Pseudodominant Nanophthalmos in a Roma Family Caused by a Novel PRSS56 Variant
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
32454992
PubMed Central
PMC7212339
DOI
10.1155/2020/6807809
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
BACKGROUND: The aim of the study was to identify the molecular genetic cause of two different Mendelian traits with ocular involvement present in the members of a single consanguineous Czech Roma family. METHODS: We have performed ocular examination and review of medical records in two individuals diagnosed with nanophthalmos (proband and her father) and one individual followed for bilateral congenital cataract and microcornea (uncle of the proband). DNA of subjects with nanophthalmos was analysed by exome sequencing. Sanger sequencing was applied for targeted screening of potentially pathogenic variants and to follow segregation of identified variants within the family. RESULTS: A homozygous variant c.1509G>C; p.(Met503Ile), in PRSS56 was found in the two individuals affected with nanophthalmos. The change was absent from the gnomAD dataset, but two out of 118 control Roma individuals were also shown to be heterozygous carriers. Analysis of single nucleotide polymorphisms in linkage disequilibrium with the c.1509G>C in PRSS56 suggested a shared chromosomal segment. The nanophthalmos phenotype, characterized in detail in the younger individual, encompassed bilateral corneal steepening, retinal folds, buried optic head drusen, and restricted visual fields, but no signs of retinal dystrophy. A known pathogenic founder CTDP1 variant c.863+389C>T in a homozygous state was identified in the other family member confirming the suspected diagnosis of congenital cataracts, facial dysmorphism, and demyelinating neuropathy syndrome. CONCLUSIONS: Herein, we report the first occurrence of nanophthalmos in the Roma population. We have identified pseudodominant inheritance for this phenotype caused by a novel variant in PRSS56, representing a possible founder effect. Despite advances in genetic technologies such as exome sequencing, careful phenotype evaluation in patients from an isolated population, along with an awareness of population-specific founder effects, is necessary to ensure that accurate molecular diagnoses are made.
Zobrazit více v PubMed
Kalaydjieva L., Morar B., Chaix R., Tang H. A newly discovered founder population: the Roma/Gypsies. Bioessays. 2005;27(10):1084–1094. doi: 10.1002/bies.20287. PubMed DOI
Relhan N., Jalali S., Pehre N., Rao H. L., Manusani U., Bodduluri L. High-hyperopia database, part I: clinical characterisation including morphometric (biometric) differentiation of posterior microphthalmos from nanophthalmos. Eye. 2016;30(1):120–126. doi: 10.1038/eye.2015.206. PubMed DOI PMC
Nowilaty S. R., Khan A. O., Aldahmesh M. A., Tabbara K. F., Al-Amri A., Alkuraya F. S. Biometric and molecular characterization of clinically diagnosed posterior microphthalmos. American Journal of Ophthalmology. 2013;155(2):361–372. doi: 10.1016/j.ajo.2012.08.016. PubMed DOI
Said M. B., Chouchène E., Salem S. B., et al. Posterior microphthalmia and nanophthalmia in Tunisia caused by a founder c.1059_1066insC mutation of the PRSS56 gene. Gene. 2013;528(2):288–294. doi: 10.1016/j.gene.2013.06.045. PubMed DOI
Garnai S. J., Brinkmeier M. L., Emery B., et al. Variants in myelin regulatory factor (MYRF) cause autosomal dominant and syndromic nanophthalmos in humans and retinal degeneration in mice. PLoS Genetics. 2019;15(5) doi: 10.1371/journal.pgen.1008130.e1008130 PubMed DOI PMC
Li H., Wang J.-X., Wang C.-Y., et al. Localization of a novel gene for congenital nonsyndromic simple microphthalmia to chromosome 2q11-14. Human Genetics. 2008;122(6):589–593. doi: 10.1007/s00439-007-0435-y. PubMed DOI
Awadalla M. S., Burdon K. P., Souzeau E., et al. Mutation in TMEM98 in a large white kindred with autosomal dominant nanophthalmos linked to 17p12-q12. JAMA Ophthalmology. 2014;132(8):970–977. doi: 10.1001/jamaophthalmol.2014.946. PubMed DOI
Sundin O. H., Leppert G. S., Silva E. D., et al. Extreme hyperopia is the result of null mutations in MFRP, which encodes a Frizzled-related protein. Proceedings of the National Academy of Sciences. 2005;102(27):9553–9558. doi: 10.1073/pnas.0501451102. PubMed DOI PMC
Gal A., Rau I., El Matri L., et al. Autosomal-recessive posterior microphthalmos is caused by mutations in PRSS56, a gene encoding a trypsin-like serine protease. The American Journal of Human Genetics. 2011;88(3):382–390. doi: 10.1016/j.ajhg.2011.02.006. PubMed DOI PMC
Carricondo P. C., Andrade T., Prasov L., Ayres B. M., Moroi S. E. Nanophthalmos: a review of the clinical spectrum and genetics. Journal of Ophthalmology. 2018;2018:9. doi: 10.1155/2018/2735465.2735465 PubMed DOI PMC
Tournev I., Kalaydjieva L., Youl B., et al. Congenital cataracts facial dysmorphism neuropathy syndrome, a novel complex genetic disease in Balkan Gypsies: clinical and electrophysiological observations. Annals of Neurology. 1999;45(6):742–750. doi: 10.1002/1531-8249(199906)45:6<742::aid-ana8>3.0.co;2-n. PubMed DOI
Varon R., Gooding R., Steglich C., et al. Partial deficiency of the C-terminal-domain phosphatase of RNA polymerase II is associated with congenital cataracts facial dysmorphism neuropathy syndrome. Nature Genetics. 2003;35(2):185–189. doi: 10.1038/ng1243. PubMed DOI
Angelicheva D., Turnev I., Dye D., Chandler D., Thomas P. K., Kalaydjieva L. Congenital cataracts facial dysmorphism neuropathy (CCFDN) syndrome: a novel developmental disorder in Gypsies maps to 18qter. European Journal of Human Genetics. 1999;7(5):560–566. doi: 10.1038/sj.ejhg.5200319. PubMed DOI
Chamova T., Zlatareva D., Raycheva M., Bichev S., Kalaydjieva L., Tournev I. Cognitive impairment and brain imaging characteristics of patients with congenital cataracts, facial dysmorphism, neuropathy syndrome. Behavioural Neurology. 2015;2015:8. doi: 10.1155/2015/639539.639539 PubMed DOI PMC
Lassuthova P., Šišková D., Haberlová J., Sakmaryová I., Filouš A., Seeman P. Congenital cataract, facial dysmorphism and demyelinating neuropathy (CCFDN) in 10 Czech gypsy children - frequent and underestimated cause of disability among Czech gypsies. Orphanet Journal of Rare Diseases. 2014;9(1):p. 46. doi: 10.1186/1750-1172-9-46. PubMed DOI PMC
Li H., Durbin R. Fast and accurate short read alignment with burrows-wheeler transform. Bioinformatics. 2009;25(14):1754–1760. doi: 10.1093/bioinformatics/btp324. PubMed DOI PMC
Van der Auwera G. A., Carneiro M. O., Hartl C., et al. From FastQ data to high confidence variant calls: the Genome Analysis Toolkit best practices pipeline. Current Protocols in Bioinformatics. 2013;43(1):1–33. doi: 10.1002/0471250953.bi1110s43. PubMed DOI PMC
Lek M., Karczewski K. J., Minikel E. V., et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature. 2016;536(7616):285–291. doi: 10.1038/nature19057. PubMed DOI PMC
Patel A., Hayward J. D., Tailor V., et al. The oculome panel test. Ophthalmology. 2019;126(6):888–907. doi: 10.1016/j.ophtha.2018.12.050. PubMed DOI
Notredame C., Higgins D. G., Heringa J. T-coffee: a novel method for fast and accurate multiple sequence alignment 1 1 edited by J. Thornton. Journal of Molecular Biology. 2000;302(1):205–217. doi: 10.1006/jmbi.2000.4042. PubMed DOI
Richards S., Aziz N., Bale S., et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genetics in Medicine. 2015;17(5):405–423. doi: 10.1038/gim.2015.30. PubMed DOI PMC
Kleinberger J., Maloney K. A., Pollin T. I., Jeng L. J. B. An openly available online tool for implementing the ACMG/AMP standards and guidelines for the interpretation of sequence variants. Genetics in Medicine. 2016;18(11):p. 1165. doi: 10.1038/gim.2016.13. PubMed DOI PMC
Thorvaldsdottir H., Robinson J. T., Mesirov J. P. Integrative genomics viewer (IGV): high-performance genomics data visualization and exploration. Briefings in Bioinformatics. 2013;14(2):178–192. doi: 10.1093/bib/bbs017. PubMed DOI PMC
Ahmadi Hosseini S. M., Abolbashari F., Mohidin N. Anterior segment parameters in Indian young adults using the Pentacam. International Ophthalmology. 2013;33(6):621–626. doi: 10.1007/s10792-013-9747-1. PubMed DOI
Bhardwaj V., Rajeshbhai G. P. Axial length, anterior chamber depth-a study in different age groups and refractive errors. Journal of Clinical and Diagnostic Research: JCDR. 2013;7(7):2211–2212. doi: 10.7860/JCDR/2013/7015.3473. PubMed DOI PMC
Gilani F., Cortese M., Ambrósio R. R., Jr., et al. Comprehensive anterior segment normal values generated by rotating Scheimpflug tomography. Journal of Cataract & Refractive Surgery. 2013;39(11):1707–1712. doi: 10.1016/j.jcrs.2013.05.042. PubMed DOI
Guo C., Zhao Z., Chen D., et al. Detection of clinically relevant genetic variants in Chinese patients with nanophthalmos by trio-based whole-genome sequencing study. Investigative Opthalmology & Visual Science. 2019;60(8):2904–2913. doi: 10.1167/iovs.18-26275. PubMed DOI
Morar B., Gresham D., Angelicheva D., et al. Mutation history of the roma/gypsies. The American Journal of Human Genetics. 2004;75(4):596–609. doi: 10.1086/424759. PubMed DOI PMC
Rohlfs R. V., Weir B. S. Distributions of Hardy-Weinberg equilibrium test statistics. Genetics. 2008;180(3):1609–1616. doi: 10.1534/genetics.108.088005. PubMed DOI PMC
Ehler E., Vanek D. Forensic genetic analyses in isolated populations with examples of central European Valachs and Roma. Journal of Forensic and Legal Medicine. 2017;48:46–52. doi: 10.1016/j.jflm.2017.04.001. PubMed DOI
Soundararajan R., Won J., Stearns T. M., et al. Gene profiling of postnatal Mfrprd6 mutant eyes reveals differential accumulation of Prss56, visual cycle and phototransduction mRNAs. PLoS One. 2014;9(10) doi: 10.1371/journal.pone.0110299.e110299 PubMed DOI PMC
Nowilaty S. R., Mousa A., Ghazi N. G. The posterior pole and papillomacular fold in posterior microphthalmos. Ophthalmology. 2013;120(8):1656–1664. doi: 10.1016/j.ophtha.2013.01.026. PubMed DOI
Jung K. I., Yang J. W., Lee Y. C., Kim S.-Y. Cataract surgery in eyes with nanophthalmos and relative anterior microphthalmos. American Journal of Ophthalmology. 2012;153(6):1161–1168. doi: 10.1016/j.ajo.2011.12.006. PubMed DOI
Chambers R. S., Dahmus M. E. Purification and characterization of a phosphatase from HeLa cells which dephosphorylates the C-terminal domain of RNA polymerase II. The Journal of Biological Chemistry. 1994;269(269):26243–26248. PubMed
Axenfeld-Rieger syndrome: more than meets the eye