Contribution of hypoxia-inducible factor 1alpha to pathogenesis of sarcomeric hypertrophic cardiomyopathy

. 2025 Jan 16 ; 15 (1) : 2132. [epub] 20250116

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid39820339
Odkazy

PubMed 39820339
PubMed Central PMC11739497
DOI 10.1038/s41598-025-85187-9
PII: 10.1038/s41598-025-85187-9
Knihovny.cz E-zdroje

Hypertrophic cardiomyopathy (HCM) caused by autosomal-dominant mutations in genes coding for structural sarcomeric proteins, is the most common inherited heart disease. HCM is associated with myocardial hypertrophy, fibrosis and ventricular dysfunction. Hypoxia-inducible transcription factor-1α (Hif-1α) is the central master regulators of cellular hypoxia response and associated with HCM. Yet its exact role remains to be elucidated. Therefore, the effect of a cardiomyocyte-specific Hif-1a knockout (cHif1aKO) was studied in an established α-MHC719/+ HCM mouse model that exhibits the classical features of human HCM. The results show that Hif-1α protein and HIF targets were upregulated in left ventricular tissue of α-MHC719/+ mice. Cardiomyocyte-specific abolishment of Hif-1a blunted the disease phenotype, as evidenced by decreased left ventricular wall thickness, reduced myocardial fibrosis, disordered SRX/DRX state and ROS production. cHif1aKO induced normalization of pro-hypertrophic and pro-fibrotic left ventricular remodeling signaling evidenced on whole transcriptome and proteomics analysis in α-MHC719/+ mice. Proteomics of serum samples from patients with early onset HCM revealed significant modulation of HIF. These results demonstrate that HIF signaling is involved in mouse and human HCM pathogenesis. Cardiomyocyte-specific knockout of Hif-1a attenuates disease phenotype in the mouse model. Targeting Hif-1α might serve as a therapeutic option to mitigate HCM disease progression.

1st Department of Medicine and Regenerative Medicine in Cardiovascular Diseases Klinikum rechts der Isar School of Medicine and Health Technical University of Munich Munich Germany

Cardiopathology Institute for Pathology and Neuropathology University Hospital of Tübingen Tübingen Germany

Cardiovascular Medicine Radcliffe Department of Medicine University of Oxford Oxford UK

Department of Congenital Heart Defects and Pediatric Cardiology German Heart Center Munich TUM University Hospital School of Medicine and Health Technical University of Munich Munich Germany

Department of Experimental and Clinical Medicine Magna Graecia University of Catanzaro Catanzaro Italy

Department of Genetics Harvard Medical School Boston USA

DZHK Partner Site Munich Heart Alliance Munich Germany

Experimental and Molecular Pediatric Cardiology Department of Congenital Heart Defects and Pediatric Cardiology German Heart Center Munich TUM University Hospital School of Medicine and Health Technical University of Munich Munich Germany

Experimental Cardiology Department of Cardiology German Heart Center Munich TUM University Hospital School of Medicine and Health Technical University of Munich Munich Germany

Institute for Laboratory Medicine German Heart Center Munich TUM University Hospital School of Medicine and Health Technical University of Munich Munich Germany

Institute of Experimental Genetics and German Mouse Clinic Helmholtz Center Munich German Research Center for Environmental Health Neuherberg Germany

Institute of Pharmacology University Hospital Düsseldorf and Cardiovascular Research Institute Düsseldorf Heinrich Heine University Düsseldorf Germany

Laboratory for Functional Genome Analysis LAFUGA Gene Center LMU Munich Munich Germany

Mendel Centre for Plant Genomics and Proteomics Central European Institute of Technology Masaryk University Brno Czech Republic

School of Medicine and Health Technical University of Munich Munich Germany

University Hospital Balgrist University of Zurich and Institute for Biomechanics ETH Zurich Zurich Switzerland

Wellcome Centre for Human Genetics University of Oxford Oxford UK

Zobrazit více v PubMed

Maron, B. J. et al. Prevalence of hypertrophic cardiomyopathy in a general population of young adults. Echocardiographic analysis of 4111 subjects in the CARDIA study. Coronary artery risk development in (young) adults. Circulation92, 785–789. 10.1161/01.cir.92.4.785 (1995). PubMed

Maron, B. J. Contemporary insights and strategies for risk stratification and prevention of sudden death in hypertrophic cardiomyopathy. Circulation121, 445–456. 10.1161/CIRCULATIONAHA.109.878579 (2010). PubMed

Watkins, H. Sudden death in hypertrophic cardiomyopathy. N. Engl. J. Med.342, 422–424. 10.1056/NEJM200002103420609 (2000). PubMed

Seidman, C. E. & Seidman, J. G. Identifying sarcomere gene mutations in hypertrophic cardiomyopathy: a personal history. Circ. Res.108, 743–750. 10.1161/CIRCRESAHA.110.223834 (2011). PubMed PMC

Geisterfer-Lowrance, A. A. et al. A molecular basis for familial hypertrophic cardiomyopathy: a beta cardiac myosin heavy chain gene missense mutation. Cell62, 999–1006. 10.1016/0092-8674(90)90274-i (1990). PubMed

Geisterfer-Lowrance, A. A. et al. A mouse model of familial hypertrophic cardiomyopathy. Science272, 731–734. 10.1126/science.272.5262.731 (1996). PubMed

Tyska, M. J. et al. Single-molecule mechanics of R403Q cardiac myosin isolated from the mouse model of familial hypertrophic cardiomyopathy. Circ. Res.86, 737–744. 10.1161/01.res.86.7.737 (2000). PubMed

Teekakirikul, P. et al. Cardiac fibrosis in mice with hypertrophic cardiomyopathy is mediated by non-myocyte proliferation and requires Tgf-beta. J. Clin. Invest.120, 3520–3529. 10.1172/JCI42028 (2010). PubMed PMC

Fatkin, D. et al. An abnormal Ca(2+) response in mutant sarcomere protein-mediated familial hypertrophic cardiomyopathy. J. Clin. Invest.106, 1351–1359. 10.1172/JCI11093 (2000). PubMed PMC

Crilley, J. G. et al. Hypertrophic cardiomyopathy due to sarcomeric gene mutations is characterized by impaired energy metabolism irrespective of the degree of hypertrophy. J. Am. Coll. Cardiol.41, 1776–1782 (2003). PubMed

Toepfer, C. N. et al. Myosin sequestration regulates sarcomere function, cardiomyocyte energetics, and metabolism, informing the pathogenesis of hypertrophic cardiomyopathy. Circulation141, 828–842. 10.1161/CIRCULATIONAHA.119.042339 (2020). PubMed PMC

Maron, B. J. et al. American college of cardiology/European society of cardiology clinical expert consensus document on hypertrophic cardiomyopathy. A report of the American college of cardiology foundation task force on clinical expert consensus documents and the European society of cardiology committee for practice guidelines. J Am Coll Cardiol42, 1687–1713. 10.1016/s0735-1097(03)00941-0 (2003). PubMed

Gersh, B. J. et al. 2011 ACCF/AHA guideline for the diagnosis and treatment of hypertrophic cardiomyopathy: executive summary: a report of the American college of cardiology foundation/American heart association task force on practice guidelines. Circulation124, 2761–2796. 10.1161/CIR.0b013e318223e230 (2011). PubMed

Colan, S. D. et al. Epidemiology and cause-specific outcome of hypertrophic cardiomyopathy in children: findings from the pediatric cardiomyopathy registry. Circulation115, 773–781. 10.1161/CIRCULATIONAHA.106.621185 (2007). PubMed

Maron, B. J., Casey, S. A., Hauser, R. G. & Aeppli, D. M. Clinical course of hypertrophic cardiomyopathy with survival to advanced age. J. Am. Coll. Cardiol.42, 882–888. 10.1016/s0735-1097(03)00855-6 (2003). PubMed

Lopes, L. R., Rahman, M. S. & Elliott, P. M. A systematic review and meta-analysis of genotype-phenotype associations in patients with hypertrophic cardiomyopathy caused by sarcomeric protein mutations. Heart99, 1800–1811. 10.1136/heartjnl-2013-303939 (2013). PubMed

Brito, D. et al. Familial hypertrophic cardiomyopathy: the same mutation, different prognosis. Comparison of two families with a long follow-up. Rev. Port. Cardiol.22, 1445–1461 (2003). PubMed

Morner, S. et al. Identification of the genotypes causing hypertrophic cardiomyopathy in northern Sweden. J. Mol. Cell. Cardiol.35, 841–849. 10.1016/s0022-2828(03)00146-9 (2003). PubMed

Wolf, C. M. et al. Somatic events modify hypertrophic cardiomyopathy pathology and link hypertrophy to arrhythmia. Proc. Natl. Acad. Sci. USA102, 18123–18128. 10.1073/pnas.0509145102 (2005). PubMed PMC

Nian, M., Lee, P., Khaper, N. & Liu, P. Inflammatory cytokines and postmyocardial infarction remodeling. Circ. Res.94, 1543–1553. 10.1161/01.RES.0000130526.20854.fa (2004). PubMed

Aukrust, P., Gullestad, L., Ueland, T., Damas, J. K. & Yndestad, A. Inflammatory and anti-inflammatory cytokines in chronic heart failure: potential therapeutic implications. Ann. Med.37, 74–85. 10.1080/07853890510007232 (2005). PubMed

Corradi, D., Callegari, S., Maestri, R., Benussi, S. & Alfieri, O. Structural remodeling in atrial fibrillation. Nat. Clin. Pract. Cardiovasc. Med.5, 782–796. 10.1038/ncpcardio1370 (2008). PubMed

Semenza, G. L. Hypoxia-inducible factor 1 and cardiovascular disease. Annu. Rev. Physiol.76, 39–56. 10.1146/annurev-physiol-021113-170322 (2014). PubMed PMC

Wei, H. et al. Endothelial expression of hypoxia-inducible factor 1 protects the murine heart and aorta from pressure overload by suppression of TGF-beta signaling. Proc. Natl. Acad. Sci. USA109, E841-850. 10.1073/pnas.1202081109 (2012). PubMed PMC

Pimentel, D. R. et al. Reactive oxygen species mediate amplitude-dependent hypertrophic and apoptotic responses to mechanical stretch in cardiac myocytes. Circ. Res.89, 453–460. 10.1161/hh1701.096615 (2001). PubMed

Dimitrow, P. P., Undas, A., Wolkow, P., Tracz, W. & Dubiel, J. S. Enhanced oxidative stress in hypertrophic cardiomyopathy. Pharmacol. Rep.61, 491–495. 10.1016/s1734-1140(09)70091-x (2009). PubMed

Dudley, S. C. Jr. et al. Atrial fibrillation increases production of superoxide by the left atrium and left atrial appendage: role of the NADPH and xanthine oxidases. Circulation112, 1266–1273. 10.1161/CIRCULATIONAHA.105.538108 (2005). PubMed

Wang, G. L., Jiang, B. H., Rue, E. A. & Semenza, G. L. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc. Natl. Acad. Sci. USA92, 5510–5514. 10.1073/pnas.92.12.5510 (1995). PubMed PMC

Scholz, C. C. & Taylor, C. T. Targeting the HIF pathway in inflammation and immunity. Curr. Opin. Pharmacol.13, 646–653. 10.1016/j.coph.2013.04.009 (2013). PubMed

Alkon, J. et al. Genetic variations in hypoxia response genes influence hypertrophic cardiomyopathy phenotype. Pediatr. Res.72, 583–592. 10.1038/pr.2012.126 (2012). PubMed

Liu, W. et al. Expression and correlation of hypoxia-inducible factor-1alpha (HIF-1alpha) with pulmonary artery remodeling and right ventricular hypertrophy in experimental pulmonary embolism. Med. Sci. Monit.23, 2083–2088. 10.12659/msm.900354 (2017). PubMed PMC

Smith, K. A. et al. Role of hypoxia-inducible factors in regulating right ventricular function and remodeling during chronic hypoxia-induced pulmonary hypertension. Am. J. Respir. Cell Mol. Biol.63, 652–664. 10.1165/rcmb.2020-0023OC (2020). PubMed PMC

Schwartzkopff, B., Mundhenke, M. & Strauer, B. E. Alterations of the architecture of subendocardial arterioles in patients with hypertrophic cardiomyopathy and impaired coronary vasodilator reserve: a possible cause for myocardial ischemia. J. Am. Coll. Cardiol.31, 1089–1096. 10.1016/s0735-1097(98)00036-9 (1998). PubMed

Cecchi, F. et al. Microvascular dysfunction, myocardial ischemia, and progression to heart failure in patients with hypertrophic cardiomyopathy. J. Cardiovasc. Transl. Res.2, 452–461. 10.1007/s12265-009-9142-5 (2009). PubMed

Nanayakkara, G. et al. Cardioprotective HIF-1alpha-frataxin signaling against ischemia-reperfusion injury. Am. J. Physiol. Heart Circ. Physiol.309, H867-879. 10.1152/ajpheart.00875.2014 (2015). PubMed

Teekakirikul, P., Padera, R. F., Seidman, J. G. & Seidman, C. E. Hypertrophic cardiomyopathy: translating cellular cross talk into therapeutics. J. Cell Biol.199, 417–421. 10.1083/jcb.201207033 (2012). PubMed PMC

Wykoff, C. C. et al. Hypoxia-inducible expression of tumor-associated carbonic anhydrases. Cancer Res.60, 7075–7083 (2000). PubMed

Nakamura, K. et al. Relationship between oxidative stress and systolic dysfunction in patients with hypertrophic cardiomyopathy. J. Card. Fail.11, 117–123 (2005). PubMed

Gilda, J. E., Lai, X., Witzmann, F. A. & Gomes, A. V. Delineation of molecular pathways involved in cardiomyopathies caused by troponin T mutations. Mol. Cell Proteom.15, 1962–1981. 10.1074/mcp.M115.057380 (2016). PubMed PMC

Alkon, J. et al. Genetic variations in hypoxia response genes influence hypertrophic cardiomyopathy phenotype. Pediatr. Res.72 (583–592), pr2012126. 10.1038/pr.2012.126 (2012). PubMed

Parisi, Q. et al. Hypoxia inducible factor-1 expression mediates myocardial response to ischemia late after acute myocardial infarction. Int. J. Cardiol.99, 337–339. 10.1016/j.ijcard.2003.11.038 (2005). PubMed

Diebold, I. et al. The HIF1 target gene NOX2 promotes angiogenesis through urotensin-II. J. Cell Sci.125, 956–964. 10.1242/jcs.094060 (2012). PubMed

Gao, J., Feng, W., Lv, W., Liu, W. & Fu, C. HIF-1/AKT signaling-activated PFKFB2 alleviates cardiac dysfunction and cardiomyocyte apoptosis in response to hypoxia. Int. Heart J.62, 350–358. 10.1536/ihj.20-315 (2021). PubMed

Janbandhu, V. et al. Hif-1a suppresses ROS-induced proliferation of cardiac fibroblasts following myocardial infarction. Cell Stem Cell29 (281–297), e212. 10.1016/j.stem.2021.10.009 (2022). PubMed PMC

Xue, W. et al. Cardiac-specific overexpression of HIF-1{alpha} prevents deterioration of glycolytic pathway and cardiac remodeling in streptozotocin-induced diabetic mice. Am. J. Pathol.177, 97–105. 10.2353/ajpath.2010.091091 (2010). PubMed PMC

Datta Chaudhuri, R., Banik, A., Mandal, B. & Sarkar, S. Cardiac-specific overexpression of HIF-1alpha during acute myocardial infarction ameliorates cardiomyocyte apoptosis via differential regulation of hypoxia-inducible pro-apoptotic and anti-oxidative genes. Biochem. Biophys. Res. Commun.537, 100–108. 10.1016/j.bbrc.2020.12.084 (2021). PubMed

Ikeda, M. et al. excessive hypoxia-inducible factor-1alpha expression induces cardiac rupture via p53-dependent apoptosis after myocardial infarction. J. Am. Heart Assoc.10, e020895. 10.1161/JAHA.121.020895 (2021). PubMed PMC

Holscher, M. et al. Unfavourable consequences of chronic cardiac HIF-1alpha stabilization. Cardiovasc. Res.94, 77–86. 10.1093/cvr/cvs014 (2012). PubMed

Dai, Z. et al. Loss of endothelial hypoxia inducible factor-prolyl hydroxylase 2 induces cardiac hypertrophy and fibrosis. J. Am. Heart Assoc.10, e022077. 10.1161/JAHA.121.022077 (2021). PubMed PMC

Huang, Y. et al. Cardiac myocyte-specific HIF-1alpha deletion alters vascularization, energy availability, calcium flux, and contractility in the normoxic heart. FASEB J.18, 1138–1140. 10.1096/fj.04-1510fje (2004). PubMed

Yang, Z. et al. SGLT2 inhibitor dapagliflozin attenuates cardiac fibrosis and inflammation by reverting the HIF-2alpha signaling pathway in arrhythmogenic cardiomyopathy. FASEB J36, e22410. 10.1096/fj.202200243R (2022). PubMed

Meier, A. B. et al. Cell cycle defects underlie childhood-onset cardiomyopathy associated with noonan syndrome. iScience25, 103596. 10.1016/j.isci.2021.103596 (2022). PubMed PMC

Zhao, S. R. et al. Generation of three induced pluripotent stem cell lines from hypertrophic cardiomyopathy patients carrying TNNI3 mutations. Stem Cell Res.57, 102597. 10.1016/j.scr.2021.102597 (2021). PubMed PMC

Schmitt, J. P. et al. Dilated cardiomyopathy and heart failure caused by a mutation in phospholamban. Science299, 1410–1413. 10.1126/science.1081578 (2003). PubMed

Jiang, J., Wakimoto, H., Seidman, J. G. & Seidman, C. E. Allele-specific silencing of mutant Myh6 transcripts in mice suppresses hypertrophic cardiomyopathy. Science342, 111–114. 10.1126/science.1236921 (2013). PubMed PMC

Wolf, C. M. et al. Reversibility of PRKAG2 glycogen-storage cardiomyopathy and electrophysiological manifestations. Circulation117, 144–154. 10.1161/CIRCULATIONAHA.107.726752 (2008). PubMed PMC

Wolf, C. M. et al. Subclinical cardiac dysfunction in childhood cancer survivors on 10-years follow-up correlates with cumulative anthracycline dose and is best detected by cardiopulmonary exercise testing, circulating serum biomarker, speckle tracking echocardiography, and tissue doppler imaging. Front. Pediatr.8, 123. 10.3389/fped.2020.00123 (2020). PubMed PMC

Michael, W. & Pfaffl, G. H. A. L. D. Relative expression software tool (REST©) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res.2002, e36 (2002). PubMed PMC

Hooijman, P., Stewart, M. A. & Cooke, R. A new state of cardiac myosin with very slow ATP turnover: a potential cardioprotective mechanism in the heart. Biophys. J.100, 1969–1976. 10.1016/j.bpj.2011.02.061 (2011). PubMed PMC

Toepfer, C. N. et al. Hypertrophic cardiomyopathy mutations in MYBPC3 dysregulate myosin. Sci. Transl. Med.10.1126/scitranslmed.aat1199 (2019). PubMed PMC

Schmid, M. & Toepfer, C. N. Cardiac myosin super relaxation (SRX): a perspective on fundamental biology, human disease and therapeutics. Biol. Open.10.1242/bio.057646 (2021). PubMed PMC

Kracun, D. et al. NADPH oxidases and HIF1 promote cardiac dysfunction and pulmonary hypertension in response to glucocorticoid excess. Redox Biol.34, 101536. 10.1016/j.redox.2020.101536 (2020). PubMed PMC

Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods9, 671–675. 10.1038/nmeth.2089 (2012). PubMed PMC

Taylor, S. C., Rosselli-Murai, L. K., Crobeddu, B. & Plante, I. A critical path to producing high quality, reproducible data from quantitative western blot experiments. Sci. Rep.12, 17599. 10.1038/s41598-022-22294-x (2022). PubMed PMC

Chalupsky, K., Kracun, D., Kanchev, I., Bertram, K. & Gorlach, A. Folic acid promotes recycling of tetrahydrobiopterin and protects against hypoxia-induced pulmonary hypertension by recoupling endothelial nitric oxide synthase. Antioxid. Redox Signal23, 1076–1091. 10.1089/ars.2015.6329 (2015). PubMed PMC

Haack, T. B. et al. ELAC2 mutations cause a mitochondrial RNA processing defect associated with hypertrophic cardiomyopathy. Am. J. Hum. Genet.93, 211–223. 10.1016/j.ajhg.2013.06.006 (2013). PubMed PMC

Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics29, 15–21. 10.1093/bioinformatics/bts635 (2013). PubMed PMC

Anders, S., Pyl, P. T. & Huber, W. HTSeq–a Python framework to work with high-throughput sequencing data. Bioinformatics31, 166–169. 10.1093/bioinformatics/btu638 (2015). PubMed PMC

Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol.15, 550. 10.1186/s13059-014-0550-8 (2014). PubMed PMC

Luo, W., Friedman, M. S., Shedden, K., Hankenson, K. D. & Woolf, P. J. GAGE: generally applicable gene set enrichment for pathway analysis. BMC Bioinform.10, 161. 10.1186/1471-2105-10-161 (2009). PubMed PMC

Luo, W. & Brouwer, C. Pathview: an R/Bioconductor package for pathway-based data integration and visualization. Bioinformatics29, 1830–1831. 10.1093/bioinformatics/btt285 (2013). PubMed PMC

Young, M. D., Wakefield, M. J., Smyth, G. K. & Oshlack, A. Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biol.11, R14. 10.1186/gb-2010-11-2-r14 (2010). PubMed PMC

Team, R. C. R: A language and environment for statistical computing, <https://www.R-project.org/> (2021).

Gerstner, N. et al. GeneTrail 3: advanced high-throughput enrichment analysis. Nucleic Acids Res.48, W515–W520. 10.1093/nar/gkaa306 (2020). PubMed PMC

Edgar, R., Domrachev, M. & Lash, A. E. Gene expression omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res.30, 207–210. 10.1093/nar/30.1.207 (2002). PubMed PMC

Liberzon, A. et al. Molecular signatures database (MSigDB) 3.0. Bioinformatics27, 1739–1740. 10.1093/bioinformatics/btr260 (2011). PubMed PMC

Matys, V. et al. TRANSFAC: transcriptional regulation, from patterns to profiles. Nucleic Acids Res.31, 374–378. 10.1093/nar/gkg108 (2003). PubMed PMC

Matys, V. et al. TRANSFAC and its module TRANSCompel: transcriptional gene regulation in eukaryotes. Nucleic Acids Res.34, D108-110. 10.1093/nar/gkj143 (2006). PubMed PMC

Han, H. et al. TRRUST v2: an expanded reference database of human and mouse transcriptional regulatory interactions. Nucleic Acids Res.46, D380–D386. 10.1093/nar/gkx1013 (2018). PubMed PMC

Pujato, M., Kieken, F., Skiles, A. A., Tapinos, N. & Fiser, A. Prediction of DNA binding motifs from 3D models of transcription factors; identifying TLX3 regulated genes. Nucleic Acids Res.42, 13500–13512. 10.1093/nar/gku1228 (2014). PubMed PMC

Semenza, G. L. Hypoxia-inducible factor 1: oxygen homeostasis and disease pathophysiology. Trends Mol. Med.7, 345–350. 10.1016/s1471-4914(01)02090-1 (2001). PubMed

Cox, J. et al. Andromeda: a peptide search engine integrated into the MaxQuant environment. J. Proteome Res.10, 1794–1805. 10.1021/pr101065j (2011). PubMed

Perez-Riverol, Y. et al. The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res.47, D442–D450. 10.1093/nar/gky1106 (2019). PubMed PMC

Ammar, C., Gruber, M., Csaba, G. & Zimmer, R. MS-EmpiRe utilizes peptide-level noise distributions for ultra-sensitive detection of differentially expressed proteins. Mol. Cell Proteom.18, 1880–1892. 10.1074/mcp.RA119.001509 (2019). PubMed PMC

Flenkenthaler, F. et al. Differential effects of insulin-deficient diabetes mellitus on visceral vs. Subcutaneous adipose tissue-multi-omics insights from the Munich MIDY pig model. Front. Med. (Lausanne)8, 751277. 10.3389/fmed.2021.751277 (2021). PubMed PMC

Szklarczyk, D. et al. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res.47, D607–D613. 10.1093/nar/gky1131 (2019). PubMed PMC

Supek, F., Bosnjak, M., Skunca, N. & Smuc, T. REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS One6, e21800. 10.1371/journal.pone.0021800 (2011). PubMed PMC

Pfaffl, M. W. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res.29, e45. 10.1093/nar/29.9.e45 (2001). PubMed PMC

Pfaffl, M. W., Horgan, G. W. & Dempfle, L. Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res.30, e36. 10.1093/nar/30.9.e36 (2002). PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...