Clustering of the ζ-Chain Can Initiate T Cell Receptor Signaling
Language English Country Switzerland Media electronic
Document type Journal Article
PubMed
32429097
PubMed Central
PMC7279048
DOI
10.3390/ijms21103498
PII: ijms21103498
Knihovny.cz E-resources
- Keywords
- TCR signaling, fluorescence correlation spectroscopy, optogenetics,
- MeSH
- Amino Acid Motifs MeSH
- Cell Membrane metabolism MeSH
- Chlorocebus aethiops MeSH
- COS Cells MeSH
- Cytosol metabolism MeSH
- Diffusion MeSH
- Spectrometry, Fluorescence MeSH
- Phosphorylation MeSH
- Jurkat Cells MeSH
- Humans MeSH
- Optogenetics MeSH
- Receptors, Antigen, T-Cell chemistry metabolism MeSH
- Cluster Analysis MeSH
- Signal Transduction * MeSH
- Light MeSH
- Lymphocyte Specific Protein Tyrosine Kinase p56(lck) metabolism MeSH
- Calcium metabolism MeSH
- Green Fluorescent Proteins metabolism MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- LCK protein, human MeSH Browser
- Receptors, Antigen, T-Cell MeSH
- Lymphocyte Specific Protein Tyrosine Kinase p56(lck) MeSH
- Calcium MeSH
- Green Fluorescent Proteins MeSH
T cell activation is initiated when ligand binding to the T cell receptor (TCR) triggers intracellular phosphorylation of the TCR-CD3 complex. However, it remains unknown how biophysical properties of TCR engagement result in biochemical phosphorylation events. Here, we constructed an optogenetic tool that induces spatial clustering of ζ-chain in a light controlled manner. We showed that spatial clustering of the ζ-chain intracellular tail alone was sufficient to initialize T cell triggering including phosphorylation of ζ-chain, Zap70, PLCγ, ERK and initiated Ca2+ flux. In reconstituted COS-7 cells, only Lck expression was required to initiate ζ-chain phosphorylation upon ζ-chain clustering, which leads to the recruitment of tandem SH2 domain of Zap70 from cell cytosol to the newly formed ζ-chain clusters at the plasma membrane. Taken together, our data demonstrated the biophysical relevance of receptor clustering in TCR signaling.
IMCF at BIOCEV Faculty of Science Charles University Průmyslová 595 25250 Vestec Czech Republic
School of Physics University of Melbourne Melbourne VIC 3010 Australia
See more in PubMed
Gil D., Schamel W.W., Montoya M., Sánchez-Madrid F., Alarcón B. Recruitment of Nck by CD3ϵ Reveals a Ligand-Induced Conformational Change Essential for T Cell Receptor Signaling and Synapse Formation. Cell. 2002;109:901–912. doi: 10.1016/S0092-8674(02)00799-7. PubMed DOI
Lee M.S., Glassman C.R., Deshpande N.R., Badgandi H.B., Parrish H.L., Uttamapinant C., Stawski P.S., Ting A.Y., Kuhns M.S. A Mechanical Switch Couples T Cell Receptor Triggering to the Cytoplasmic Juxtamembrane Regions of CD3zetazeta. Immunity. 2015;43:227–239. doi: 10.1016/j.immuni.2015.06.018. PubMed DOI PMC
Irving B.A., Weiss A. The cytoplasmic domain of the T cell receptor ζ chain is sufficient to couple to receptor-associated signal transduction pathways. Cell. 1991;64:891–901. doi: 10.1016/0092-8674(91)90314-O. PubMed DOI
Kalos M., Levine B.L., Porter D.L., Katz S.I., Grupp S.A., Bagg A., June C.H. T Cells with Chimeric Antigen Receptors Have Potent Antitumor Effects and Can Establish Memory in Patients with Advanced Leukemia. Sci. Transl. Med. 2011;3:95ra73. doi: 10.1126/scitranslmed.3002842. PubMed DOI PMC
Cochran J.R., Cameron T.O., Stern L.J. The relationship of MHC-peptide binding and T cell activation probed using chemically defined MHC class II oligomers. Immunity. 2000;12:241–250. doi: 10.1016/S1074-7613(00)80177-6. PubMed DOI
Boniface J., Rabinowitz J.D., Wülfing C., Hampl J., Reich Z., Altman J.D., Kantor R.M., Beeson C., McConnell H.M., Davis M.M. Initiation of Signal Transduction through the T Cell Receptor Requires the Multivalent Engagement of Peptide/MHC Ligands. Immunity. 1998;9:459–466. doi: 10.1016/S1074-7613(00)80629-9. PubMed DOI
Eshhar Z., Waks T., Gross G., Schindler D.G. Specific activation and targeting of cytotoxic lymphocytes through chimeric single chains consisting of antibody-binding domains and the gamma or zeta subunits of the immunoglobulin and T-cell receptors. Proc. Natl. Acad. Sci. USA. 1993;90:720–724. doi: 10.1073/pnas.90.2.720. PubMed DOI PMC
Letourneur F., Klausner R.D. T-cell and basophil activation through the cytoplasmic tail of T-cell-receptor zeta family proteins. Proc. Natl. Acad. Sci. USA. 1991;88:8905–8909. doi: 10.1073/pnas.88.20.8905. PubMed DOI PMC
Yokosuka T., Sakata-Sogawa K., Kobayashi W., Hiroshima M., Hashimoto-Tane A., Tokunaga M., Dustin M.L., Saito T. Newly generated T cell receptor microclusters initiate and sustain T cell activation by recruitment of Zap70 and SLP-76. Nat. Immunol. 2005;6:1253–1262. doi: 10.1038/ni1272. PubMed DOI
Ike H., Kosugi A., Kato A., Iino R., Hirano H., Fujiwara T.K., Ritchie K., Kusumi A. Mechanism of Lck Recruitment to the T-Cell Receptor Cluster as Studied by Single-Molecule-Fluorescence Video Imaging. ChemPhysChem. 2003;4:620–626. doi: 10.1002/cphc.200300670. PubMed DOI
Varma R., Campi G., Yokosuka T., Saito T., Dustin M.L. T Cell Receptor-Proximal Signals Are Sustained in Peripheral Microclusters and Terminated in the Central Supramolecular Activation Cluster. Immunity. 2006;25:117–127. doi: 10.1016/j.immuni.2006.04.010. PubMed DOI PMC
Ma Y., Pandzic E., Nicovich P.R., Yamamoto Y., Kwiatek J., Pageon S., Benda A., Rossy J., Gaus K. An intermolecular FRET sensor detects the dynamics of T cell receptor clustering. Nat. Commun. 2017;8:15100. doi: 10.1038/ncomms15100. PubMed DOI PMC
Taylor M.J., Husain K., Gartner Z.J., Mayor S., Vale R.D. A DNA-Based T Cell Receptor Reveals a Role for Receptor Clustering in Ligand Discrimination. Cell. 2017;169:108–119.e20. doi: 10.1016/j.cell.2017.03.006. PubMed DOI PMC
Pageon S.V., Tabarin T., Yamamoto Y., Ma Y., Nicovich P.R., Bridgeman J.S., Cohnen A., Benzing C., Gao Y., Crowther M.D., et al. Functional role of T-cell receptor nanoclusters in signal initiation and antigen discrimination. Proc. Natl. Acad. Sci. USA. 2016;113:E5454–E5463. doi: 10.1073/pnas.1607436113. PubMed DOI PMC
Spencer D., Wandless T., Schreiber S., Crabtree G. Controlling signal transduction with synthetic ligands. Science. 1993;262:1019–1024. doi: 10.1126/science.7694365. PubMed DOI
Tischer D.K., Weiner O.D. Light-based tuning of ligand half-life supports kinetic proofreading model of T cell signaling. eLife. 2019;8 doi: 10.7554/eLife.42498. PubMed DOI PMC
Yousefi O.S., Günther M., Hörner M., Chalupsky J., Wess M., Brandl S.M., Smith R.W., Fleck C., Kunkel T., Zurbriggen M.D., et al. Optogenetic control shows that kinetic proofreading regulates the activity of the T cell receptor. eLife. 2019;8 doi: 10.7554/eLife.42475. PubMed DOI PMC
Bugaj L.J., Choksi A.T., Mesuda C.K., Kane R.S., Schaffer D.V. Optogenetic protein clustering and signaling activation in mammalian cells. Nat. Methods. 2013;10:249–252. doi: 10.1038/nmeth.2360. PubMed DOI
Zlatkine P., Mehul B., I Magee A. Retargeting of cytosolic proteins to the plasma membrane by the Lck protein tyrosine kinase dual acylation motif. J. Cell Sci. 1997;110:673–679. PubMed
Douglass A.D., Vale R.D. Single-molecule microscopy reveals plasma membrane microdomains created by protein-protein networks that exclude or trap signaling molecules in T cells. Cell. 2005;121:937–950. doi: 10.1016/j.cell.2005.04.009. PubMed DOI PMC
Triffo S.B., Huang H.H., Smith A.W., Chou E.T., Groves J.T. Monitoring Lipid Anchor Organization in Cell Membranes by PIE-FCCS. J. Am. Chem. Soc. 2012;134:10833–10842. doi: 10.1021/ja300374c. PubMed DOI PMC
Duan L., Hope J., Ong Q., Lou H.-Y., Kim N., McCarthy C., Acero V., Lin M.Z., Cui B. Understanding CRY2 interactions for optical control of intracellular signaling. Nat. Commun. 2017;8:547. doi: 10.1038/s41467-017-00648-8. PubMed DOI PMC
Heemskerk M.H.M., Hoogeboom M., De Paus R.A., Kester M.G.D., Van Der Hoorn M.A.W.G., Goulmy E., Willemze R., Falkenburg J.H.F. Redirection of antileukemic reactivity of peripheral T lymphocytes using gene transfer of minor histocompatibility antigen HA-2-specific T-cell receptor complexes expressing a conserved alpha joining region. Blood. 2003;102:3530–3540. doi: 10.1182/blood-2003-05-1524. PubMed DOI
Knies D., Klobuch S., Xue S.-A., Birtel M., Echchannaoui H., Yildiz O., Omokoko T., Guillaume P., Romero P., Stauss H., et al. An optimized single chain TCR scaffold relying on the assembly with the native CD3-complex prevents residual mispairing with endogenous TCRs in human T-cells. Oncotarget. 2016;7:21199–21221. doi: 10.18632/oncotarget.8385. PubMed DOI PMC
Zhao Y., Araki S., Wu J., Teramoto T., Chang Y.-F., Nakano M., Abdelfattah A.S., Fujiwara M., Ishihara T., Nagai T., et al. An Expanded Palette of Genetically Encoded Ca2+ Indicators. Science. 2011;333:1888–1891. doi: 10.1126/science.1208592. PubMed DOI PMC
Chan A., Dalton M., Johnson R., Kong G., Wang T., Thoma R., Kurosaki T. Activation of ZAP-70 kinase activity by phosphorylation of tyrosine 493 is required for lymphocyte antigen receptor function. EMBO J. 1995;14:2499–2508. doi: 10.1002/j.1460-2075.1995.tb07247.x. PubMed DOI PMC
Lewis R.S. Calcium signaling mechanisms in T lymphocytes. Ann. Rev. Immunol. 2001;19:497–521. doi: 10.1146/annurev.immunol.19.1.497. PubMed DOI
Whitehurst C.E., Geppert T.D. MEK1 and the extracellular signal-regulated kinases are required for the stimulation of IL-2 gene transcription in T cells. J. Immunol. 1996;156:1020–1029. PubMed
Iwashima M., Irving B., Van Oers N.S.C., Chan A., Weiss A. Sequential interactions of the TCR with two distinct cytoplasmic tyrosine kinases. Science. 1994;263:1136–1139. doi: 10.1126/science.7509083. PubMed DOI
James J.R., Vale R.D. Biophysical mechanism of T-cell receptor triggering in a reconstituted system. Nature. 2012;487:64–69. doi: 10.1038/nature11220. PubMed DOI PMC
Ottinger E.A., Botfield M.C., E Shoelson S. Tandem SH2 Domains Confer High Specificity in Tyrosine Kinase Signaling. J. Boil. Chem. 1998;273:729–735. doi: 10.1074/jbc.273.2.729. PubMed DOI
Mukhopadhyay H., Cordoba S.-P., Maini P.K., Van Der Merwe P.A., Dushek O. Systems Model of T Cell Receptor Proximal Signaling Reveals Emergent Ultrasensitivity. PLoS Comput. Boil. 2013;9:e1003004. doi: 10.1371/journal.pcbi.1003004. PubMed DOI PMC
Pellicena P., Stowell K.R., Miller W.T. Enhanced Phosphorylation of Src Family Kinase Substrates Containing SH2 Domain Binding Sites. J. Boil. Chem. 1998;273:15325–15328. doi: 10.1074/jbc.273.25.15325. PubMed DOI
Lewis L.A., Chung C.D., Chen J., Parnes J.R., Moran M., Patel V.P., Miceli M.C. The Lck SH2 phosphotyrosine binding site is critical for efficient TCR-induced processive tyrosine phosphorylation of the zeta-chain and IL-2 production. J. Immunol. 1997;159:2292–2300. PubMed
Pike J.A., Styles I.B., Rappoport J.Z., Heath J. Quantifying receptor trafficking and colocalization with confocal microscopy. Methods. 2017;115:42–54. doi: 10.1016/j.ymeth.2017.01.005. PubMed DOI
Benda A., Kapusta P., Hof M., Gaus K. Fluorescence spectral correlation spectroscopy (FSCS) for probes with highly overlapping emission spectra. Opt. Express. 2014;22:2973–2988. doi: 10.1364/OE.22.002973. PubMed DOI
Benda A., Ma Y., Gaus K. Self-Calibrated Line-Scan STED-FCS to Quantify Lipid Dynamics in Model and Cell Membranes. Biophys. J. 2015;108:596–609. doi: 10.1016/j.bpj.2014.12.007. PubMed DOI PMC
Ma Y., Benda A., Nicovich P.R., Gaus K. Measuring membrane association and protein diffusion within membranes with supercritical angle fluorescence microscopy. Biomed. Opt. Express. 2016;7:1561–1576. doi: 10.1364/BOE.7.001561. PubMed DOI PMC
Call M.E., Pyrdol J., Wiedmann M., Wucherpfennig K.W. The Organizing Principle in the Formation of the T Cell Receptor-CD3 Complex. Cell. 2002;111:967–979. doi: 10.1016/S0092-8674(02)01194-7. PubMed DOI PMC
Call M.E., Schnell J.R., Xu C., Lutz R.A., Chou J.J., Wucherpfennig K.W. The Structure of the ζζ Transmembrane Dimer Reveals Features Essential for Its Assembly with the T Cell Receptor. Cell. 2006;127:355–368. doi: 10.1016/j.cell.2006.08.044. PubMed DOI PMC
Lommerse P.H.M., Vastenhoud K., Pirinen N.J., Magee A.I., Spaink H.P., Schmidt T. Single-Molecule Diffusion Reveals Similar Mobility for the Lck, H-Ras, and K-Ras Membrane Anchors. Biophys. J. 2006;91:1090–1097. doi: 10.1529/biophysj.105.079053. PubMed DOI PMC
Ma Z., Finkel T.H. T cell receptor triggering by force. Trends Immunol. 2010;31:1–6. doi: 10.1016/j.it.2009.09.008. PubMed DOI PMC
Minguet S., Swamy M., Alarcon B., Luescher I.F., Schamel W.W.A. Full Activation of the T Cell Receptor Requires Both Clustering and Conformational Changes at CD3. Immunity. 2007;26:43–54. doi: 10.1016/j.immuni.2006.10.019. PubMed DOI
Xu C., Gagnon E., Call M.E., Schnell J.R., Schwieters C.D., Carman C.V., Chou J.J., Wucherpfennig K.W. Regulation of T cell receptor activation by dynamic membrane binding of the CD3epsilon cytoplasmic tyrosine-based motif. Cell. 2008;135:702–713. doi: 10.1016/j.cell.2008.09.044. PubMed DOI PMC
Kim S.T., Shin Y., Brazin K., Mallis R.J., Sun Z.-Y.J., Wagner G., Lang M.J., Reinherz E.L. TCR Mechanobiology: Torques and Tunable Structures Linked to Early T Cell Signaling. Front. Immunol. 2012;3:76. doi: 10.3389/fimmu.2012.00076. PubMed DOI PMC
Shi X., Bi Y., Yang W., Guo X., Jiang Y., Wan C., Li L., Bai Y., Guo J., Wang Y., et al. Ca2+ regulates T-cell receptor activation by modulating the charge property of lipids. Nature. 2012;493:111–115. doi: 10.1038/nature11699. PubMed DOI
Ma Y., Yamamoto Y., Nicovich P.R., Goyette J., Rossy J., Gooding J.J., Gaus K. A FRET sensor enables quantitative measurements of membrane charges in live cells. Nat. Biotechnol. 2017;35:363–370. doi: 10.1038/nbt.3828. PubMed DOI
Zimmermann K., Eells R., Heinrich F., Rintoul S., Josey B., Shekhar P., Loesche M., Stern L.J. The cytosolic domain of T-cell receptor ζ associates with membranes in a dynamic equilibrium and deeply penetrates the bilayer. J. Boil. Chem. 2017;292:17746–17759. doi: 10.1074/jbc.M117.794370. PubMed DOI PMC
Zhang H., Cordoba S.P., Dushek O., van der Merwe P.A. Basic residues in the T-cell receptor zeta cytoplasmic domain mediate membrane association and modulate signaling. Proc. Natl. Acad. Sci. USA. 2011;108:19323–19328. doi: 10.1073/pnas.1108052108. PubMed DOI PMC
Sigalov A.B., Aivazian D.A., Uversky V.N., Stern L.J. Lipid-Binding Activity of Intrinsically Unstructured Cytoplasmic Domains of Multichain Immune Recognition Receptor Signaling Subunits. Biochemistry. 2006;45:15731–15739. doi: 10.1021/bi061108f. PubMed DOI PMC
Reich Z., Boniface J.J., Lyons D.S., Borochov N., Wachtel E.J., Davis M.M. Ligand-specific oligomerization of T-cell receptor molecules. Nature. 1997;387:617–620. doi: 10.1038/42500. PubMed DOI
Romeo C., Seed B. Cellular immunity to HIV activated by CD4 fused to T cell or Fc receptor polypeptides. Cell. 1991;64:1037–1046. doi: 10.1016/0092-8674(91)90327-U. PubMed DOI
Letourneur F., Klausner R.D. Activation of T cells by a tyrosine kinase activation domain in the cytoplasmic tail of CD3 epsilon. Science. 1992;255:79–82. doi: 10.1126/science.1532456. PubMed DOI
Furlan G., Minowa T., Hanagata N., Kataoka-Hamai C., Kaizuka Y. Phosphatase CD45 Both Positively and Negatively Regulates T Cell Receptor Phosphorylation in Reconstituted Membrane Protein Clusters. J. Boil. Chem. 2014;289:28514–28525. doi: 10.1074/jbc.M114.574319. PubMed DOI PMC
Hui E., Vale R.D. In vitro membrane reconstitution of the T-cell receptor proximal signaling network. Nat. Struct. Mol. Boil. 2014;21:133–142. doi: 10.1038/nsmb.2762. PubMed DOI PMC
Davis S.J., Van Der Merwe P.A. The kinetic-segregation model: TCR triggering and beyond. Nat. Immunol. 2006;7:803–809. doi: 10.1038/ni1369. PubMed DOI
Chow L., Fournel M., Davidson D., Veillette A. Negative regulation of T-cell receptor signalling by tyrosine protein kinase p50csk. Nature. 1993;365:156–160. doi: 10.1038/365156a0. PubMed DOI
O’Donoghue G.P., Pielak R.M., A Smoligovets A., Lin J.J., Groves J.T. Direct single molecule measurement of TCR triggering by agonist pMHC in living primary T cells. eLife. 2013;2 doi: 10.7554/eLife.00778. PubMed DOI PMC
Huang J., Brameshuber M., Zeng X., Xie J., Li Q.-J., Chien Y.-H., Valitutti S., Davis M.M. A single peptide-major histocompatibility complex ligand triggers digital cytokine secretion in CD4(+) T cells. Immunity. 2013;39:846–857. doi: 10.1016/j.immuni.2013.08.036. PubMed DOI PMC
Lin J.J., O’Donoghue G.P., Wilhelm K.B., Coyle M.P., Low-Nam S.T., Fay N.C., Alfieri K.N., Groves J.T. Membrane association transforms an inert anti-TCRβ Fab’ ligand into a potent T cell receptor agonist. Biophys. J. 2020 doi: 10.1016/j.bpj.2020.04.018. PubMed DOI PMC
Brameshuber M., Kellner F., Rossboth B.K., Ta H., Alge K., Sevcsik E., Göhring J., Axmann M., Baumgart F., Gascoigne N.R.J., et al. Monomeric TCRs drive T cell antigen recognition. Nat. Immunol. 2018;19:487–496. doi: 10.1038/s41590-018-0092-4. PubMed DOI PMC
Chang Z.L., Lorenzini M.H., Chen X., Tran U., Bangayan N.J., Chen Y.Y. Rewiring T-cell responses to soluble factors with chimeric antigen receptors. Nat. Methods. 2018;14:317–324. doi: 10.1038/nchembio.2565. PubMed DOI PMC
Li L., Guo X., Shi X., Li C., Wu W., Yan C., Wang H., Li H., Xu C. Ionic CD3−Lck interaction regulates the initiation of T-cell receptor signaling. Proc. Natl. Acad. Sci. USA. 2017;114:E5891–E5899. doi: 10.1073/pnas.1701990114. PubMed DOI PMC
Williams B.L., Schreiber K.L., Zhang W., Wange R.L., Samelson L.E., Leibson P.J., Abraham R.T. Genetic Evidence for Differential Coupling of Syk Family Kinases to the T-Cell Receptor: Reconstitution Studies in a ZAP-70-Deficient Jurkat T-Cell Line. Mol. Cell. Boil. 1998;18:1388–1399. doi: 10.1128/MCB.18.3.1388. PubMed DOI PMC
Costes S.V., Daelemans D., Cho E., Dobbin Z., Pavlakis G., Lockett S. Automatic and Quantitative Measurement of Protein-Protein Colocalization in Live Cells. Biophys. J. 2004;86:3993–4003. doi: 10.1529/biophysj.103.038422. PubMed DOI PMC
Levitus M. Handbook of Fluorescence Spectroscopy and Imaging. From Ensemble to Single Molecules. Edited by Markus Sauer, Johan Hofkens and Jörg Enderlein. Angew. Chem. Int. Ed. 2011;50:9017–9018. doi: 10.1002/anie.201104398. DOI