An evolutionary perspective on marine invasions
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
32431730
PubMed Central
PMC7045714
DOI
10.1111/eva.12906
PII: EVA12906
Knihovny.cz E-zdroje
- Klíčová slova
- adaptation, estuarine, evolutionary history, host–parasite interactions, introduction, non‐native, reproduction, sea,
- Publikační typ
- časopisecké články MeSH
Species distributions are rapidly changing as human globalization increasingly moves organisms to novel environments. In marine systems, species introductions are the result of a number of anthropogenic mechanisms, notably shipping, aquaculture/mariculture, the pet and bait trades, and the creation of canals. Marine invasions are a global threat to human and non-human populations alike and are often listed as one of the top conservation concerns worldwide, having ecological, evolutionary, and social ramifications. Evolutionary investigations of marine invasions can provide crucial insight into an introduced species' potential impacts in its new range, including: physiological adaptation and behavioral changes to exploit new environments; changes in resident populations, community interactions, and ecosystems; and severe reductions in genetic diversity that may limit evolutionary potential in the introduced range. This special issue focuses on current research advances in the evolutionary biology of marine invasions and can be broadly classified into a few major avenues of research: the evolutionary history of invasive populations, post-invasion reproductive changes, and the role of evolution in parasite introductions. Together, they demonstrate the value of investigating marine invasions from an evolutionary perspective, with benefits to both fundamental and applied evolutionary biology at local and broad scales.
Department of Biology East Carolina University Greenville NC USA
Department of Biology Woods Hole Oceanographic Institution Woods Hole MA USA
Department of Ecology Charles University Prague Czech Republic
Zobrazit více v PubMed
Azzurro, E. , Soto, S. , Garofalo, G. , & Maynou, F. (2012). Fistularia commersonii in the Mediterranean Sea: Invasion history and distribution modeling based on presence‐only records. Biological Invasions, 15, 977–990. 10.1007/s10530-012-0344-4 DOI
Bennett, E. M. (2018). Montserrat Vilà and Philip E. Hulme (eds): Impact of biological invasions on ecosystem services. Biological Invasions, 20, 813–814. 10.1007/s10530-017-1575-1 DOI
Blackburn, T. M. (2008). Using aliens to explore how our planet works. Proceedings of the National Academy of Sciences, 105(1), 9–10. 10.1073/pnas.0711228105 PubMed DOI PMC
Blakeslee, A. M. H. , Haram, L. E. , Altman, I. , Kennedy, K. , Ruiz, G. M. , & Miller, A. W. (2019). Founder effects and species introductions: A host versus parasite perspective. Evolutionary Applications. 10.1111/eva.12868 PubMed DOI PMC
Darling, J. A. , & Carlton, J. T. (2018). A framework for understanding marine cosmopolitanism in the anthropocene. Frontiers in Marine Science, 5, 293 10.3389/fmars.2018.00293 PubMed DOI PMC
Edgell, T. C. , Lynch, B. R. , Trussell, G. C. , & Palmer, A. R. (2009). Experimental evidence for the rapid evolution of behavioral canalization in natural populations. The American Naturalist, 174(3), 434–440. 10.1086/603639 PubMed DOI
Elton, C. S. (1958). The ecology of invasions by animals and plants, 1st ed London, UK: Methuen.
Estoup, A. , & Guillemaud, T. (2010). Reconstructing routes of invasion using genetic data: Why, how and so what? Molecular Ecology, 19(19), 4113–4130. 10.1111/j.1365-294X.2010.04773.x PubMed DOI
Faillace, C. A. , & Morin, P. J. (2016). Evolution alters the consequences of invasions in experimental communities. Nature Ecology & Evolution, 1, 117 10.1038/s41559-016-0013 PubMed DOI
Gardner, J. P. A. , Zbawicka, M. , Westfall, K. M. , & Wenne, R. (2016). Invasive blue mussels threaten regional scale genetic diversity in mainland and remote offshore locations: The need for baseline data and enhanced protection in the Southern Ocean. Global Change Biology, 22(9), 3182–3195. 10.1111/gcb.13332 PubMed DOI
Geller, J. B. , Darling, J. A. , & Carlton, J. T. (2010). Genetic perspectives on marine biological invasions. Annual Review of Marine Science, 2(1), 367–393. 10.1146/annurev.marine.010908.163745 PubMed DOI
Giakoumi, S. , Pey, A. , Di Franco, A. , Francour, P. , Kizilkaya, Z. , Arda, Y. , … Guidetti, P. (2019). Exploring the relationships between marine protected areas and invasive fish in the world's most invaded sea. Ecological Applications, 29(1), e01809. PubMed
Goedknegt, M. A. , Feis, M. E. , Wegner, K. M. , Luttikhuizen, P. C. , Buschbaum, C. , Camphuysen, K. , … Thieltges, D. W. (2016). Parasites and marine invasions: Ecological and evolutionary perspectives. Journal of Sea Research, 113, 11–27. 10.1016/j.seares.2015.12.003 DOI
Green, L. , Havenhand, J. N. , & Kvarnemo, C. (2019). Evidence of rapid adaptive trait change to local salinity in the sperm of an invasive fish. Evolutionary Applications. 10.1111/eva.12859 PubMed DOI PMC
Grosholz, E. (2002). Ecological and evolutionary consequences of coastal invasions. Trends in Ecology & Evolution, 17(1), 22–27. 10.1016/S0169-5347(01)02358-8 DOI
Gutekunst, J. , Andriantsoa, R. , Falckenhayn, C. , Hanna, K. , Stein, W. , Rasamy, J. , & Lyko, F. (2018). Clonal genome evolution and rapid invasive spread of the marbled crayfish. Nature Ecology and Evolution, 2(3), 567–573. 10.1038/s41559-018-0467-9 PubMed DOI
Hamilton, W. D. , Axelrod, R. , & Tanese, R. (1990). Sexual reproduction as an adaptation to resist parasites (a review). Proceedings of the National Academy of Sciences of the United States of America, 87(9), 3566–3573. 10.1073/pnas.87.9.3566 PubMed DOI PMC
Hänfling, B. (2007). Understanding the establishment success of non‐indigenous fishes: Lessons from population genetics. Journal of Fish Biology, 71(Suppl. D), 115–135. 10.1111/j.1095-8649.2007.01474.x DOI
Hollander, J. , & Bourdeau, P. E. (2016). Evidence of weaker phenotypic plasticity by prey to novel cues from non‐native predators. Ecology and Evolution, 6(15), 5358–5365. 10.1002/ece3.2271 PubMed DOI PMC
Hudson, J. , Johannesson, K. , McQuaid, C. D. , & Rius, M. (2019). Secondary contacts and genetic admixture shape colonization by an amphiatlantic epibenthic invertebrate. Evolutionary Applications. 10.1111/eva.12893 PubMed DOI PMC
IPCC (2019) Summary for policymakers. In: IPCC Special Report on the Ocean and Cryosphere in a Changing Climate [H.‐O. Pörtner, D.C. Roberts, V. Masson‐Delmotte, P. Zhai, M. Tignor, E. Poloczanska, K. Mintenbeck, M. Nicolai, A. Okem, J. Petzold, B. Rama, N. Weyer (eds.)]. In press. https://report.ipcc.ch/srocc/pdf/SROCC_FinalDraft_FullReport.pdf
Keller, R. P. , Geist, J. , Jeschke, J. M. , & Kühn, I. (2011). Invasive species in Europe: Ecology, status, and policy. Environmental Sciences Europe, 23(1), 23.
Keller, S. R. , & Taylor, D. R. (2010). Genomic admixture increases fitness during a biological invasion. Journal of Evolutionary Biology, 23(8), 1720–1731. 10.1111/j.1420-9101.2010.02037.x PubMed DOI
Kolbe, J. J. , Glor, R. E. , Rodríguez Schettino, L. , Lara, A. C. , Larson, A. , & Losos, J. B. (2004). Genetic variation increases during biological invasion by a Cuban lizard. Nature, 431(7005), 177–181. 10.1038/nature02807 PubMed DOI
Krehenwinkel, H. , Rödder, D. , & Tautz, D. (2015). Eco‐Genomic analysis of the poleward range expansion of the wasp spider Argiope bruennichi shows rapid adaptation and genomic admixture. Global Change Biology, 21(12), 4320–4332. 10.1111/gcb.13042 PubMed DOI
Krueger‐Hadfield, S. A. (2019). What’s ploidy got to do with it? Understanding the evolutionary ecology of macroalgal invasions necessitates incorporating life cycle complexity. Evolutionary Applications. 10.1111/eva.12843 PubMed DOI PMC
Krueger‐Hadfield, S. A. , Kollars, N. M. , Byers, J. E. , Greig, T. W. , Hammann, M. , Murray, D. C. , … Sotka, E. E. (2016). Invasion of novel habitats uncouples haplo‐diplontic life cycles. Molecular Ecology, 25(16), 3801–3816. 10.1111/mec.13718 PubMed DOI
Krueger‐Hadfield, S. A. , Stephens, T. A. , Ryan, W. H. , & Heiser, S. (2018). Everywhere you look, everywhere you go, there’s an estuary invaded by the red seaweed Gracilaria vermiculophylla (Ohmi) Papenfuss, 1967. BioInvasions Records, 7(4), 343–355. 10.3391/bir.2018.7.4.01 DOI
Le Cam, S. , Daguin‐Thiébaut, C. , Bouchemousse, S. , Engelen, A. H. , Mieszkowska, N. , & Viard, F. (2019). A genome‐wide investigation of the worldwide invader Sargassum muticum shows high success albeit (almost) no genetic diversity. Evolutionary Applications. 10.1111/eva.12837 PubMed DOI PMC
Lee, C. E. , & Gelembiuk, G. W. (2008). Evolutionary origins of invasive populations. Evolutionary Applications, 1(3), 427–448. 10.1111/j.1752-4571.2008.00039.x PubMed DOI PMC
Lee, C. E. , Posavi, M. , & Charmantier, G. (2012). Rapid evolution of body fluid regulation following independent invasions into freshwater habitats. Journal of Evolutionary Biology, 25(4), 625–633. 10.1111/j.1420-9101.2012.02459.x PubMed DOI
Lodge, D. M. , Williams, S. , MacIsaac, H. J. , Hayes, K. R. , Leung, B. , Reichard, S. , … McMichael, A. (2006). Biological invasions: Recommendations for U.S. policy and management. Ecological Applications, 16(6), 2035–2054. 10.1890/04-0922 PubMed DOI
Lovell, S. J. , Stone, S. F. , & Fernandez, L. (2006). The economic impacts of aquatic invasive species: A review of the literature. Agricultural and Resource Economics Review, 35(1), 195–208.
Lymbery, A. J. , Morine, M. , Kanani, H. G. , Beatty, S. J. , & Morgan, D. L. (2014). Co‐invaders: The effects of alien parasites on native hosts. International Journal for Parasitology: Parasites and Wildlife, 3(2), 171–177. 10.1016/j.ijppaw.2014.04.002 PubMed DOI PMC
Manier, M. K. , Lüpold, S. , Belote, J. M. , Starmer, W. T. , Berben, K. S. , Ala‐Honkola, O. , … Pitnick, S. (2013). Postcopulatory sexual selection generates speciation phenotypes in drosophila. Current Biology, 23(19), 1853–1862. 10.1016/j.cub.2013.07.086 PubMed DOI
Miller, M. P. , & Vincent, E. R. (2008). Rapid natural selection for resistance to an introduced parasite of rainbow trout. Evolutionary Applications, 1, 336–341. 10.1111/j.1752-4571.2008.00018.x PubMed DOI PMC
Moran, E. V. , & Alexander, J. M. (2014). Evolutionary responses to global change: Lessons from invasive species. Ecology Letters, 17(5), 637–649. 10.1111/ele.12262 PubMed DOI
North, A. , Pennanen, J. , Ovaskainen, O. , & Laine, A.‐L. (2011). Local adaptation in a changing world: The roles of gene‐flow, mutation, and sexual reproduction. Evolution, 65(1), 79–89. 10.1111/j.1558-5646.2010.01107.x PubMed DOI
Peeler, E. J. , Oidtmann, B. C. , Midtlyng, P. J. , Miossec, L. , & Gozlan, R. E. (2011). Non‐native aquatic animals introductions have driven disease emergence in Europe. Biological Invasions, 13(6), 1291–1303. 10.1007/s10530-010-9890-9 DOI
Piola, R. F. , & Johnston, E. L. (2006). Differential tolerance to metals among populations of the introduced bryozoan Bugula neritina. Marine Biology, 148(5), 997–1010. 10.1007/s00227-005-0156-5 DOI
Popovic, I. , Matias, A. M. A. , Bierne, N. , & Riginos, C. (2019). Twin introductions by independent invader mussel lineages are both associated with recent admixture with a native congener in Australia. Evolutionary Applications. 10.1111/eva.12857 PubMed DOI PMC
Reise, K. (1998). Pacific oysters invade mussel beds in the European Wadden Sea. Senckenbergiana Maritima, 28(4–6), 167–175. 10.1007/BF03043147 DOI
Richardson, D. M. (Ed.). (2011). Invasion ecology: The legacy of Charles Elton (First). 10.1007/s13398-014-0173-7.2 DOI
Roman, J. , & Darling, J. A. (2007). Paradox lost: Genetic diversity and the success of aquatic invasions. Trends in Ecology & Evolution, 22(9), 454–464. PubMed
Sherman, C. D. H. , Lotterhos, K. E. , Richardson, M. F. , Tepolt, C. K. , Rollins, L. A. , Palumbi, S. R. , & Miller, A. D. (2016). What are we missing about marine invasions? Filling in the gaps with evolutionary genomics. Marine Biology, 163, 198 10.1007/s00227-016-2961-4 DOI
Simon, A. , Arbiol, C. , Nielsen, E. E. , Couteau, J. , Sussarellu, R. , Burgeot, T. , … Bierne, N. (2019). Replicated anthropogenic hybridisations reveal parallel patterns of admixture in marine mussels. Evolutionary Applications. 10.1111/eva.12879 PubMed DOI PMC
Strong, D. R. , & Ayres, D. R. (2013). Ecological and evolutionary misadventures of Spartina. Annual Review of Ecology, Evolution, and Systematics, 44(1), 389–410. 10.1146/annurev-ecolsys-110512-135803 DOI
Suarez, A. V. , & Tsutsui, N. D. (2008). The evolutionary consequences of biological invasions. Molecular Ecology, 17(1), 351–360. 10.1111/j.1365-294X.2007.03456.x PubMed DOI
Tepolt, C. K. , Darling, J. A. , Blakeslee, A. M. H. , Fowler, A. E. , Torchin, M. E. , Miller, A. W. , & Ruiz, G. M. (2019). Recent introductions reveal differential susceptibility to parasitism across an evolutionary mosaic. Evolutionary Applications. 10.1111/eva.12865 PubMed DOI PMC
Tepolt, C. K. , & Somero, G. N. (2014). Master of all trades: Thermal acclimation and adaptation of cardiac function in a broadly distributed marine invasive species, the European green crab, Carcinus maenas. The Journal of Experimental Biology, 217(7), 1129–1138. 10.1242/jeb.093849 PubMed DOI
Thomsen, M. S. , Staehr, P. A. , Nyberg, C. D. , Schwærter, S. , Krause‐Jensen, D. , & Silliman, B. R. (2007). Gracilaria vermiculophylla (Ohmi) Papenfuss, 1967 (Rhodophyta, Gracilariaceae) in northern Europe, with emphasis on Danish conditions, and what to expect in the future. Aquatic Invasions, 2(2), 83–94. 10.3391/ai.2007.2.2.1 DOI
Troost, K. (2010). Causes and effects of a highly successful marine invasion: Case‐study of the introduced Pacific oyster Crassostrea gigas in continental NW European estuaries. Journal of Sea Research, 64(3), 145–165. 10.1016/j.seares.2010.02.004 DOI
Viard, F. , David, P. , & Darling, J. (2016). Marine invasions enter the genomic era: three lessons from the past, and the way forward. Current Zoology, 62(6), 629–642. 10.1093/cz/zow053 PubMed DOI PMC
Wendling, C. C. , Wegner, K. M. , & Wendling, C. C. (2015). Adaptation to enemy shifts: Rapid resistance evolution to local Vibrio spp. in invasive Pacific oysters. Proceedings. Biological Sciences/The Royal Society, 282(1804), 20142244 10.1098/rspb.2014.2244 PubMed DOI PMC