissouni Z. Cardiac structure and function in Cushing's syndrome: a cardiac magnetic resonance imaging study. J. Clin. Endocrinol. Metabol. 2014;99(11):E2144–E2153. PubMed PMC

Burgoyne J.R., Mongue-Din H., Eaton P., Shah A.M. Redox signaling in cardiac physiology and pathology. Circ. Res. 2012;111(8):1091–1106. PubMed

Poiani G.J., Tozzi C.A., Thakker-Varia S., Choe J.K., Riley D.J. Effect of glucocorticoids on collagen accumulation in pulmonary vascular remodeling in the rat. Am. J. Respir. Crit. Care Med. 1994;149(4 Pt 1):994–999. PubMed

Rosenkranz S., Gibbs J.S., Wachter R., De Marco T., Vonk-Noordegraaf A., Vachiery J.L. Left ventricular heart failure and pulmonary hypertension. Eur. Heart J. 2016;37(12):942–954. PubMed PMC

Semenza G.L. Involvement of hypoxia-inducible factor 1 in pulmonary pathophysiology. Chest. 2005;128(6 Suppl) 592S-4S. PubMed

Diebold I., Petry A., Djordjevic T., Belaiba R.S., Fineman J., Black S. Reciprocal regulation of Rac1 and PAK-1 by HIF-1alpha: a positive-feedback loop promoting pulmonary vascular remodeling. Antioxidants Redox Signal. 2010;13(4):399–412. PubMed

Liu J.Q., Zelko I.N., Erbynn E.M., Sham J.S., Folz R.J. Hypoxic pulmonary hypertension: role of superoxide and NADPH oxidase (gp91phox) Am. J. Physiol. Lung Cell Mol. Physiol. 2006;290(1):L2–L10. PubMed

Shimoda L.A., Laurie S.S. HIF and pulmonary vascular responses to hypoxia. J. Appl. Physiol. 2014;116(7):867–874. PubMed PMC

Zhang Z., Trautz B., Kracun D., Vogel F., Weitnauer M., Hochkogler K. Stabilization of p22phox by hypoxia promotes pulmonary hypertension. Antioxidants Redox Signal. 2019;30(1):56–73. PubMed

Veit F., Pak O., Egemnazarov B., Roth M., Kosanovic D., Seimetz M. Function of NADPH oxidase 1 in pulmonary arterial smooth muscle cells after monocrotaline-induced pulmonary vascular remodeling. Antioxidants Redox Signal. 2013;19(18):2213–2231. PubMed

Barman S.A., Chen F., Su Y., Dimitropoulou C., Wang Y., Catravas J.D. NADPH oxidase 4 is expressed in pulmonary artery adventitia and contributes to hypertensive vascular remodeling. Arterioscler. Thromb. Vasc. Biol. 2014;34(8):1704–1715. PubMed PMC

Voelkel N.F., Gomez-Arroyo J. The role of vascular endothelial growth factor in pulmonary arterial hypertension. The angiogenesis paradox. Am. J. Respir. Cell Mol. Biol. 2014;51(4):474–484. PubMed

Price L.C., Montani D., Tcherakian C., Dorfmuller P., Souza R., Gambaryan N. Dexamethasone reverses monocrotaline-induced pulmonary arterial hypertension in rats. Eur. Respir. J. 2011;37(4):813–822. PubMed

Murata T., Hori M., Sakamoto K., Karaki H., Ozaki H. Dexamethasone blocks hypoxia-induced endothelial dysfunction in organ-cultured pulmonary arteries. Am. J. Respir. Crit. Care Med. 2004;170(6):647–655. PubMed

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Contribution of hypoxia-inducible factor 1alpha to pathogenesis of sarcomeric hypertrophic cardiomyopathy

. 2025 Jan 16 ; 15 (1) : 2132. [epub] 20250116

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...