Modelling Degradation and Replication Kinetics of the Zika Virus In Vitro Infection
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.
PubMed
32429277
PubMed Central
PMC7290367
DOI
10.3390/v12050547
PII: v12050547
Knihovny.cz E-zdroje
- Klíčová slova
- Zika virus, in vitro viral kinetics, mathematical model, viral decay,
- MeSH
- Cercopithecus aethiops MeSH
- infekce virem zika virologie MeSH
- kinetika MeSH
- replikace viru * MeSH
- reprodukovatelnost výsledků MeSH
- teoretické modely * MeSH
- Vero buňky MeSH
- virová nálož MeSH
- virus zika růst a vývoj fyziologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
Mathematical models of in vitro viral kinetics help us understand and quantify the main determinants underlying the virus-host cell interactions. We aimed to provide a numerical characterization of the Zika virus (ZIKV) in vitro infection kinetics, an arthropod-borne emerging virus that has gained public recognition due to its association with microcephaly in newborns. The mathematical model of in vitro viral infection typically assumes that degradation of extracellular infectious virus proceeds in an exponential manner, that is, each viral particle has the same probability of losing infectivity at any given time. We incubated ZIKV stock in the cell culture media and sampled with high frequency for quantification over the course of 96 h. The data showed a delay in the virus degradation in the first 24 h followed by a decline, which could not be captured by the model with exponentially distributed decay time of infectious virus. Thus, we proposed a model, in which inactivation of infectious ZIKV is gamma distributed and fit the model to the temporal measurements of infectious virus remaining in the media. The model was able to reproduce the data well and yielded the decay time of infectious ZIKV to be 40 h. We studied the in vitro ZIKV infection kinetics by conducting cell infection at two distinct multiplicity of infection and measuring viral loads over time. We fit the mathematical model of in vitro viral infection with gamma distributed degradation time of infectious virus to the viral growth data and identified the timespans and rates involved within the ZIKV-host cell interplay. Our mathematical analysis combined with the data provides a well-described example of non-exponential viral decay dynamics and presents numerical characterization of in vitro infection with ZIKV.
Zobrazit více v PubMed
Dick G.W., Kitchen S.F., Haddow A.J. Zika virus (I). Isolations and serological specificity. Trans. R. Soc. Trop. Med. Hyg. 1952;46:509–520. doi: 10.1016/0035-9203(52)90042-4. PubMed DOI
Lanciotti R.S., Kosoy O.L., Laven J.J., Velez J.O., Lambert A.J., Johnson A.J., Stanfield S.M., Duffy M.R. Genetic and serologic properties of Zika virus associated with an epidemic, Yap State, Micronesia, 2007. Emerg. Infect. Dis. 2008;14:1232. doi: 10.3201/eid1408.080287. PubMed DOI PMC
Oehler E., Watrin L., Larre P., Leparc-Goffart I., Lastere S., Valour F., Baudouin L., Mallet H.P., Musso D., Ghawche F. Zika virus infection complicated by Guillain-Barre syndrome—Case report, French Polynesia, December 2013. Eurosurveillance. 2014;19:20720. doi: 10.2807/1560-7917.ES2014.19.9.20720. PubMed DOI
Dyer O. Zika virus spreads across Americas as concerns mount over birth defects. BMJ. 2015;351:h6983. doi: 10.1136/bmj.h6983. PubMed DOI
Parra B., Lizarazo J., Jiménez-Arango J.A., Zea-Vera A.F., González-Manrique G., Vargas J., Angarita J.A., Zuñiga G., Lopez-Gonzalez R., Beltran C.L., et al. Guillain–Barré syndrome associated with Zika virus infection in Colombia. N. Engl. J. Med. 2016;375:1513–1523. doi: 10.1056/NEJMoa1605564. PubMed DOI
Mlakar J., Korva M., Tul N., Popović M., Poljšak-Prijatelj M., Mraz J., Kolenc M., Resman Rus K., Vesnaver Vipotnik T., Fabjan Vodušek V., et al. Zika virus associated with microcephaly. N. Engl. J. Med. 2016;374:951–958. doi: 10.1056/NEJMoa1600651. PubMed DOI
European Centre for Disease Prevention and Control . Rapid Risk Assessment: Zika Virus Epidemic in the Americas: Potential Association with Microcephaly and Guillain-Barré Syndrome. European Centre for Disease Prevention and Control; Solna, Sweden: 2015.
Ioos S., Malletm H.P., Goffartm I.L., Gauthier V., Cardoso T., Herida M. Current Zika virus epidemiology and recent epidemics. Med. Maladies Infect. 2014;44:302–307. doi: 10.1016/j.medmal.2014.04.008. PubMed DOI
Hiatt C.W. Kinetics of the inactivation of viruses. Bacteriol. Rev. 1964;2:150–163. doi: 10.1128/MMBR.28.2.150-163.1964. PubMed DOI PMC
Beauchemin C.A.A., Kim Y.I., Yu Q., Ciaramella G., DeVincenzo J.P. Uncovering critical properties of the human respiratory syncytial virus by combining in vitro assays and in silico analyses. PLoS ONE. 2019;14:e0214708. doi: 10.1371/journal.pone.0214708. PubMed DOI PMC
Schmid B., Rinas M., Ruggieri A., Acosta E.G., Bartenschlager M., Reuter A., Fischl W., Harder N., Bergeest J.P., Flossdorf M., et al. Live cell analysis and mathematical modeling identify determinants of attenuation of dengue virus 2’-O-methylation mutant. PLoS Pathog. 2015;11 doi: 10.1371/journal.ppat.1005345. PubMed DOI PMC
Kostyuchenko V.A., Lim E.X., Zhang S., Fibriansah G., Ng T.S., Ooi J.S., Shi J., Lok S.M. Structure of the thermally stable Zika virus. Nature. 2016;533:425–428. doi: 10.1038/nature17994. PubMed DOI
Goo L., Dowd K.A., Smith A.R., Pelc R.S., DeMaso C.R., Pierson T.C. Zika virus is not uniquely stable at physiological temperatures compared to other flaviviruses. mBio. 2016;7:e01396-16. doi: 10.1128/mBio.01396-16. PubMed DOI PMC
Ansarah-Sobrinho C., Nelson S., Jost C.A., Whitehead S.S., Pierson T.C. Temperature-dependent production of pseudoinfectious dengue reporter virus particles by complementation. Virology. 2008;381:67–74. doi: 10.1016/j.virol.2008.08.021. PubMed DOI PMC
Dowd K.A., Jost C.A., Durbin A.P., Whitehead S.S., Pierson T.C. A dynamic landscape for antibody binding modulates antibody-mediated neutralization of West Nile virus. PLoS Pathog. 2011;7 doi: 10.1371/journal.ppat.1002111. PubMed DOI PMC
Manning J.S., Collins J.K. Effects of cell culture and laboratory conditions on type 2 dengue virus infectivity. J. Clin. Microbiol. 1979;10:235–239. doi: 10.1128/JCM.10.2.235-239.1979. PubMed DOI PMC
Wu H., Zhu H., Miao H., Perelson A.S. Parameter identifiability and estimation of HIV/AIDS dynamic models. Bull. Math. Biol. 2008;70:785–799. doi: 10.1007/s11538-007-9279-9. PubMed DOI
Verotta D. Models and estimation methods for clinical HIV-1 data. J. Comput. Appl. Math. 2005;184:275–300. doi: 10.1016/j.cam.2004.08.017. DOI
Miao H., Dykes C., Demeter L.M., Cavenaugh J., Park S.Y., Perelson A.S., Wu H. Modeling and estimation of kinetic parameters and replicative fitness of HIV-1 from flow-cytometry-based growth competition experiments. Bull. Math. Biol. 2008;70:1749–1771. doi: 10.1007/s11538-008-9323-4. PubMed DOI PMC
Kakizoe Y., Nakaoka S., Beauchemin C.A., Morita S., Mori H., Igarashi T., Aihara K., Miura T., Iwami S. A method to determine the duration of the eclipse phase for in vitro infection with a highly pathogenic SHIV strain. Sci. Rep. 2015;5:10371. doi: 10.1038/srep10371. PubMed DOI PMC
Beauchemin C.A., Miura T., Iwami S. Duration of SHIV production by infected cells is not exponentially distributed: Implications for estimates of infection parameters and antiviral efficacy. Sci. Rep. 2017;7:42765. doi: 10.1038/srep42765. PubMed DOI PMC
Perelson A.S., Ribeiro R.M. Modeling the within-host dynamics of HIV infection. BMC Biol. 2013;11:96. doi: 10.1186/1741-7007-11-96. PubMed DOI PMC
Chatterjee A., Guedj J., Perelson A.S. Mathematical modeling of HCV infection: What can it teach us in the era of direct antiviral agents? Antivir. Ther. 2012;17:1171. doi: 10.3851/IMP2428. PubMed DOI PMC
Aston P. A new model for the dynamics of hepatitis C infection: Derivation, analysis and implications. Viruses. 2018;10:195. doi: 10.3390/v10040195. PubMed DOI PMC
Rihan F.A., Sheek-Hussein M., Tridane A., Yafia R. Dynamics of hepatitis C virus infection: Mathematical modeling and parameter estimation. Math. Model. Nat. Phenom. 2017;12:33–47. doi: 10.1051/mmnp/201712503. DOI
Arthur J.G., Tran H.T., Aston P. Feasibility of parameter estimation in hepatitis C viral dynamics models. J. Inverse Ill-Posed Probl. 2017;25:69–80. doi: 10.1515/jiip-2014-0048. DOI
Perelson A.S., Ribeiro R.M. Estimating drug efficacy and viral dynamic parameters: HIV and HCV. Stat. Med. 2008;27:4647–4657. doi: 10.1002/sim.3116. PubMed DOI
Krakauer D.C., Komarova N.L. Levels of selection in positive-strand virus dynamics. J. Evol. Biol. 2003;16:64–73. doi: 10.1046/j.1420-9101.2003.00481.x. PubMed DOI
Regoes R.R., Crotty S., Antia R., Tanaka M.M. Optimal replication of poliovirus within cells. Am. Nat. 2005;165:364–373. doi: 10.1086/428295. PubMed DOI
Schulte M.B., Draghi J.A., Plotkin J.B., Andino R. Experimentally guided models reveal replication principles that shape the mutation distribution of RNA viruses. Elife. 2015;4:e03753. doi: 10.7554/eLife.03753. PubMed DOI PMC
Boianelli A., Nguyen V., Ebensen T., Schulze K., Wilk E., Sharma N., Stegemann-Koniszewski S., Bruder D., Toapanta F., Guzmán C., et al. Modeling influenza virus infection: A roadmap for influenza research. Viruses. 2015;7:5274–5304. doi: 10.3390/v7102875. PubMed DOI PMC
Pinilla L.T., Holder B.P., Abed Y., Boivin G., Beauchemin C.A. The H275Y neuraminidase mutation of the pandemic A/H1N1 influenza virus lengthens the eclipse phase and reduces viral output of infected cells, potentially compromising fitness in ferrets. J. Virol. 2012;86:10651–10660. doi: 10.1128/JVI.07244-11. PubMed DOI PMC
Holder B.P., Beauchemin C.A. Exploring the effect of biological delays in kinetic models of influenza within a host or cell culture. BMC Public Health. 2011;11:S10. doi: 10.1186/1471-2458-11-S1-S10. PubMed DOI PMC
Holder B.P., Liao L.E., Simon P., Boivin G., Beauchemin C.A. Design considerations in building in silico equivalents of common experimental influenza virus assays. Autoimmunity. 2011;44:282–293. doi: 10.3109/08916934.2011.523267. PubMed DOI
Simon P.F., de La Vega M.A., Paradis É., Mendoza E., Coombs K.M., Kobasa D., Beauchemin C.A. Avian influenza viruses that cause highly virulent infections in humans exhibit distinct replicative properties in contrast to human H1N1 viruses. Sci. Rep. 2016;6:24154. doi: 10.1038/srep24154. PubMed DOI PMC
Paradis E.G., Pinilla L.T., Holder B.P., Abed Y., Boivin G., Beauchemin C.A. Impact of the H275Y and I223V mutations in the neuraminidase of the 2009 pandemic influenza virus in vitro and evaluating experimental reproducibility. PLoS ONE. 2015;10:e0126115. doi: 10.1371/journal.pone.0126115. PubMed DOI PMC
Iwami S., Holder B.P., Beauchemin C.A.A., Morita S., Tada T., Sato K., Igarashi T., Miura T. Quantification system for the viral dynamics of a highly pathogenic simian/human immunodeficiency virus based on an in vitro experiment and a mathematical model. Retrovirology. 2012;9:18. doi: 10.1186/1742-4690-9-18. PubMed DOI PMC
Banerjee S., Guedj J., Ribeiro R.M., Moses M., Perelson A.S. Estimating biologically relevant parameters under uncertainty for experimental within-host murine West Nile virus infection. J. R. Soc. Interface. 2016;13:20160130. doi: 10.1098/rsif.2016.0130. PubMed DOI PMC
Nguyen V.K., Binder S.C., Boianelli A., Meyer-Hermann M., Hernandez-Vargas E.A. Ebola virus infection modeling and identifiability problems. Front. Microbiol. 2015;6:257. doi: 10.3389/fmicb.2015.00257. PubMed DOI PMC
Nguyen V.K., Hernandez-Vargas E.A. Windows of opportunity for Ebola virus infection treatment and vaccination. Sci. Rep. 2017;7:8975. doi: 10.1038/s41598-017-08884-0. PubMed DOI PMC
Desmyter J., Melnick J.L., Rawls W.E. Defectiveness of interferon production and of rubella virus interference in a line of African green monkey kidney cells (Vero) J. Virol. 1968;2:955–961. doi: 10.1128/JVI.2.10.955-961.1968. PubMed DOI PMC
Osada N., Kohara A., Yamaji T., Hirayama N., Kasai F., Sekizuka T., Kuroda M., Hanada K. The genome landscape of the African green monkey kidney-derived Vero cell line. DNA Res. 2014;21:673–683. doi: 10.1093/dnares/dsu029. PubMed DOI PMC
Pastorino B., Bessaud M., Grandadam M., Murri S., Tolou H.J., Peyrefitte C.N. Development of a TaqMan® RT-PCR assay without RNA extraction step for the detection and quantification of African Chikungunya viruses. J. Virol. Methods. 2005;124:65–71. doi: 10.1016/j.jviromet.2004.11.002. PubMed DOI
Kirkwood T.B., Bangham C.R. Cycles, chaos, and evolution in virus cultures: A model of defective interfering particles. Proc. Natl. Acad. Sci. USA. 1994;91:8685–8689. doi: 10.1073/pnas.91.18.8685. PubMed DOI PMC
Liao L.E., Iwami S., Beauchemin C.A.A. (In)validating experimentally derived knowledge about influenza A defective interfering particles. J. R. Soc. Interface. 2016;13:20160412. doi: 10.1098/rsif.2016.0412. PubMed DOI PMC
Smith J.M. Mathematical Ideas in Biology. Volume 550 Cambridge University Press; Cambridge, UK: 1968.
Macdonald R.D., Yamamoto T., Fedorak P. Statistical prediction of the number of cells surviving infection by an autointerfering virus using the Poisson distribution. J. Theor. Biol. 1977;68:355–363. doi: 10.1016/0022-5193(77)90065-0. PubMed DOI
Foreman-Mackey D., Hogg D.W., Lang D., Goodman J. emcee: The MCMC hammer. Publ. Astron. Soc. Pac. 2013;125:306–312. doi: 10.1086/670067. DOI
Goodman J., Weare J. Ensemble samplers with affine invariance. Commun. Appl. Math. Comput. Sci. 2010;5:65–80. doi: 10.2140/camcos.2010.5.65. DOI
Lloyd A.L. The dependence of viral parameter estimates on the assumed viral life cycle: Limitations of studies of viral load data. Proc. R. Soc. B. 2001;268:847–854. doi: 10.1098/rspb.2000.1572. PubMed DOI PMC
Mittler J.E., Sulzer B., Neumann A.U., Perelson A.S. Influence of delayed viral production on viral dynamics in HIV-1 infected patients. Math. Biosci. 1998;152:143–163. doi: 10.1016/S0025-5564(98)10027-5. PubMed DOI
Hamel R., Dejarnac O., Wichit S., Ekchariyawat P., Neyret A., Luplertlop N., Perera-Lecoin M., Surasombatpattana P., Talignani L., Thomas F., et al. Biology of Zika virus infection in human skin cells. J. Virol. 2015;89:8880–8896. doi: 10.1128/JVI.00354-15. PubMed DOI PMC
Turpin J., Frumence E., Desprès P., Viranaicken W., Krejbich-Trotot P. The Zika virus delays cell death through the anti-apoptotic Bcl-2 family proteins. Cells. 2019;8:1338. doi: 10.3390/cells8111338. PubMed DOI PMC
Dixit N.M., Perelson A.S. HIV dynamics with multiple infections of target cells. Proc. Natl. Acad. Sci. USA. 2005;102:8198–8203. doi: 10.1073/pnas.0407498102. PubMed DOI PMC
Cummings K.W., Levy D.N., Wodarz D. Increased burst size in multiply infected cells can alter basic virus dynamics. Biol. Direct. 2012;7:16. doi: 10.1186/1745-6150-7-16. PubMed DOI PMC
Heldt F.S., Frensing T., Pflugmacher A., Gröpler R., Peschel B., Reichl U. Multiscale modeling of influenza A virus infection supports the development of direct-acting antivirals. PLoS Comput. Biol. 2013;9:e1003372. doi: 10.1371/journal.pcbi.1003372. PubMed DOI PMC
Moser L.A., Boylan B.T., Moreira F.R., Myers L.J., Svenson E.L., Fedorova N.B., Pickett B.E., Bernard K.A. Growth and adaptation of Zika virus in mammalian and mosquito cells. PLoS Negl. Trop. Dis. 2018;12:e0006880. doi: 10.1371/journal.pntd.0006880. PubMed DOI PMC
Willard K.A., Demakovsky L., Tesla B., Goodfellow F.T., Stice S.L., Murdock C.C., Brindley M.A. Zika virus exhibits lineage-specific phenotypes in cell culture, in Aedes aegypti mosquitoes, and in an embryo model. Viruses. 2017;9:383. doi: 10.3390/v9120383. PubMed DOI PMC
Smith D.R., Sprague T.R., Hollidge B.S., Valdez S.M., Padilla S.L., Bellanca S.A., Golden J.W., Coyne S.R., Kulesh D.A., Miller L.J., et al. African and Asian Zika virus isolates display phenotypic differences both in vitro and in vivo. Am. J. Trop. Med. Hyg. 2018;98:432–444. doi: 10.4269/ajtmh.17-0685. PubMed DOI PMC