• This record comes from PubMed

Clustering of the ζ-Chain Can Initiate T Cell Receptor Signaling

. 2020 May 15 ; 21 (10) : . [epub] 20200515

Language English Country Switzerland Media electronic

Document type Journal Article

T cell activation is initiated when ligand binding to the T cell receptor (TCR) triggers intracellular phosphorylation of the TCR-CD3 complex. However, it remains unknown how biophysical properties of TCR engagement result in biochemical phosphorylation events. Here, we constructed an optogenetic tool that induces spatial clustering of ζ-chain in a light controlled manner. We showed that spatial clustering of the ζ-chain intracellular tail alone was sufficient to initialize T cell triggering including phosphorylation of ζ-chain, Zap70, PLCγ, ERK and initiated Ca2+ flux. In reconstituted COS-7 cells, only Lck expression was required to initiate ζ-chain phosphorylation upon ζ-chain clustering, which leads to the recruitment of tandem SH2 domain of Zap70 from cell cytosol to the newly formed ζ-chain clusters at the plasma membrane. Taken together, our data demonstrated the biophysical relevance of receptor clustering in TCR signaling.

See more in PubMed

Gil D., Schamel W.W., Montoya M., Sánchez-Madrid F., Alarcón B. Recruitment of Nck by CD3ϵ Reveals a Ligand-Induced Conformational Change Essential for T Cell Receptor Signaling and Synapse Formation. Cell. 2002;109:901–912. doi: 10.1016/S0092-8674(02)00799-7. PubMed DOI

Lee M.S., Glassman C.R., Deshpande N.R., Badgandi H.B., Parrish H.L., Uttamapinant C., Stawski P.S., Ting A.Y., Kuhns M.S. A Mechanical Switch Couples T Cell Receptor Triggering to the Cytoplasmic Juxtamembrane Regions of CD3zetazeta. Immunity. 2015;43:227–239. doi: 10.1016/j.immuni.2015.06.018. PubMed DOI PMC

Irving B.A., Weiss A. The cytoplasmic domain of the T cell receptor ζ chain is sufficient to couple to receptor-associated signal transduction pathways. Cell. 1991;64:891–901. doi: 10.1016/0092-8674(91)90314-O. PubMed DOI

Kalos M., Levine B.L., Porter D.L., Katz S.I., Grupp S.A., Bagg A., June C.H. T Cells with Chimeric Antigen Receptors Have Potent Antitumor Effects and Can Establish Memory in Patients with Advanced Leukemia. Sci. Transl. Med. 2011;3:95ra73. doi: 10.1126/scitranslmed.3002842. PubMed DOI PMC

Cochran J.R., Cameron T.O., Stern L.J. The relationship of MHC-peptide binding and T cell activation probed using chemically defined MHC class II oligomers. Immunity. 2000;12:241–250. doi: 10.1016/S1074-7613(00)80177-6. PubMed DOI

Boniface J., Rabinowitz J.D., Wülfing C., Hampl J., Reich Z., Altman J.D., Kantor R.M., Beeson C., McConnell H.M., Davis M.M. Initiation of Signal Transduction through the T Cell Receptor Requires the Multivalent Engagement of Peptide/MHC Ligands. Immunity. 1998;9:459–466. doi: 10.1016/S1074-7613(00)80629-9. PubMed DOI

Eshhar Z., Waks T., Gross G., Schindler D.G. Specific activation and targeting of cytotoxic lymphocytes through chimeric single chains consisting of antibody-binding domains and the gamma or zeta subunits of the immunoglobulin and T-cell receptors. Proc. Natl. Acad. Sci. USA. 1993;90:720–724. doi: 10.1073/pnas.90.2.720. PubMed DOI PMC

Letourneur F., Klausner R.D. T-cell and basophil activation through the cytoplasmic tail of T-cell-receptor zeta family proteins. Proc. Natl. Acad. Sci. USA. 1991;88:8905–8909. doi: 10.1073/pnas.88.20.8905. PubMed DOI PMC

Yokosuka T., Sakata-Sogawa K., Kobayashi W., Hiroshima M., Hashimoto-Tane A., Tokunaga M., Dustin M.L., Saito T. Newly generated T cell receptor microclusters initiate and sustain T cell activation by recruitment of Zap70 and SLP-76. Nat. Immunol. 2005;6:1253–1262. doi: 10.1038/ni1272. PubMed DOI

Ike H., Kosugi A., Kato A., Iino R., Hirano H., Fujiwara T.K., Ritchie K., Kusumi A. Mechanism of Lck Recruitment to the T-Cell Receptor Cluster as Studied by Single-Molecule-Fluorescence Video Imaging. ChemPhysChem. 2003;4:620–626. doi: 10.1002/cphc.200300670. PubMed DOI

Varma R., Campi G., Yokosuka T., Saito T., Dustin M.L. T Cell Receptor-Proximal Signals Are Sustained in Peripheral Microclusters and Terminated in the Central Supramolecular Activation Cluster. Immunity. 2006;25:117–127. doi: 10.1016/j.immuni.2006.04.010. PubMed DOI PMC

Ma Y., Pandzic E., Nicovich P.R., Yamamoto Y., Kwiatek J., Pageon S., Benda A., Rossy J., Gaus K. An intermolecular FRET sensor detects the dynamics of T cell receptor clustering. Nat. Commun. 2017;8:15100. doi: 10.1038/ncomms15100. PubMed DOI PMC

Taylor M.J., Husain K., Gartner Z.J., Mayor S., Vale R.D. A DNA-Based T Cell Receptor Reveals a Role for Receptor Clustering in Ligand Discrimination. Cell. 2017;169:108–119.e20. doi: 10.1016/j.cell.2017.03.006. PubMed DOI PMC

Pageon S.V., Tabarin T., Yamamoto Y., Ma Y., Nicovich P.R., Bridgeman J.S., Cohnen A., Benzing C., Gao Y., Crowther M.D., et al. Functional role of T-cell receptor nanoclusters in signal initiation and antigen discrimination. Proc. Natl. Acad. Sci. USA. 2016;113:E5454–E5463. doi: 10.1073/pnas.1607436113. PubMed DOI PMC

Spencer D., Wandless T., Schreiber S., Crabtree G. Controlling signal transduction with synthetic ligands. Science. 1993;262:1019–1024. doi: 10.1126/science.7694365. PubMed DOI

Tischer D.K., Weiner O.D. Light-based tuning of ligand half-life supports kinetic proofreading model of T cell signaling. eLife. 2019;8 doi: 10.7554/eLife.42498. PubMed DOI PMC

Yousefi O.S., Günther M., Hörner M., Chalupsky J., Wess M., Brandl S.M., Smith R.W., Fleck C., Kunkel T., Zurbriggen M.D., et al. Optogenetic control shows that kinetic proofreading regulates the activity of the T cell receptor. eLife. 2019;8 doi: 10.7554/eLife.42475. PubMed DOI PMC

Bugaj L.J., Choksi A.T., Mesuda C.K., Kane R.S., Schaffer D.V. Optogenetic protein clustering and signaling activation in mammalian cells. Nat. Methods. 2013;10:249–252. doi: 10.1038/nmeth.2360. PubMed DOI

Zlatkine P., Mehul B., I Magee A. Retargeting of cytosolic proteins to the plasma membrane by the Lck protein tyrosine kinase dual acylation motif. J. Cell Sci. 1997;110:673–679. PubMed

Douglass A.D., Vale R.D. Single-molecule microscopy reveals plasma membrane microdomains created by protein-protein networks that exclude or trap signaling molecules in T cells. Cell. 2005;121:937–950. doi: 10.1016/j.cell.2005.04.009. PubMed DOI PMC

Triffo S.B., Huang H.H., Smith A.W., Chou E.T., Groves J.T. Monitoring Lipid Anchor Organization in Cell Membranes by PIE-FCCS. J. Am. Chem. Soc. 2012;134:10833–10842. doi: 10.1021/ja300374c. PubMed DOI PMC

Duan L., Hope J., Ong Q., Lou H.-Y., Kim N., McCarthy C., Acero V., Lin M.Z., Cui B. Understanding CRY2 interactions for optical control of intracellular signaling. Nat. Commun. 2017;8:547. doi: 10.1038/s41467-017-00648-8. PubMed DOI PMC

Heemskerk M.H.M., Hoogeboom M., De Paus R.A., Kester M.G.D., Van Der Hoorn M.A.W.G., Goulmy E., Willemze R., Falkenburg J.H.F. Redirection of antileukemic reactivity of peripheral T lymphocytes using gene transfer of minor histocompatibility antigen HA-2-specific T-cell receptor complexes expressing a conserved alpha joining region. Blood. 2003;102:3530–3540. doi: 10.1182/blood-2003-05-1524. PubMed DOI

Knies D., Klobuch S., Xue S.-A., Birtel M., Echchannaoui H., Yildiz O., Omokoko T., Guillaume P., Romero P., Stauss H., et al. An optimized single chain TCR scaffold relying on the assembly with the native CD3-complex prevents residual mispairing with endogenous TCRs in human T-cells. Oncotarget. 2016;7:21199–21221. doi: 10.18632/oncotarget.8385. PubMed DOI PMC

Zhao Y., Araki S., Wu J., Teramoto T., Chang Y.-F., Nakano M., Abdelfattah A.S., Fujiwara M., Ishihara T., Nagai T., et al. An Expanded Palette of Genetically Encoded Ca2+ Indicators. Science. 2011;333:1888–1891. doi: 10.1126/science.1208592. PubMed DOI PMC

Chan A., Dalton M., Johnson R., Kong G., Wang T., Thoma R., Kurosaki T. Activation of ZAP-70 kinase activity by phosphorylation of tyrosine 493 is required for lymphocyte antigen receptor function. EMBO J. 1995;14:2499–2508. doi: 10.1002/j.1460-2075.1995.tb07247.x. PubMed DOI PMC

Lewis R.S. Calcium signaling mechanisms in T lymphocytes. Ann. Rev. Immunol. 2001;19:497–521. doi: 10.1146/annurev.immunol.19.1.497. PubMed DOI

Whitehurst C.E., Geppert T.D. MEK1 and the extracellular signal-regulated kinases are required for the stimulation of IL-2 gene transcription in T cells. J. Immunol. 1996;156:1020–1029. PubMed

Iwashima M., Irving B., Van Oers N.S.C., Chan A., Weiss A. Sequential interactions of the TCR with two distinct cytoplasmic tyrosine kinases. Science. 1994;263:1136–1139. doi: 10.1126/science.7509083. PubMed DOI

James J.R., Vale R.D. Biophysical mechanism of T-cell receptor triggering in a reconstituted system. Nature. 2012;487:64–69. doi: 10.1038/nature11220. PubMed DOI PMC

Ottinger E.A., Botfield M.C., E Shoelson S. Tandem SH2 Domains Confer High Specificity in Tyrosine Kinase Signaling. J. Boil. Chem. 1998;273:729–735. doi: 10.1074/jbc.273.2.729. PubMed DOI

Mukhopadhyay H., Cordoba S.-P., Maini P.K., Van Der Merwe P.A., Dushek O. Systems Model of T Cell Receptor Proximal Signaling Reveals Emergent Ultrasensitivity. PLoS Comput. Boil. 2013;9:e1003004. doi: 10.1371/journal.pcbi.1003004. PubMed DOI PMC

Pellicena P., Stowell K.R., Miller W.T. Enhanced Phosphorylation of Src Family Kinase Substrates Containing SH2 Domain Binding Sites. J. Boil. Chem. 1998;273:15325–15328. doi: 10.1074/jbc.273.25.15325. PubMed DOI

Lewis L.A., Chung C.D., Chen J., Parnes J.R., Moran M., Patel V.P., Miceli M.C. The Lck SH2 phosphotyrosine binding site is critical for efficient TCR-induced processive tyrosine phosphorylation of the zeta-chain and IL-2 production. J. Immunol. 1997;159:2292–2300. PubMed

Pike J.A., Styles I.B., Rappoport J.Z., Heath J. Quantifying receptor trafficking and colocalization with confocal microscopy. Methods. 2017;115:42–54. doi: 10.1016/j.ymeth.2017.01.005. PubMed DOI

Benda A., Kapusta P., Hof M., Gaus K. Fluorescence spectral correlation spectroscopy (FSCS) for probes with highly overlapping emission spectra. Opt. Express. 2014;22:2973–2988. doi: 10.1364/OE.22.002973. PubMed DOI

Benda A., Ma Y., Gaus K. Self-Calibrated Line-Scan STED-FCS to Quantify Lipid Dynamics in Model and Cell Membranes. Biophys. J. 2015;108:596–609. doi: 10.1016/j.bpj.2014.12.007. PubMed DOI PMC

Ma Y., Benda A., Nicovich P.R., Gaus K. Measuring membrane association and protein diffusion within membranes with supercritical angle fluorescence microscopy. Biomed. Opt. Express. 2016;7:1561–1576. doi: 10.1364/BOE.7.001561. PubMed DOI PMC

Call M.E., Pyrdol J., Wiedmann M., Wucherpfennig K.W. The Organizing Principle in the Formation of the T Cell Receptor-CD3 Complex. Cell. 2002;111:967–979. doi: 10.1016/S0092-8674(02)01194-7. PubMed DOI PMC

Call M.E., Schnell J.R., Xu C., Lutz R.A., Chou J.J., Wucherpfennig K.W. The Structure of the ζζ Transmembrane Dimer Reveals Features Essential for Its Assembly with the T Cell Receptor. Cell. 2006;127:355–368. doi: 10.1016/j.cell.2006.08.044. PubMed DOI PMC

Lommerse P.H.M., Vastenhoud K., Pirinen N.J., Magee A.I., Spaink H.P., Schmidt T. Single-Molecule Diffusion Reveals Similar Mobility for the Lck, H-Ras, and K-Ras Membrane Anchors. Biophys. J. 2006;91:1090–1097. doi: 10.1529/biophysj.105.079053. PubMed DOI PMC

Ma Z., Finkel T.H. T cell receptor triggering by force. Trends Immunol. 2010;31:1–6. doi: 10.1016/j.it.2009.09.008. PubMed DOI PMC

Minguet S., Swamy M., Alarcon B., Luescher I.F., Schamel W.W.A. Full Activation of the T Cell Receptor Requires Both Clustering and Conformational Changes at CD3. Immunity. 2007;26:43–54. doi: 10.1016/j.immuni.2006.10.019. PubMed DOI

Xu C., Gagnon E., Call M.E., Schnell J.R., Schwieters C.D., Carman C.V., Chou J.J., Wucherpfennig K.W. Regulation of T cell receptor activation by dynamic membrane binding of the CD3epsilon cytoplasmic tyrosine-based motif. Cell. 2008;135:702–713. doi: 10.1016/j.cell.2008.09.044. PubMed DOI PMC

Kim S.T., Shin Y., Brazin K., Mallis R.J., Sun Z.-Y.J., Wagner G., Lang M.J., Reinherz E.L. TCR Mechanobiology: Torques and Tunable Structures Linked to Early T Cell Signaling. Front. Immunol. 2012;3:76. doi: 10.3389/fimmu.2012.00076. PubMed DOI PMC

Shi X., Bi Y., Yang W., Guo X., Jiang Y., Wan C., Li L., Bai Y., Guo J., Wang Y., et al. Ca2+ regulates T-cell receptor activation by modulating the charge property of lipids. Nature. 2012;493:111–115. doi: 10.1038/nature11699. PubMed DOI

Ma Y., Yamamoto Y., Nicovich P.R., Goyette J., Rossy J., Gooding J.J., Gaus K. A FRET sensor enables quantitative measurements of membrane charges in live cells. Nat. Biotechnol. 2017;35:363–370. doi: 10.1038/nbt.3828. PubMed DOI

Zimmermann K., Eells R., Heinrich F., Rintoul S., Josey B., Shekhar P., Loesche M., Stern L.J. The cytosolic domain of T-cell receptor ζ associates with membranes in a dynamic equilibrium and deeply penetrates the bilayer. J. Boil. Chem. 2017;292:17746–17759. doi: 10.1074/jbc.M117.794370. PubMed DOI PMC

Zhang H., Cordoba S.P., Dushek O., van der Merwe P.A. Basic residues in the T-cell receptor zeta cytoplasmic domain mediate membrane association and modulate signaling. Proc. Natl. Acad. Sci. USA. 2011;108:19323–19328. doi: 10.1073/pnas.1108052108. PubMed DOI PMC

Sigalov A.B., Aivazian D.A., Uversky V.N., Stern L.J. Lipid-Binding Activity of Intrinsically Unstructured Cytoplasmic Domains of Multichain Immune Recognition Receptor Signaling Subunits. Biochemistry. 2006;45:15731–15739. doi: 10.1021/bi061108f. PubMed DOI PMC

Reich Z., Boniface J.J., Lyons D.S., Borochov N., Wachtel E.J., Davis M.M. Ligand-specific oligomerization of T-cell receptor molecules. Nature. 1997;387:617–620. doi: 10.1038/42500. PubMed DOI

Romeo C., Seed B. Cellular immunity to HIV activated by CD4 fused to T cell or Fc receptor polypeptides. Cell. 1991;64:1037–1046. doi: 10.1016/0092-8674(91)90327-U. PubMed DOI

Letourneur F., Klausner R.D. Activation of T cells by a tyrosine kinase activation domain in the cytoplasmic tail of CD3 epsilon. Science. 1992;255:79–82. doi: 10.1126/science.1532456. PubMed DOI

Furlan G., Minowa T., Hanagata N., Kataoka-Hamai C., Kaizuka Y. Phosphatase CD45 Both Positively and Negatively Regulates T Cell Receptor Phosphorylation in Reconstituted Membrane Protein Clusters. J. Boil. Chem. 2014;289:28514–28525. doi: 10.1074/jbc.M114.574319. PubMed DOI PMC

Hui E., Vale R.D. In vitro membrane reconstitution of the T-cell receptor proximal signaling network. Nat. Struct. Mol. Boil. 2014;21:133–142. doi: 10.1038/nsmb.2762. PubMed DOI PMC

Davis S.J., Van Der Merwe P.A. The kinetic-segregation model: TCR triggering and beyond. Nat. Immunol. 2006;7:803–809. doi: 10.1038/ni1369. PubMed DOI

Chow L., Fournel M., Davidson D., Veillette A. Negative regulation of T-cell receptor signalling by tyrosine protein kinase p50csk. Nature. 1993;365:156–160. doi: 10.1038/365156a0. PubMed DOI

O’Donoghue G.P., Pielak R.M., A Smoligovets A., Lin J.J., Groves J.T. Direct single molecule measurement of TCR triggering by agonist pMHC in living primary T cells. eLife. 2013;2 doi: 10.7554/eLife.00778. PubMed DOI PMC

Huang J., Brameshuber M., Zeng X., Xie J., Li Q.-J., Chien Y.-H., Valitutti S., Davis M.M. A single peptide-major histocompatibility complex ligand triggers digital cytokine secretion in CD4(+) T cells. Immunity. 2013;39:846–857. doi: 10.1016/j.immuni.2013.08.036. PubMed DOI PMC

Lin J.J., O’Donoghue G.P., Wilhelm K.B., Coyle M.P., Low-Nam S.T., Fay N.C., Alfieri K.N., Groves J.T. Membrane association transforms an inert anti-TCRβ Fab’ ligand into a potent T cell receptor agonist. Biophys. J. 2020 doi: 10.1016/j.bpj.2020.04.018. PubMed DOI PMC

Brameshuber M., Kellner F., Rossboth B.K., Ta H., Alge K., Sevcsik E., Göhring J., Axmann M., Baumgart F., Gascoigne N.R.J., et al. Monomeric TCRs drive T cell antigen recognition. Nat. Immunol. 2018;19:487–496. doi: 10.1038/s41590-018-0092-4. PubMed DOI PMC

Chang Z.L., Lorenzini M.H., Chen X., Tran U., Bangayan N.J., Chen Y.Y. Rewiring T-cell responses to soluble factors with chimeric antigen receptors. Nat. Methods. 2018;14:317–324. doi: 10.1038/nchembio.2565. PubMed DOI PMC

Li L., Guo X., Shi X., Li C., Wu W., Yan C., Wang H., Li H., Xu C. Ionic CD3−Lck interaction regulates the initiation of T-cell receptor signaling. Proc. Natl. Acad. Sci. USA. 2017;114:E5891–E5899. doi: 10.1073/pnas.1701990114. PubMed DOI PMC

Williams B.L., Schreiber K.L., Zhang W., Wange R.L., Samelson L.E., Leibson P.J., Abraham R.T. Genetic Evidence for Differential Coupling of Syk Family Kinases to the T-Cell Receptor: Reconstitution Studies in a ZAP-70-Deficient Jurkat T-Cell Line. Mol. Cell. Boil. 1998;18:1388–1399. doi: 10.1128/MCB.18.3.1388. PubMed DOI PMC

Costes S.V., Daelemans D., Cho E., Dobbin Z., Pavlakis G., Lockett S. Automatic and Quantitative Measurement of Protein-Protein Colocalization in Live Cells. Biophys. J. 2004;86:3993–4003. doi: 10.1529/biophysj.103.038422. PubMed DOI PMC

Levitus M. Handbook of Fluorescence Spectroscopy and Imaging. From Ensemble to Single Molecules. Edited by Markus Sauer, Johan Hofkens and Jörg Enderlein. Angew. Chem. Int. Ed. 2011;50:9017–9018. doi: 10.1002/anie.201104398. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...