Contribution of hypoxia-inducible factor 1alpha to pathogenesis of sarcomeric hypertrophic cardiomyopathy
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
39820339
PubMed Central
PMC11739497
DOI
10.1038/s41598-025-85187-9
PII: 10.1038/s41598-025-85187-9
Knihovny.cz E-zdroje
- Klíčová slova
- HIF1A, Hypertrophic cardiomyopathy, Hypertrophy, Hypoxia, Myocardial fibrosis,
- MeSH
- faktor 1 indukovatelný hypoxií - podjednotka alfa * metabolismus genetika MeSH
- fibróza MeSH
- hypertrofická kardiomyopatie * metabolismus genetika patologie MeSH
- kardiomyocyty * metabolismus patologie MeSH
- lidé MeSH
- modely nemocí na zvířatech * MeSH
- myši knockoutované * MeSH
- myši MeSH
- sarkomery * metabolismus MeSH
- signální transdukce MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- faktor 1 indukovatelný hypoxií - podjednotka alfa * MeSH
- Hif1a protein, mouse MeSH Prohlížeč
Hypertrophic cardiomyopathy (HCM) caused by autosomal-dominant mutations in genes coding for structural sarcomeric proteins, is the most common inherited heart disease. HCM is associated with myocardial hypertrophy, fibrosis and ventricular dysfunction. Hypoxia-inducible transcription factor-1α (Hif-1α) is the central master regulators of cellular hypoxia response and associated with HCM. Yet its exact role remains to be elucidated. Therefore, the effect of a cardiomyocyte-specific Hif-1a knockout (cHif1aKO) was studied in an established α-MHC719/+ HCM mouse model that exhibits the classical features of human HCM. The results show that Hif-1α protein and HIF targets were upregulated in left ventricular tissue of α-MHC719/+ mice. Cardiomyocyte-specific abolishment of Hif-1a blunted the disease phenotype, as evidenced by decreased left ventricular wall thickness, reduced myocardial fibrosis, disordered SRX/DRX state and ROS production. cHif1aKO induced normalization of pro-hypertrophic and pro-fibrotic left ventricular remodeling signaling evidenced on whole transcriptome and proteomics analysis in α-MHC719/+ mice. Proteomics of serum samples from patients with early onset HCM revealed significant modulation of HIF. These results demonstrate that HIF signaling is involved in mouse and human HCM pathogenesis. Cardiomyocyte-specific knockout of Hif-1a attenuates disease phenotype in the mouse model. Targeting Hif-1α might serve as a therapeutic option to mitigate HCM disease progression.
Cardiovascular Medicine Radcliffe Department of Medicine University of Oxford Oxford UK
Department of Genetics Harvard Medical School Boston USA
DZHK Partner Site Munich Heart Alliance Munich Germany
Laboratory for Functional Genome Analysis LAFUGA Gene Center LMU Munich Munich Germany
School of Medicine and Health Technical University of Munich Munich Germany
Wellcome Centre for Human Genetics University of Oxford Oxford UK
Zobrazit více v PubMed
Maron, B. J. et al. Prevalence of hypertrophic cardiomyopathy in a general population of young adults. Echocardiographic analysis of 4111 subjects in the CARDIA study. Coronary artery risk development in (young) adults. Circulation92, 785–789. 10.1161/01.cir.92.4.785 (1995). PubMed
Maron, B. J. Contemporary insights and strategies for risk stratification and prevention of sudden death in hypertrophic cardiomyopathy. Circulation121, 445–456. 10.1161/CIRCULATIONAHA.109.878579 (2010). PubMed
Watkins, H. Sudden death in hypertrophic cardiomyopathy. N. Engl. J. Med.342, 422–424. 10.1056/NEJM200002103420609 (2000). PubMed
Seidman, C. E. & Seidman, J. G. Identifying sarcomere gene mutations in hypertrophic cardiomyopathy: a personal history. Circ. Res.108, 743–750. 10.1161/CIRCRESAHA.110.223834 (2011). PubMed PMC
Geisterfer-Lowrance, A. A. et al. A molecular basis for familial hypertrophic cardiomyopathy: a beta cardiac myosin heavy chain gene missense mutation. Cell62, 999–1006. 10.1016/0092-8674(90)90274-i (1990). PubMed
Geisterfer-Lowrance, A. A. et al. A mouse model of familial hypertrophic cardiomyopathy. Science272, 731–734. 10.1126/science.272.5262.731 (1996). PubMed
Tyska, M. J. et al. Single-molecule mechanics of R403Q cardiac myosin isolated from the mouse model of familial hypertrophic cardiomyopathy. Circ. Res.86, 737–744. 10.1161/01.res.86.7.737 (2000). PubMed
Teekakirikul, P. et al. Cardiac fibrosis in mice with hypertrophic cardiomyopathy is mediated by non-myocyte proliferation and requires Tgf-beta. J. Clin. Invest.120, 3520–3529. 10.1172/JCI42028 (2010). PubMed PMC
Fatkin, D. et al. An abnormal Ca(2+) response in mutant sarcomere protein-mediated familial hypertrophic cardiomyopathy. J. Clin. Invest.106, 1351–1359. 10.1172/JCI11093 (2000). PubMed PMC
Crilley, J. G. et al. Hypertrophic cardiomyopathy due to sarcomeric gene mutations is characterized by impaired energy metabolism irrespective of the degree of hypertrophy. J. Am. Coll. Cardiol.41, 1776–1782 (2003). PubMed
Toepfer, C. N. et al. Myosin sequestration regulates sarcomere function, cardiomyocyte energetics, and metabolism, informing the pathogenesis of hypertrophic cardiomyopathy. Circulation141, 828–842. 10.1161/CIRCULATIONAHA.119.042339 (2020). PubMed PMC
Maron, B. J. et al. American college of cardiology/European society of cardiology clinical expert consensus document on hypertrophic cardiomyopathy. A report of the American college of cardiology foundation task force on clinical expert consensus documents and the European society of cardiology committee for practice guidelines. J Am Coll Cardiol42, 1687–1713. 10.1016/s0735-1097(03)00941-0 (2003). PubMed
Gersh, B. J. et al. 2011 ACCF/AHA guideline for the diagnosis and treatment of hypertrophic cardiomyopathy: executive summary: a report of the American college of cardiology foundation/American heart association task force on practice guidelines. Circulation124, 2761–2796. 10.1161/CIR.0b013e318223e230 (2011). PubMed
Colan, S. D. et al. Epidemiology and cause-specific outcome of hypertrophic cardiomyopathy in children: findings from the pediatric cardiomyopathy registry. Circulation115, 773–781. 10.1161/CIRCULATIONAHA.106.621185 (2007). PubMed
Maron, B. J., Casey, S. A., Hauser, R. G. & Aeppli, D. M. Clinical course of hypertrophic cardiomyopathy with survival to advanced age. J. Am. Coll. Cardiol.42, 882–888. 10.1016/s0735-1097(03)00855-6 (2003). PubMed
Lopes, L. R., Rahman, M. S. & Elliott, P. M. A systematic review and meta-analysis of genotype-phenotype associations in patients with hypertrophic cardiomyopathy caused by sarcomeric protein mutations. Heart99, 1800–1811. 10.1136/heartjnl-2013-303939 (2013). PubMed
Brito, D. et al. Familial hypertrophic cardiomyopathy: the same mutation, different prognosis. Comparison of two families with a long follow-up. Rev. Port. Cardiol.22, 1445–1461 (2003). PubMed
Morner, S. et al. Identification of the genotypes causing hypertrophic cardiomyopathy in northern Sweden. J. Mol. Cell. Cardiol.35, 841–849. 10.1016/s0022-2828(03)00146-9 (2003). PubMed
Wolf, C. M. et al. Somatic events modify hypertrophic cardiomyopathy pathology and link hypertrophy to arrhythmia. Proc. Natl. Acad. Sci. USA102, 18123–18128. 10.1073/pnas.0509145102 (2005). PubMed PMC
Nian, M., Lee, P., Khaper, N. & Liu, P. Inflammatory cytokines and postmyocardial infarction remodeling. Circ. Res.94, 1543–1553. 10.1161/01.RES.0000130526.20854.fa (2004). PubMed
Aukrust, P., Gullestad, L., Ueland, T., Damas, J. K. & Yndestad, A. Inflammatory and anti-inflammatory cytokines in chronic heart failure: potential therapeutic implications. Ann. Med.37, 74–85. 10.1080/07853890510007232 (2005). PubMed
Corradi, D., Callegari, S., Maestri, R., Benussi, S. & Alfieri, O. Structural remodeling in atrial fibrillation. Nat. Clin. Pract. Cardiovasc. Med.5, 782–796. 10.1038/ncpcardio1370 (2008). PubMed
Semenza, G. L. Hypoxia-inducible factor 1 and cardiovascular disease. Annu. Rev. Physiol.76, 39–56. 10.1146/annurev-physiol-021113-170322 (2014). PubMed PMC
Wei, H. et al. Endothelial expression of hypoxia-inducible factor 1 protects the murine heart and aorta from pressure overload by suppression of TGF-beta signaling. Proc. Natl. Acad. Sci. USA109, E841-850. 10.1073/pnas.1202081109 (2012). PubMed PMC
Pimentel, D. R. et al. Reactive oxygen species mediate amplitude-dependent hypertrophic and apoptotic responses to mechanical stretch in cardiac myocytes. Circ. Res.89, 453–460. 10.1161/hh1701.096615 (2001). PubMed
Dimitrow, P. P., Undas, A., Wolkow, P., Tracz, W. & Dubiel, J. S. Enhanced oxidative stress in hypertrophic cardiomyopathy. Pharmacol. Rep.61, 491–495. 10.1016/s1734-1140(09)70091-x (2009). PubMed
Dudley, S. C. Jr. et al. Atrial fibrillation increases production of superoxide by the left atrium and left atrial appendage: role of the NADPH and xanthine oxidases. Circulation112, 1266–1273. 10.1161/CIRCULATIONAHA.105.538108 (2005). PubMed
Wang, G. L., Jiang, B. H., Rue, E. A. & Semenza, G. L. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. Proc. Natl. Acad. Sci. USA92, 5510–5514. 10.1073/pnas.92.12.5510 (1995). PubMed PMC
Scholz, C. C. & Taylor, C. T. Targeting the HIF pathway in inflammation and immunity. Curr. Opin. Pharmacol.13, 646–653. 10.1016/j.coph.2013.04.009 (2013). PubMed
Alkon, J. et al. Genetic variations in hypoxia response genes influence hypertrophic cardiomyopathy phenotype. Pediatr. Res.72, 583–592. 10.1038/pr.2012.126 (2012). PubMed
Liu, W. et al. Expression and correlation of hypoxia-inducible factor-1alpha (HIF-1alpha) with pulmonary artery remodeling and right ventricular hypertrophy in experimental pulmonary embolism. Med. Sci. Monit.23, 2083–2088. 10.12659/msm.900354 (2017). PubMed PMC
Smith, K. A. et al. Role of hypoxia-inducible factors in regulating right ventricular function and remodeling during chronic hypoxia-induced pulmonary hypertension. Am. J. Respir. Cell Mol. Biol.63, 652–664. 10.1165/rcmb.2020-0023OC (2020). PubMed PMC
Schwartzkopff, B., Mundhenke, M. & Strauer, B. E. Alterations of the architecture of subendocardial arterioles in patients with hypertrophic cardiomyopathy and impaired coronary vasodilator reserve: a possible cause for myocardial ischemia. J. Am. Coll. Cardiol.31, 1089–1096. 10.1016/s0735-1097(98)00036-9 (1998). PubMed
Cecchi, F. et al. Microvascular dysfunction, myocardial ischemia, and progression to heart failure in patients with hypertrophic cardiomyopathy. J. Cardiovasc. Transl. Res.2, 452–461. 10.1007/s12265-009-9142-5 (2009). PubMed
Nanayakkara, G. et al. Cardioprotective HIF-1alpha-frataxin signaling against ischemia-reperfusion injury. Am. J. Physiol. Heart Circ. Physiol.309, H867-879. 10.1152/ajpheart.00875.2014 (2015). PubMed
Teekakirikul, P., Padera, R. F., Seidman, J. G. & Seidman, C. E. Hypertrophic cardiomyopathy: translating cellular cross talk into therapeutics. J. Cell Biol.199, 417–421. 10.1083/jcb.201207033 (2012). PubMed PMC
Wykoff, C. C. et al. Hypoxia-inducible expression of tumor-associated carbonic anhydrases. Cancer Res.60, 7075–7083 (2000). PubMed
Nakamura, K. et al. Relationship between oxidative stress and systolic dysfunction in patients with hypertrophic cardiomyopathy. J. Card. Fail.11, 117–123 (2005). PubMed
Gilda, J. E., Lai, X., Witzmann, F. A. & Gomes, A. V. Delineation of molecular pathways involved in cardiomyopathies caused by troponin T mutations. Mol. Cell Proteom.15, 1962–1981. 10.1074/mcp.M115.057380 (2016). PubMed PMC
Alkon, J. et al. Genetic variations in hypoxia response genes influence hypertrophic cardiomyopathy phenotype. Pediatr. Res.72 (583–592), pr2012126. 10.1038/pr.2012.126 (2012). PubMed
Parisi, Q. et al. Hypoxia inducible factor-1 expression mediates myocardial response to ischemia late after acute myocardial infarction. Int. J. Cardiol.99, 337–339. 10.1016/j.ijcard.2003.11.038 (2005). PubMed
Diebold, I. et al. The HIF1 target gene NOX2 promotes angiogenesis through urotensin-II. J. Cell Sci.125, 956–964. 10.1242/jcs.094060 (2012). PubMed
Gao, J., Feng, W., Lv, W., Liu, W. & Fu, C. HIF-1/AKT signaling-activated PFKFB2 alleviates cardiac dysfunction and cardiomyocyte apoptosis in response to hypoxia. Int. Heart J.62, 350–358. 10.1536/ihj.20-315 (2021). PubMed
Janbandhu, V. et al. Hif-1a suppresses ROS-induced proliferation of cardiac fibroblasts following myocardial infarction. Cell Stem Cell29 (281–297), e212. 10.1016/j.stem.2021.10.009 (2022). PubMed PMC
Xue, W. et al. Cardiac-specific overexpression of HIF-1{alpha} prevents deterioration of glycolytic pathway and cardiac remodeling in streptozotocin-induced diabetic mice. Am. J. Pathol.177, 97–105. 10.2353/ajpath.2010.091091 (2010). PubMed PMC
Datta Chaudhuri, R., Banik, A., Mandal, B. & Sarkar, S. Cardiac-specific overexpression of HIF-1alpha during acute myocardial infarction ameliorates cardiomyocyte apoptosis via differential regulation of hypoxia-inducible pro-apoptotic and anti-oxidative genes. Biochem. Biophys. Res. Commun.537, 100–108. 10.1016/j.bbrc.2020.12.084 (2021). PubMed
Ikeda, M. et al. excessive hypoxia-inducible factor-1alpha expression induces cardiac rupture via p53-dependent apoptosis after myocardial infarction. J. Am. Heart Assoc.10, e020895. 10.1161/JAHA.121.020895 (2021). PubMed PMC
Holscher, M. et al. Unfavourable consequences of chronic cardiac HIF-1alpha stabilization. Cardiovasc. Res.94, 77–86. 10.1093/cvr/cvs014 (2012). PubMed
Dai, Z. et al. Loss of endothelial hypoxia inducible factor-prolyl hydroxylase 2 induces cardiac hypertrophy and fibrosis. J. Am. Heart Assoc.10, e022077. 10.1161/JAHA.121.022077 (2021). PubMed PMC
Huang, Y. et al. Cardiac myocyte-specific HIF-1alpha deletion alters vascularization, energy availability, calcium flux, and contractility in the normoxic heart. FASEB J.18, 1138–1140. 10.1096/fj.04-1510fje (2004). PubMed
Yang, Z. et al. SGLT2 inhibitor dapagliflozin attenuates cardiac fibrosis and inflammation by reverting the HIF-2alpha signaling pathway in arrhythmogenic cardiomyopathy. FASEB J36, e22410. 10.1096/fj.202200243R (2022). PubMed
Meier, A. B. et al. Cell cycle defects underlie childhood-onset cardiomyopathy associated with noonan syndrome. iScience25, 103596. 10.1016/j.isci.2021.103596 (2022). PubMed PMC
Zhao, S. R. et al. Generation of three induced pluripotent stem cell lines from hypertrophic cardiomyopathy patients carrying TNNI3 mutations. Stem Cell Res.57, 102597. 10.1016/j.scr.2021.102597 (2021). PubMed PMC
Schmitt, J. P. et al. Dilated cardiomyopathy and heart failure caused by a mutation in phospholamban. Science299, 1410–1413. 10.1126/science.1081578 (2003). PubMed
Jiang, J., Wakimoto, H., Seidman, J. G. & Seidman, C. E. Allele-specific silencing of mutant Myh6 transcripts in mice suppresses hypertrophic cardiomyopathy. Science342, 111–114. 10.1126/science.1236921 (2013). PubMed PMC
Wolf, C. M. et al. Reversibility of PRKAG2 glycogen-storage cardiomyopathy and electrophysiological manifestations. Circulation117, 144–154. 10.1161/CIRCULATIONAHA.107.726752 (2008). PubMed PMC
Wolf, C. M. et al. Subclinical cardiac dysfunction in childhood cancer survivors on 10-years follow-up correlates with cumulative anthracycline dose and is best detected by cardiopulmonary exercise testing, circulating serum biomarker, speckle tracking echocardiography, and tissue doppler imaging. Front. Pediatr.8, 123. 10.3389/fped.2020.00123 (2020). PubMed PMC
Michael, W. & Pfaffl, G. H. A. L. D. Relative expression software tool (REST©) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res.2002, e36 (2002). PubMed PMC
Hooijman, P., Stewart, M. A. & Cooke, R. A new state of cardiac myosin with very slow ATP turnover: a potential cardioprotective mechanism in the heart. Biophys. J.100, 1969–1976. 10.1016/j.bpj.2011.02.061 (2011). PubMed PMC
Toepfer, C. N. et al. Hypertrophic cardiomyopathy mutations in MYBPC3 dysregulate myosin. Sci. Transl. Med.10.1126/scitranslmed.aat1199 (2019). PubMed PMC
Schmid, M. & Toepfer, C. N. Cardiac myosin super relaxation (SRX): a perspective on fundamental biology, human disease and therapeutics. Biol. Open.10.1242/bio.057646 (2021). PubMed PMC
Kracun, D. et al. NADPH oxidases and HIF1 promote cardiac dysfunction and pulmonary hypertension in response to glucocorticoid excess. Redox Biol.34, 101536. 10.1016/j.redox.2020.101536 (2020). PubMed PMC
Schneider, C. A., Rasband, W. S. & Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis. Nat. Methods9, 671–675. 10.1038/nmeth.2089 (2012). PubMed PMC
Taylor, S. C., Rosselli-Murai, L. K., Crobeddu, B. & Plante, I. A critical path to producing high quality, reproducible data from quantitative western blot experiments. Sci. Rep.12, 17599. 10.1038/s41598-022-22294-x (2022). PubMed PMC
Chalupsky, K., Kracun, D., Kanchev, I., Bertram, K. & Gorlach, A. Folic acid promotes recycling of tetrahydrobiopterin and protects against hypoxia-induced pulmonary hypertension by recoupling endothelial nitric oxide synthase. Antioxid. Redox Signal23, 1076–1091. 10.1089/ars.2015.6329 (2015). PubMed PMC
Haack, T. B. et al. ELAC2 mutations cause a mitochondrial RNA processing defect associated with hypertrophic cardiomyopathy. Am. J. Hum. Genet.93, 211–223. 10.1016/j.ajhg.2013.06.006 (2013). PubMed PMC
Dobin, A. et al. STAR: ultrafast universal RNA-seq aligner. Bioinformatics29, 15–21. 10.1093/bioinformatics/bts635 (2013). PubMed PMC
Anders, S., Pyl, P. T. & Huber, W. HTSeq–a Python framework to work with high-throughput sequencing data. Bioinformatics31, 166–169. 10.1093/bioinformatics/btu638 (2015). PubMed PMC
Love, M. I., Huber, W. & Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol.15, 550. 10.1186/s13059-014-0550-8 (2014). PubMed PMC
Luo, W., Friedman, M. S., Shedden, K., Hankenson, K. D. & Woolf, P. J. GAGE: generally applicable gene set enrichment for pathway analysis. BMC Bioinform.10, 161. 10.1186/1471-2105-10-161 (2009). PubMed PMC
Luo, W. & Brouwer, C. Pathview: an R/Bioconductor package for pathway-based data integration and visualization. Bioinformatics29, 1830–1831. 10.1093/bioinformatics/btt285 (2013). PubMed PMC
Young, M. D., Wakefield, M. J., Smyth, G. K. & Oshlack, A. Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biol.11, R14. 10.1186/gb-2010-11-2-r14 (2010). PubMed PMC
Team, R. C. R: A language and environment for statistical computing, <https://www.R-project.org/> (2021).
Gerstner, N. et al. GeneTrail 3: advanced high-throughput enrichment analysis. Nucleic Acids Res.48, W515–W520. 10.1093/nar/gkaa306 (2020). PubMed PMC
Edgar, R., Domrachev, M. & Lash, A. E. Gene expression omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res.30, 207–210. 10.1093/nar/30.1.207 (2002). PubMed PMC
Liberzon, A. et al. Molecular signatures database (MSigDB) 3.0. Bioinformatics27, 1739–1740. 10.1093/bioinformatics/btr260 (2011). PubMed PMC
Matys, V. et al. TRANSFAC: transcriptional regulation, from patterns to profiles. Nucleic Acids Res.31, 374–378. 10.1093/nar/gkg108 (2003). PubMed PMC
Matys, V. et al. TRANSFAC and its module TRANSCompel: transcriptional gene regulation in eukaryotes. Nucleic Acids Res.34, D108-110. 10.1093/nar/gkj143 (2006). PubMed PMC
Han, H. et al. TRRUST v2: an expanded reference database of human and mouse transcriptional regulatory interactions. Nucleic Acids Res.46, D380–D386. 10.1093/nar/gkx1013 (2018). PubMed PMC
Pujato, M., Kieken, F., Skiles, A. A., Tapinos, N. & Fiser, A. Prediction of DNA binding motifs from 3D models of transcription factors; identifying TLX3 regulated genes. Nucleic Acids Res.42, 13500–13512. 10.1093/nar/gku1228 (2014). PubMed PMC
Semenza, G. L. Hypoxia-inducible factor 1: oxygen homeostasis and disease pathophysiology. Trends Mol. Med.7, 345–350. 10.1016/s1471-4914(01)02090-1 (2001). PubMed
Cox, J. et al. Andromeda: a peptide search engine integrated into the MaxQuant environment. J. Proteome Res.10, 1794–1805. 10.1021/pr101065j (2011). PubMed
Perez-Riverol, Y. et al. The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res.47, D442–D450. 10.1093/nar/gky1106 (2019). PubMed PMC
Ammar, C., Gruber, M., Csaba, G. & Zimmer, R. MS-EmpiRe utilizes peptide-level noise distributions for ultra-sensitive detection of differentially expressed proteins. Mol. Cell Proteom.18, 1880–1892. 10.1074/mcp.RA119.001509 (2019). PubMed PMC
Flenkenthaler, F. et al. Differential effects of insulin-deficient diabetes mellitus on visceral vs. Subcutaneous adipose tissue-multi-omics insights from the Munich MIDY pig model. Front. Med. (Lausanne)8, 751277. 10.3389/fmed.2021.751277 (2021). PubMed PMC
Szklarczyk, D. et al. STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res.47, D607–D613. 10.1093/nar/gky1131 (2019). PubMed PMC
Supek, F., Bosnjak, M., Skunca, N. & Smuc, T. REVIGO summarizes and visualizes long lists of gene ontology terms. PLoS One6, e21800. 10.1371/journal.pone.0021800 (2011). PubMed PMC
Pfaffl, M. W. A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res.29, e45. 10.1093/nar/29.9.e45 (2001). PubMed PMC
Pfaffl, M. W., Horgan, G. W. & Dempfle, L. Relative expression software tool (REST) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Res.30, e36. 10.1093/nar/30.9.e36 (2002). PubMed PMC