Localizing Perturbations in Pressurized Water Reactors Using One-Dimensional Deep Convolutional Neural Networks
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
754316
European Commission
PubMed
35009662
PubMed Central
PMC8747522
DOI
10.3390/s22010113
PII: s22010113
Knihovny.cz E-zdroje
- Klíčová slova
- FEMFFUSION, VVER-1000, absorber of variable strength, convolutional neural networks, deep learning, neutron diffusion, neutron noise, perturbation localization, pressurized water reactor,
- MeSH
- atomové reaktory MeSH
- neuronové sítě * MeSH
- neutrony MeSH
- software MeSH
- voda * MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- voda * MeSH
This work outlines an approach for localizing anomalies in nuclear reactor cores during their steady state operation, employing deep, one-dimensional, convolutional neural networks. Anomalies are characterized by the application of perturbation diagnostic techniques, based on the analysis of the so-called "neutron-noise" signals: that is, fluctuations of the neutron flux around the mean value observed in a steady-state power level. The proposed methodology is comprised of three steps: initially, certain reactor core perturbations scenarios are simulated in software, creating the respective perturbation datasets, which are specific to a given reactor geometry; then, the said datasets are used to train deep learning models that learn to identify and locate the given perturbations within the nuclear reactor core; lastly, the models are tested on actual plant measurements. The overall methodology is validated on hexagonal, pre-Konvoi, pressurized water, and VVER-1000 type nuclear reactors. The simulated data are generated by the FEMFFUSION code, which is extended in order to deal with the hexagonal geometry in the time and frequency domains. The examined perturbations are absorbers of variable strength, and the trained models are tested on actual plant data acquired by the in-core detectors of the Temelín VVER-1000 Power Plant in the Czech Republic. The whole approach is realized in the framework of Euratom's CORTEX project.
Zobrazit více v PubMed
Ribeiro F.D.S., Calivá F., Chionis D., Dokhane A., Mylonakis A., Demazière C., Leontidis G., Kollias S. Towards a Deep Unified Framework for Nuclear Reactor Perturbation Analysis; Proceedings of the 2018 IEEE Symposium Series on Computational Intelligence (SSCI); Bangalore, India. 18–21 November 2018; pp. 120–127. DOI
Noise-Based Core Monitoring and Diagnostics—Overview of the Cortex Project. Zenodo; Geneva, Switzerland: 2017. [(accessed on 15 November 2021)]. The CORTEX project received funding from the Euratom Research and Training Programme 2014–2018 under grant agreement No. 754316. Available online: https://zenodo.org/record/1230346#.YcVBxmBBxPY.
Tambouratzis T., Giannatsis J., Kyriazis A., Siotropos P. Applying the Computational Intelligence Paradigm to Nuclear Power Plant Operation: A Review (1990–2015) Int. J. Energy Optim. Eng. 2020;9:27–109. doi: 10.4018/IJEOE.2020010102. DOI
Pázsit I., Glöckler O. On the Neutron Noise Diagnostics of Pressurized Water Reactor Control Rod Vibrations. III. Application at a Power Plant. Nucl. Sci. Eng. 1988;99:313–328. doi: 10.13182/NSE88-A23561. DOI
Pázsit I., Garis N.S., Glöckler O. On the Neutron Noise Diagnostics of Pressurized Water Reactor Control Rod Vibrations—IV: Application of Neural Networks. Nucl. Sci. Eng. 1996;124:167–177. doi: 10.13182/NSE96-A24232. DOI
Karlsson J.H., Pázsit I. Localisation of a channel instability in the Forsmark-1 boiling water reactor. Ann. Nucl. Energy. 1999;26:1183–1204. doi: 10.1016/S0306-4549(99)00014-6. DOI
Demazière C., Mylonakis A., Vinai P., Durrant A., De Sousa Ribeiro F., Wingate J., Leontidis G., Kollias S. Neutron noise-based anomaly classification and localization using machine learning. EPJ Web Conf. 2021;247:21004. doi: 10.1051/epjconf/202124721004. DOI
Durrant A., Leontidis G., Kollias S. 3D convolutional and recurrent neural networks for reactor perturbation unfolding and anomaly detection. EPJ Nucl. Sci. Technol. 2019;5:20. doi: 10.1051/epjn/2019047. DOI
Ioannou G., Tagaris T., Alexandridis G., Stafylopatis A. Intelligent techniques for anomaly detection IN nuclear reactors. EPJ Web Conf. 2021;247:21011. doi: 10.1051/epjconf/202124721011. DOI
Tagaris T., Ioannou G., Sdraka M., Alexandridis G., Stafylopatis A. Putting Together Wavelet-Based Scaleograms and Convolutional Neural Networks for Anomaly Detection in Nuclear Reactors; Proceedings of the 2019 3rd International Conference on Advances in Artificial Intelligence (ICAAI 2019); Istanbul, Turkey. 26–28 October 2019; New York, NY, USA: Association for Computing Machinery; 2019. pp. 237–243. DOI
Tasakos T., Ioannou G., Verma V., Alexandridis G., Dokhane A., Stafylopatis A. Deep Learning-Based Anomaly Detection in Nuclear Reactor Cores; Proceedings of the International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering (M&C 2021); Online. 3–7 October 2021; pp. 2026–2037. DOI
Demazière C. CORE SIM: A multi-purpose neutronic tool for research and education. Ann. Nucl. Energy. 2011;38:2698–2718. doi: 10.1016/j.anucene.2011.06.010. DOI
Mylonakis A., Vinai P., Demazière C. CORE SIM+: A flexible diffusion-based solver for neutron noise simulations. Ann. Nucl. Energy. 2021;155:108149. doi: 10.1016/j.anucene.2021.108149. DOI
Ioannou G., Tasakos T., Mylonakis A., Alexandridis G., Demaziere C., Vinai P., Stafylopatis A. Feature Extraction and Identification Techniques for the Alignment of Perturbation Simulations with Power Plant Measurements; Proceedings of the International Conference on Mathematics & Computational Methods Applied to Nuclear Science & Engineering (M&C 2021); Online. 3–7 October 2021; pp. 2048–2059. DOI
Studsvik SIMULATE-3K. [(accessed on 15 November 2021)]. Available online: https://www.studsvik.com/what-we-do/products/simulate3-k/
Vidal-Ferràndiz A., Carreño A., Ginestar D., Verdú G. FEMFFUSION: A Finite Element Code for Nuclear Reactor Modelling. 2020. [(accessed on 15 November 2021)]. Available online: https://www.femffusion.imm.upv.es/
Stulik P., Bem M., Tschiesche J., Machek J. Progress Report ver.01, Core Monitoring Techniques and Experimental Validation and Demonstration (CORTEX), Horizon 2020 EU Framework Programm (No. 754316) European Commission; Brussels, Belgium: 2020. CORTEX WP4 Progress Report on subtask T4.2.3.
Stulik P., Torres L., Montalvo C., García-Berrocal A., Salazar C., Alexandridis G., Tabouratzis T., Machek J., Pantera L., Bem M. Deliverable D3.3, Core Monitoring Techniques and Experimental Validation and Demonstration (CORTEX), Horizon 2020 EU Framework Programm (No. 754316) European Commission; Brussels, Belgium: 2019. CORTEX Deliverable 3.3: Development of advanced signal processing techniques and evaluation results.
Dokhane A., Mylonakis A. Deliverable D3.2, Core Monitoring Techniques and Experimental Validation and Demonstration (CORTEX), Horizon 2020 EU Framework Programm (No. 754316) European Commission; Brussels, Belgium: 2019. CORTEX Deliverable 3.2: Description of simulated data.
Vidal-Ferràndiz A., Ginestar D., Carreño A., Verdú G., Demazière C. A finite element method for neutron noise analysis in hexagonal reactors. EPJ Web Conf. 2021;247:21007. doi: 10.1051/epjconf/202124721007. DOI
Vidal-Ferrandiz A., Fayez R., Ginestar D., Verdú G. Solution of the Lambda modes problem of a nuclear power reactor using an h–p finite element method. Ann. Nucl. Energy. 2014;72:338–349. doi: 10.1016/j.anucene.2014.05.026. DOI
Vidal-Ferràndiz A., Carreño A., Ginestar D., Verdú G. A block Arnoldi method for the SPN equations. Int. J. Comput. Math. 2020;97:341–357. doi: 10.1080/00207160.2019.1602768. DOI
Stacey P.W.M. Nuclear Reactor Physics. 2nd ed. WILEY-VCH Verlag GmbH & Co.KGaA; Weinheim, Germany: 2007. DOI
Pázsit I., Demazière C. Noise Techniques in Nuclear Systems. In: Cacuci D.G., editor. Handbook of Nuclear Engineering. Springer; Boston, MA, USA: 2010. pp. 1629–1737. DOI
Duncan W.J. Galerkin’s Method in Mechanics and Differential Equations. Defense Technical Information Center; Ft. Belvoir, VA, USA: 1937.
Van der Vorst H.A. Bi-CGSTAB: A Fast and Smoothly Converging Variant of Bi-CG for the Solution of Nonsymmetric Linear Systems. SIAM J. Sci. Stat. Comput. 1992;13:631–644. doi: 10.1137/0913035. DOI
Schwarzenberg-Czerny A. On matrix factorization and efficient least squares solution. Astron. Astrophys. Suppl. Ser. 1995;110:405
Ba J.L., Kiros J.R., Hinton G.E. Layer Normalization. arXiv. 20161607.06450
Kingma D.P., Ba J. Adam: A Method for Stochastic Optimization. arXiv. 20171412.6980