• This record comes from PubMed

An evolutionary perspective on marine invasions

. 2020 Mar ; 13 (3) : 479-485. [epub] 20200103

Status PubMed-not-MEDLINE Language English Country Great Britain, England Media electronic-ecollection

Document type Journal Article

Species distributions are rapidly changing as human globalization increasingly moves organisms to novel environments. In marine systems, species introductions are the result of a number of anthropogenic mechanisms, notably shipping, aquaculture/mariculture, the pet and bait trades, and the creation of canals. Marine invasions are a global threat to human and non-human populations alike and are often listed as one of the top conservation concerns worldwide, having ecological, evolutionary, and social ramifications. Evolutionary investigations of marine invasions can provide crucial insight into an introduced species' potential impacts in its new range, including: physiological adaptation and behavioral changes to exploit new environments; changes in resident populations, community interactions, and ecosystems; and severe reductions in genetic diversity that may limit evolutionary potential in the introduced range. This special issue focuses on current research advances in the evolutionary biology of marine invasions and can be broadly classified into a few major avenues of research: the evolutionary history of invasive populations, post-invasion reproductive changes, and the role of evolution in parasite introductions. Together, they demonstrate the value of investigating marine invasions from an evolutionary perspective, with benefits to both fundamental and applied evolutionary biology at local and broad scales.

See more in PubMed

Azzurro, E. , Soto, S. , Garofalo, G. , & Maynou, F. (2012). Fistularia commersonii in the Mediterranean Sea: Invasion history and distribution modeling based on presence‐only records. Biological Invasions, 15, 977–990. 10.1007/s10530-012-0344-4 DOI

Bennett, E. M. (2018). Montserrat Vilà and Philip E. Hulme (eds): Impact of biological invasions on ecosystem services. Biological Invasions, 20, 813–814. 10.1007/s10530-017-1575-1 DOI

Blackburn, T. M. (2008). Using aliens to explore how our planet works. Proceedings of the National Academy of Sciences, 105(1), 9–10. 10.1073/pnas.0711228105 PubMed DOI PMC

Blakeslee, A. M. H. , Haram, L. E. , Altman, I. , Kennedy, K. , Ruiz, G. M. , & Miller, A. W. (2019). Founder effects and species introductions: A host versus parasite perspective. Evolutionary Applications. 10.1111/eva.12868 PubMed DOI PMC

Darling, J. A. , & Carlton, J. T. (2018). A framework for understanding marine cosmopolitanism in the anthropocene. Frontiers in Marine Science, 5, 293 10.3389/fmars.2018.00293 PubMed DOI PMC

Edgell, T. C. , Lynch, B. R. , Trussell, G. C. , & Palmer, A. R. (2009). Experimental evidence for the rapid evolution of behavioral canalization in natural populations. The American Naturalist, 174(3), 434–440. 10.1086/603639 PubMed DOI

Elton, C. S. (1958). The ecology of invasions by animals and plants, 1st ed London, UK: Methuen.

Estoup, A. , & Guillemaud, T. (2010). Reconstructing routes of invasion using genetic data: Why, how and so what? Molecular Ecology, 19(19), 4113–4130. 10.1111/j.1365-294X.2010.04773.x PubMed DOI

Faillace, C. A. , & Morin, P. J. (2016). Evolution alters the consequences of invasions in experimental communities. Nature Ecology & Evolution, 1, 117 10.1038/s41559-016-0013 PubMed DOI

Gardner, J. P. A. , Zbawicka, M. , Westfall, K. M. , & Wenne, R. (2016). Invasive blue mussels threaten regional scale genetic diversity in mainland and remote offshore locations: The need for baseline data and enhanced protection in the Southern Ocean. Global Change Biology, 22(9), 3182–3195. 10.1111/gcb.13332 PubMed DOI

Geller, J. B. , Darling, J. A. , & Carlton, J. T. (2010). Genetic perspectives on marine biological invasions. Annual Review of Marine Science, 2(1), 367–393. 10.1146/annurev.marine.010908.163745 PubMed DOI

Giakoumi, S. , Pey, A. , Di Franco, A. , Francour, P. , Kizilkaya, Z. , Arda, Y. , … Guidetti, P. (2019). Exploring the relationships between marine protected areas and invasive fish in the world's most invaded sea. Ecological Applications, 29(1), e01809. PubMed

Goedknegt, M. A. , Feis, M. E. , Wegner, K. M. , Luttikhuizen, P. C. , Buschbaum, C. , Camphuysen, K. , … Thieltges, D. W. (2016). Parasites and marine invasions: Ecological and evolutionary perspectives. Journal of Sea Research, 113, 11–27. 10.1016/j.seares.2015.12.003 DOI

Green, L. , Havenhand, J. N. , & Kvarnemo, C. (2019). Evidence of rapid adaptive trait change to local salinity in the sperm of an invasive fish. Evolutionary Applications. 10.1111/eva.12859 PubMed DOI PMC

Grosholz, E. (2002). Ecological and evolutionary consequences of coastal invasions. Trends in Ecology & Evolution, 17(1), 22–27. 10.1016/S0169-5347(01)02358-8 DOI

Gutekunst, J. , Andriantsoa, R. , Falckenhayn, C. , Hanna, K. , Stein, W. , Rasamy, J. , & Lyko, F. (2018). Clonal genome evolution and rapid invasive spread of the marbled crayfish. Nature Ecology and Evolution, 2(3), 567–573. 10.1038/s41559-018-0467-9 PubMed DOI

Hamilton, W. D. , Axelrod, R. , & Tanese, R. (1990). Sexual reproduction as an adaptation to resist parasites (a review). Proceedings of the National Academy of Sciences of the United States of America, 87(9), 3566–3573. 10.1073/pnas.87.9.3566 PubMed DOI PMC

Hänfling, B. (2007). Understanding the establishment success of non‐indigenous fishes: Lessons from population genetics. Journal of Fish Biology, 71(Suppl. D), 115–135. 10.1111/j.1095-8649.2007.01474.x DOI

Hollander, J. , & Bourdeau, P. E. (2016). Evidence of weaker phenotypic plasticity by prey to novel cues from non‐native predators. Ecology and Evolution, 6(15), 5358–5365. 10.1002/ece3.2271 PubMed DOI PMC

Hudson, J. , Johannesson, K. , McQuaid, C. D. , & Rius, M. (2019). Secondary contacts and genetic admixture shape colonization by an amphiatlantic epibenthic invertebrate. Evolutionary Applications. 10.1111/eva.12893 PubMed DOI PMC

IPCC (2019) Summary for policymakers. In: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate [H.‐O. Pörtner, D.C. Roberts, V. Masson‐Delmotte, P. Zhai, M. Tignor, E. Poloczanska, K. Mintenbeck, M. Nicolai, A. Okem, J. Petzold, B. Rama, N. Weyer (eds.)]. In press. https://report.ipcc.ch/srocc/pdf/SROCC_FinalDraft_FullReport.pdf

Keller, R. P. , Geist, J. , Jeschke, J. M. , & Kühn, I. (2011). Invasive species in Europe: Ecology, status, and policy. Environmental Sciences Europe, 23(1), 23.

Keller, S. R. , & Taylor, D. R. (2010). Genomic admixture increases fitness during a biological invasion. Journal of Evolutionary Biology, 23(8), 1720–1731. 10.1111/j.1420-9101.2010.02037.x PubMed DOI

Kolbe, J. J. , Glor, R. E. , Rodríguez Schettino, L. , Lara, A. C. , Larson, A. , & Losos, J. B. (2004). Genetic variation increases during biological invasion by a Cuban lizard. Nature, 431(7005), 177–181. 10.1038/nature02807 PubMed DOI

Krehenwinkel, H. , Rödder, D. , & Tautz, D. (2015). Eco‐Genomic analysis of the poleward range expansion of the wasp spider Argiope bruennichi shows rapid adaptation and genomic admixture. Global Change Biology, 21(12), 4320–4332. 10.1111/gcb.13042 PubMed DOI

Krueger‐Hadfield, S. A. (2019). What’s ploidy got to do with it? Understanding the evolutionary ecology of macroalgal invasions necessitates incorporating life cycle complexity. Evolutionary Applications. 10.1111/eva.12843 PubMed DOI PMC

Krueger‐Hadfield, S. A. , Kollars, N. M. , Byers, J. E. , Greig, T. W. , Hammann, M. , Murray, D. C. , … Sotka, E. E. (2016). Invasion of novel habitats uncouples haplo‐diplontic life cycles. Molecular Ecology, 25(16), 3801–3816. 10.1111/mec.13718 PubMed DOI

Krueger‐Hadfield, S. A. , Stephens, T. A. , Ryan, W. H. , & Heiser, S. (2018). Everywhere you look, everywhere you go, there’s an estuary invaded by the red seaweed Gracilaria vermiculophylla (Ohmi) Papenfuss, 1967. BioInvasions Records, 7(4), 343–355. 10.3391/bir.2018.7.4.01 DOI

Le Cam, S. , Daguin‐Thiébaut, C. , Bouchemousse, S. , Engelen, A. H. , Mieszkowska, N. , & Viard, F. (2019). A genome‐wide investigation of the worldwide invader Sargassum muticum shows high success albeit (almost) no genetic diversity. Evolutionary Applications. 10.1111/eva.12837 PubMed DOI PMC

Lee, C. E. , & Gelembiuk, G. W. (2008). Evolutionary origins of invasive populations. Evolutionary Applications, 1(3), 427–448. 10.1111/j.1752-4571.2008.00039.x PubMed DOI PMC

Lee, C. E. , Posavi, M. , & Charmantier, G. (2012). Rapid evolution of body fluid regulation following independent invasions into freshwater habitats. Journal of Evolutionary Biology, 25(4), 625–633. 10.1111/j.1420-9101.2012.02459.x PubMed DOI

Lodge, D. M. , Williams, S. , MacIsaac, H. J. , Hayes, K. R. , Leung, B. , Reichard, S. , … McMichael, A. (2006). Biological invasions: Recommendations for U.S. policy and management. Ecological Applications, 16(6), 2035–2054. 10.1890/04-0922 PubMed DOI

Lovell, S. J. , Stone, S. F. , & Fernandez, L. (2006). The economic impacts of aquatic invasive species: A review of the literature. Agricultural and Resource Economics Review, 35(1), 195–208.

Lymbery, A. J. , Morine, M. , Kanani, H. G. , Beatty, S. J. , & Morgan, D. L. (2014). Co‐invaders: The effects of alien parasites on native hosts. International Journal for Parasitology: Parasites and Wildlife, 3(2), 171–177. 10.1016/j.ijppaw.2014.04.002 PubMed DOI PMC

Manier, M. K. , Lüpold, S. , Belote, J. M. , Starmer, W. T. , Berben, K. S. , Ala‐Honkola, O. , … Pitnick, S. (2013). Postcopulatory sexual selection generates speciation phenotypes in drosophila. Current Biology, 23(19), 1853–1862. 10.1016/j.cub.2013.07.086 PubMed DOI

Miller, M. P. , & Vincent, E. R. (2008). Rapid natural selection for resistance to an introduced parasite of rainbow trout. Evolutionary Applications, 1, 336–341. 10.1111/j.1752-4571.2008.00018.x PubMed DOI PMC

Moran, E. V. , & Alexander, J. M. (2014). Evolutionary responses to global change: Lessons from invasive species. Ecology Letters, 17(5), 637–649. 10.1111/ele.12262 PubMed DOI

North, A. , Pennanen, J. , Ovaskainen, O. , & Laine, A.‐L. (2011). Local adaptation in a changing world: The roles of gene‐flow, mutation, and sexual reproduction. Evolution, 65(1), 79–89. 10.1111/j.1558-5646.2010.01107.x PubMed DOI

Peeler, E. J. , Oidtmann, B. C. , Midtlyng, P. J. , Miossec, L. , & Gozlan, R. E. (2011). Non‐native aquatic animals introductions have driven disease emergence in Europe. Biological Invasions, 13(6), 1291–1303. 10.1007/s10530-010-9890-9 DOI

Piola, R. F. , & Johnston, E. L. (2006). Differential tolerance to metals among populations of the introduced bryozoan Bugula neritina. Marine Biology, 148(5), 997–1010. 10.1007/s00227-005-0156-5 DOI

Popovic, I. , Matias, A. M. A. , Bierne, N. , & Riginos, C. (2019). Twin introductions by independent invader mussel lineages are both associated with recent admixture with a native congener in Australia. Evolutionary Applications. 10.1111/eva.12857 PubMed DOI PMC

Reise, K. (1998). Pacific oysters invade mussel beds in the European Wadden Sea. Senckenbergiana Maritima, 28(4–6), 167–175. 10.1007/BF03043147 DOI

Richardson, D. M. (Ed.). (2011). Invasion ecology: The legacy of Charles Elton (First). 10.1007/s13398-014-0173-7.2 DOI

Roman, J. , & Darling, J. A. (2007). Paradox lost: Genetic diversity and the success of aquatic invasions. Trends in Ecology & Evolution, 22(9), 454–464. PubMed

Sherman, C. D. H. , Lotterhos, K. E. , Richardson, M. F. , Tepolt, C. K. , Rollins, L. A. , Palumbi, S. R. , & Miller, A. D. (2016). What are we missing about marine invasions? Filling in the gaps with evolutionary genomics. Marine Biology, 163, 198 10.1007/s00227-016-2961-4 DOI

Simon, A. , Arbiol, C. , Nielsen, E. E. , Couteau, J. , Sussarellu, R. , Burgeot, T. , … Bierne, N. (2019). Replicated anthropogenic hybridisations reveal parallel patterns of admixture in marine mussels. Evolutionary Applications. 10.1111/eva.12879 PubMed DOI PMC

Strong, D. R. , & Ayres, D. R. (2013). Ecological and evolutionary misadventures of Spartina. Annual Review of Ecology, Evolution, and Systematics, 44(1), 389–410. 10.1146/annurev-ecolsys-110512-135803 DOI

Suarez, A. V. , & Tsutsui, N. D. (2008). The evolutionary consequences of biological invasions. Molecular Ecology, 17(1), 351–360. 10.1111/j.1365-294X.2007.03456.x PubMed DOI

Tepolt, C. K. , Darling, J. A. , Blakeslee, A. M. H. , Fowler, A. E. , Torchin, M. E. , Miller, A. W. , & Ruiz, G. M. (2019). Recent introductions reveal differential susceptibility to parasitism across an evolutionary mosaic. Evolutionary Applications. 10.1111/eva.12865 PubMed DOI PMC

Tepolt, C. K. , & Somero, G. N. (2014). Master of all trades: Thermal acclimation and adaptation of cardiac function in a broadly distributed marine invasive species, the European green crab, Carcinus maenas. The Journal of Experimental Biology, 217(7), 1129–1138. 10.1242/jeb.093849 PubMed DOI

Thomsen, M. S. , Staehr, P. A. , Nyberg, C. D. , Schwærter, S. , Krause‐Jensen, D. , & Silliman, B. R. (2007). Gracilaria vermiculophylla (Ohmi) Papenfuss, 1967 (Rhodophyta, Gracilariaceae) in northern Europe, with emphasis on Danish conditions, and what to expect in the future. Aquatic Invasions, 2(2), 83–94. 10.3391/ai.2007.2.2.1 DOI

Troost, K. (2010). Causes and effects of a highly successful marine invasion: Case‐study of the introduced Pacific oyster Crassostrea gigas in continental NW European estuaries. Journal of Sea Research, 64(3), 145–165. 10.1016/j.seares.2010.02.004 DOI

Viard, F. , David, P. , & Darling, J. (2016). Marine invasions enter the genomic era: three lessons from the past, and the way forward. Current Zoology, 62(6), 629–642. 10.1093/cz/zow053 PubMed DOI PMC

Wendling, C. C. , Wegner, K. M. , & Wendling, C. C. (2015). Adaptation to enemy shifts: Rapid resistance evolution to local Vibrio spp. in invasive Pacific oysters. Proceedings. Biological Sciences/The Royal Society, 282(1804), 20142244 10.1098/rspb.2014.2244 PubMed DOI PMC

Find record

Citation metrics

Logged in users only

Archiving options

Loading data ...