Localizing Perturbations in Pressurized Water Reactors Using One-Dimensional Deep Convolutional Neural Networks

. 2021 Dec 24 ; 22 (1) : . [epub] 20211224

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35009662

Grantová podpora
754316 European Commission

This work outlines an approach for localizing anomalies in nuclear reactor cores during their steady state operation, employing deep, one-dimensional, convolutional neural networks. Anomalies are characterized by the application of perturbation diagnostic techniques, based on the analysis of the so-called "neutron-noise" signals: that is, fluctuations of the neutron flux around the mean value observed in a steady-state power level. The proposed methodology is comprised of three steps: initially, certain reactor core perturbations scenarios are simulated in software, creating the respective perturbation datasets, which are specific to a given reactor geometry; then, the said datasets are used to train deep learning models that learn to identify and locate the given perturbations within the nuclear reactor core; lastly, the models are tested on actual plant measurements. The overall methodology is validated on hexagonal, pre-Konvoi, pressurized water, and VVER-1000 type nuclear reactors. The simulated data are generated by the FEMFFUSION code, which is extended in order to deal with the hexagonal geometry in the time and frequency domains. The examined perturbations are absorbers of variable strength, and the trained models are tested on actual plant data acquired by the in-core detectors of the Temelín VVER-1000 Power Plant in the Czech Republic. The whole approach is realized in the framework of Euratom's CORTEX project.

Zobrazit více v PubMed

Ribeiro F.D.S., Calivá F., Chionis D., Dokhane A., Mylonakis A., Demazière C., Leontidis G., Kollias S. Towards a Deep Unified Framework for Nuclear Reactor Perturbation Analysis; Proceedings of the 2018 IEEE Symposium Series on Computational Intelligence (SSCI); Bangalore, India. 18–21 November 2018; pp. 120–127. DOI

Noise-Based Core Monitoring and Diagnostics—Overview of the Cortex Project. Zenodo; Geneva, Switzerland: 2017. [(accessed on 15 November 2021)]. The CORTEX project received funding from the Euratom Research and Training Programme 2014–2018 under grant agreement No. 754316. Available online: https://zenodo.org/record/1230346#.YcVBxmBBxPY.

Tambouratzis T., Giannatsis J., Kyriazis A., Siotropos P. Applying the Computational Intelligence Paradigm to Nuclear Power Plant Operation: A Review (1990–2015) Int. J. Energy Optim. Eng. 2020;9:27–109. doi: 10.4018/IJEOE.2020010102. DOI

Pázsit I., Glöckler O. On the Neutron Noise Diagnostics of Pressurized Water Reactor Control Rod Vibrations. III. Application at a Power Plant. Nucl. Sci. Eng. 1988;99:313–328. doi: 10.13182/NSE88-A23561. DOI

Pázsit I., Garis N.S., Glöckler O. On the Neutron Noise Diagnostics of Pressurized Water Reactor Control Rod Vibrations—IV: Application of Neural Networks. Nucl. Sci. Eng. 1996;124:167–177. doi: 10.13182/NSE96-A24232. DOI

Karlsson J.H., Pázsit I. Localisation of a channel instability in the Forsmark-1 boiling water reactor. Ann. Nucl. Energy. 1999;26:1183–1204. doi: 10.1016/S0306-4549(99)00014-6. DOI

Demazière C., Mylonakis A., Vinai P., Durrant A., De Sousa Ribeiro F., Wingate J., Leontidis G., Kollias S. Neutron noise-based anomaly classification and localization using machine learning. EPJ Web Conf. 2021;247:21004. doi: 10.1051/epjconf/202124721004. DOI

Durrant A., Leontidis G., Kollias S. 3D convolutional and recurrent neural networks for reactor perturbation unfolding and anomaly detection. EPJ Nucl. Sci. Technol. 2019;5:20. doi: 10.1051/epjn/2019047. DOI

Ioannou G., Tagaris T., Alexandridis G., Stafylopatis A. Intelligent techniques for anomaly detection IN nuclear reactors. EPJ Web Conf. 2021;247:21011. doi: 10.1051/epjconf/202124721011. DOI

Tagaris T., Ioannou G., Sdraka M., Alexandridis G., Stafylopatis A. Putting Together Wavelet-Based Scaleograms and Convolutional Neural Networks for Anomaly Detection in Nuclear Reactors; Proceedings of the 2019 3rd International Conference on Advances in Artificial Intelligence (ICAAI 2019); Istanbul, Turkey. 26–28 October 2019; New York, NY, USA: Association for Computing Machinery; 2019. pp. 237–243. DOI

Tasakos T., Ioannou G., Verma V., Alexandridis G., Dokhane A., Stafylopatis A. Deep Learning-Based Anomaly Detection in Nuclear Reactor Cores; Proceedings of the International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering (M&C 2021); Online. 3–7 October 2021; pp. 2026–2037. DOI

Demazière C. CORE SIM: A multi-purpose neutronic tool for research and education. Ann. Nucl. Energy. 2011;38:2698–2718. doi: 10.1016/j.anucene.2011.06.010. DOI

Mylonakis A., Vinai P., Demazière C. CORE SIM+: A flexible diffusion-based solver for neutron noise simulations. Ann. Nucl. Energy. 2021;155:108149. doi: 10.1016/j.anucene.2021.108149. DOI

Ioannou G., Tasakos T., Mylonakis A., Alexandridis G., Demaziere C., Vinai P., Stafylopatis A. Feature Extraction and Identification Techniques for the Alignment of Perturbation Simulations with Power Plant Measurements; Proceedings of the International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering (M&C 2021); Online. 3–7 October 2021; pp. 2048–2059. DOI

Studsvik SIMULATE-3K. [(accessed on 15 November 2021)]. Available online: https://www.studsvik.com/what-we-do/products/simulate3-k/

Vidal-Ferràndiz A., Carreño A., Ginestar D., Verdú G. FEMFFUSION: A Finite Element Code for Nuclear Reactor Modelling. 2020. [(accessed on 15 November 2021)]. Available online: https://www.femffusion.imm.upv.es/

Stulik P., Bem M., Tschiesche J., Machek J. Progress Report ver.01, Core Monitoring Techniques and Experimental Validation and Demonstration (CORTEX), Horizon 2020 EU Framework Programm (No. 754316) European Commission; Brussels, Belgium: 2020. CORTEX WP4 Progress Report on subtask T4.2.3.

Stulik P., Torres L., Montalvo C., García-Berrocal A., Salazar C., Alexandridis G., Tabouratzis T., Machek J., Pantera L., Bem M. Deliverable D3.3, Core Monitoring Techniques and Experimental Validation and Demonstration (CORTEX), Horizon 2020 EU Framework Programm (No. 754316) European Commission; Brussels, Belgium: 2019. CORTEX Deliverable 3.3: Development of advanced signal processing techniques and evaluation results.

Dokhane A., Mylonakis A. Deliverable D3.2, Core Monitoring Techniques and Experimental Validation and Demonstration (CORTEX), Horizon 2020 EU Framework Programm (No. 754316) European Commission; Brussels, Belgium: 2019. CORTEX Deliverable 3.2: Description of simulated data.

Vidal-Ferràndiz A., Ginestar D., Carreño A., Verdú G., Demazière C. A finite element method for neutron noise analysis in hexagonal reactors. EPJ Web Conf. 2021;247:21007. doi: 10.1051/epjconf/202124721007. DOI

Vidal-Ferrandiz A., Fayez R., Ginestar D., Verdú G. Solution of the Lambda modes problem of a nuclear power reactor using an h–p finite element method. Ann. Nucl. Energy. 2014;72:338–349. doi: 10.1016/j.anucene.2014.05.026. DOI

Vidal-Ferràndiz A., Carreño A., Ginestar D., Verdú G. A block Arnoldi method for the SPN equations. Int. J. Comput. Math. 2020;97:341–357. doi: 10.1080/00207160.2019.1602768. DOI

Stacey P.W.M. Nuclear Reactor Physics. 2nd ed. WILEY-VCH Verlag GmbH & Co.KGaA; Weinheim, Germany: 2007. DOI

Pázsit I., Demazière C. Noise Techniques in Nuclear Systems. In: Cacuci D.G., editor. Handbook of Nuclear Engineering. Springer; Boston, MA, USA: 2010. pp. 1629–1737. DOI

Duncan W.J. Galerkin’s Method in Mechanics and Differential Equations. Defense Technical Information Center; Ft. Belvoir, VA, USA: 1937.

Van der Vorst H.A. Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems. SIAM J. Sci. Stat. Comput. 1992;13:631–644. doi: 10.1137/0913035. DOI

Schwarzenberg-Czerny A. On matrix factorization and efficient least squares solution. Astron. Astrophys. Suppl. Ser. 1995;110:405

Ba J.L., Kiros J.R., Hinton G.E. Layer Normalization. arXiv. 20161607.06450

Kingma D.P., Ba J. Adam: A Method for Stochastic Optimization. arXiv. 20171412.6980

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...