Pseudodominant Nanophthalmos in a Roma Family Caused by a Novel PRSS56 Variant

. 2020 ; 2020 () : 6807809. [epub] 20200510

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32454992

BACKGROUND: The aim of the study was to identify the molecular genetic cause of two different Mendelian traits with ocular involvement present in the members of a single consanguineous Czech Roma family. METHODS: We have performed ocular examination and review of medical records in two individuals diagnosed with nanophthalmos (proband and her father) and one individual followed for bilateral congenital cataract and microcornea (uncle of the proband). DNA of subjects with nanophthalmos was analysed by exome sequencing. Sanger sequencing was applied for targeted screening of potentially pathogenic variants and to follow segregation of identified variants within the family. RESULTS: A homozygous variant c.1509G>C; p.(Met503Ile), in PRSS56 was found in the two individuals affected with nanophthalmos. The change was absent from the gnomAD dataset, but two out of 118 control Roma individuals were also shown to be heterozygous carriers. Analysis of single nucleotide polymorphisms in linkage disequilibrium with the c.1509G>C in PRSS56 suggested a shared chromosomal segment. The nanophthalmos phenotype, characterized in detail in the younger individual, encompassed bilateral corneal steepening, retinal folds, buried optic head drusen, and restricted visual fields, but no signs of retinal dystrophy. A known pathogenic founder CTDP1 variant c.863+389C>T in a homozygous state was identified in the other family member confirming the suspected diagnosis of congenital cataracts, facial dysmorphism, and demyelinating neuropathy syndrome. CONCLUSIONS: Herein, we report the first occurrence of nanophthalmos in the Roma population. We have identified pseudodominant inheritance for this phenotype caused by a novel variant in PRSS56, representing a possible founder effect. Despite advances in genetic technologies such as exome sequencing, careful phenotype evaluation in patients from an isolated population, along with an awareness of population-specific founder effects, is necessary to ensure that accurate molecular diagnoses are made.

Zobrazit více v PubMed

Kalaydjieva L., Morar B., Chaix R., Tang H. A newly discovered founder population: the Roma/Gypsies. Bioessays. 2005;27(10):1084–1094. doi: 10.1002/bies.20287. PubMed DOI

Relhan N., Jalali S., Pehre N., Rao H. L., Manusani U., Bodduluri L. High-hyperopia database, part I: clinical characterisation including morphometric (biometric) differentiation of posterior microphthalmos from nanophthalmos. Eye. 2016;30(1):120–126. doi: 10.1038/eye.2015.206. PubMed DOI PMC

Nowilaty S. R., Khan A. O., Aldahmesh M. A., Tabbara K. F., Al-Amri A., Alkuraya F. S. Biometric and molecular characterization of clinically diagnosed posterior microphthalmos. American Journal of Ophthalmology. 2013;155(2):361–372. doi: 10.1016/j.ajo.2012.08.016. PubMed DOI

Said M. B., Chouchène E., Salem S. B., et al. Posterior microphthalmia and nanophthalmia in Tunisia caused by a founder c.1059_1066insC mutation of the PRSS56 gene. Gene. 2013;528(2):288–294. doi: 10.1016/j.gene.2013.06.045. PubMed DOI

Garnai S. J., Brinkmeier M. L., Emery B., et al. Variants in myelin regulatory factor (MYRF) cause autosomal dominant and syndromic nanophthalmos in humans and retinal degeneration in mice. PLoS Genetics. 2019;15(5) doi: 10.1371/journal.pgen.1008130.e1008130 PubMed DOI PMC

Li H., Wang J.-X., Wang C.-Y., et al. Localization of a novel gene for congenital nonsyndromic simple microphthalmia to chromosome 2q11-14. Human Genetics. 2008;122(6):589–593. doi: 10.1007/s00439-007-0435-y. PubMed DOI

Awadalla M. S., Burdon K. P., Souzeau E., et al. Mutation in TMEM98 in a large white kindred with autosomal dominant nanophthalmos linked to 17p12-q12. JAMA Ophthalmology. 2014;132(8):970–977. doi: 10.1001/jamaophthalmol.2014.946. PubMed DOI

Sundin O. H., Leppert G. S., Silva E. D., et al. Extreme hyperopia is the result of null mutations in MFRP, which encodes a Frizzled-related protein. Proceedings of the National Academy of Sciences. 2005;102(27):9553–9558. doi: 10.1073/pnas.0501451102. PubMed DOI PMC

Gal A., Rau I., El Matri L., et al. Autosomal-recessive posterior microphthalmos is caused by mutations in PRSS56, a gene encoding a trypsin-like serine protease. The American Journal of Human Genetics. 2011;88(3):382–390. doi: 10.1016/j.ajhg.2011.02.006. PubMed DOI PMC

Carricondo P. C., Andrade T., Prasov L., Ayres B. M., Moroi S. E. Nanophthalmos: a review of the clinical spectrum and genetics. Journal of Ophthalmology. 2018;2018:9. doi: 10.1155/2018/2735465.2735465 PubMed DOI PMC

Tournev I., Kalaydjieva L., Youl B., et al. Congenital cataracts facial dysmorphism neuropathy syndrome, a novel complex genetic disease in Balkan Gypsies: clinical and electrophysiological observations. Annals of Neurology. 1999;45(6):742–750. doi: 10.1002/1531-8249(199906)45:6<742::aid-ana8>3.0.co;2-n. PubMed DOI

Varon R., Gooding R., Steglich C., et al. Partial deficiency of the C-terminal-domain phosphatase of RNA polymerase II is associated with congenital cataracts facial dysmorphism neuropathy syndrome. Nature Genetics. 2003;35(2):185–189. doi: 10.1038/ng1243. PubMed DOI

Angelicheva D., Turnev I., Dye D., Chandler D., Thomas P. K., Kalaydjieva L. Congenital cataracts facial dysmorphism neuropathy (CCFDN) syndrome: a novel developmental disorder in Gypsies maps to 18qter. European Journal of Human Genetics. 1999;7(5):560–566. doi: 10.1038/sj.ejhg.5200319. PubMed DOI

Chamova T., Zlatareva D., Raycheva M., Bichev S., Kalaydjieva L., Tournev I. Cognitive impairment and brain imaging characteristics of patients with congenital cataracts, facial dysmorphism, neuropathy syndrome. Behavioural Neurology. 2015;2015:8. doi: 10.1155/2015/639539.639539 PubMed DOI PMC

Lassuthova P., Šišková D., Haberlová J., Sakmaryová I., Filouš A., Seeman P. Congenital cataract, facial dysmorphism and demyelinating neuropathy (CCFDN) in 10 Czech gypsy children - frequent and underestimated cause of disability among Czech gypsies. Orphanet Journal of Rare Diseases. 2014;9(1):p. 46. doi: 10.1186/1750-1172-9-46. PubMed DOI PMC

Li H., Durbin R. Fast and accurate short read alignment with burrows-wheeler transform. Bioinformatics. 2009;25(14):1754–1760. doi: 10.1093/bioinformatics/btp324. PubMed DOI PMC

Van der Auwera G. A., Carneiro M. O., Hartl C., et al. From FastQ data to high confidence variant calls: the Genome Analysis Toolkit best practices pipeline. Current Protocols in Bioinformatics. 2013;43(1):1–33. doi: 10.1002/0471250953.bi1110s43. PubMed DOI PMC

Lek M., Karczewski K. J., Minikel E. V., et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature. 2016;536(7616):285–291. doi: 10.1038/nature19057. PubMed DOI PMC

Patel A., Hayward J. D., Tailor V., et al. The oculome panel test. Ophthalmology. 2019;126(6):888–907. doi: 10.1016/j.ophtha.2018.12.050. PubMed DOI

Notredame C., Higgins D. G., Heringa J. T-coffee: a novel method for fast and accurate multiple sequence alignment 1 1 edited by J. Thornton. Journal of Molecular Biology. 2000;302(1):205–217. doi: 10.1006/jmbi.2000.4042. PubMed DOI

Richards S., Aziz N., Bale S., et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genetics in Medicine. 2015;17(5):405–423. doi: 10.1038/gim.2015.30. PubMed DOI PMC

Kleinberger J., Maloney K. A., Pollin T. I., Jeng L. J. B. An openly available online tool for implementing the ACMG/AMP standards and guidelines for the interpretation of sequence variants. Genetics in Medicine. 2016;18(11):p. 1165. doi: 10.1038/gim.2016.13. PubMed DOI PMC

Thorvaldsdottir H., Robinson J. T., Mesirov J. P. Integrative genomics viewer (IGV): high-performance genomics data visualization and exploration. Briefings in Bioinformatics. 2013;14(2):178–192. doi: 10.1093/bib/bbs017. PubMed DOI PMC

Ahmadi Hosseini S. M., Abolbashari F., Mohidin N. Anterior segment parameters in Indian young adults using the Pentacam. International Ophthalmology. 2013;33(6):621–626. doi: 10.1007/s10792-013-9747-1. PubMed DOI

Bhardwaj V., Rajeshbhai G. P. Axial length, anterior chamber depth-a study in different age groups and refractive errors. Journal of Clinical and Diagnostic Research: JCDR. 2013;7(7):2211–2212. doi: 10.7860/JCDR/2013/7015.3473. PubMed DOI PMC

Gilani F., Cortese M., Ambrósio R. R., Jr., et al. Comprehensive anterior segment normal values generated by rotating Scheimpflug tomography. Journal of Cataract & Refractive Surgery. 2013;39(11):1707–1712. doi: 10.1016/j.jcrs.2013.05.042. PubMed DOI

Guo C., Zhao Z., Chen D., et al. Detection of clinically relevant genetic variants in Chinese patients with nanophthalmos by trio-based whole-genome sequencing study. Investigative Opthalmology & Visual Science. 2019;60(8):2904–2913. doi: 10.1167/iovs.18-26275. PubMed DOI

Morar B., Gresham D., Angelicheva D., et al. Mutation history of the roma/gypsies. The American Journal of Human Genetics. 2004;75(4):596–609. doi: 10.1086/424759. PubMed DOI PMC

Rohlfs R. V., Weir B. S. Distributions of Hardy-Weinberg equilibrium test statistics. Genetics. 2008;180(3):1609–1616. doi: 10.1534/genetics.108.088005. PubMed DOI PMC

Ehler E., Vanek D. Forensic genetic analyses in isolated populations with examples of central European Valachs and Roma. Journal of Forensic and Legal Medicine. 2017;48:46–52. doi: 10.1016/j.jflm.2017.04.001. PubMed DOI

Soundararajan R., Won J., Stearns T. M., et al. Gene profiling of postnatal Mfrprd6 mutant eyes reveals differential accumulation of Prss56, visual cycle and phototransduction mRNAs. PLoS One. 2014;9(10) doi: 10.1371/journal.pone.0110299.e110299 PubMed DOI PMC

Nowilaty S. R., Mousa A., Ghazi N. G. The posterior pole and papillomacular fold in posterior microphthalmos. Ophthalmology. 2013;120(8):1656–1664. doi: 10.1016/j.ophtha.2013.01.026. PubMed DOI

Jung K. I., Yang J. W., Lee Y. C., Kim S.-Y. Cataract surgery in eyes with nanophthalmos and relative anterior microphthalmos. American Journal of Ophthalmology. 2012;153(6):1161–1168. doi: 10.1016/j.ajo.2011.12.006. PubMed DOI

Chambers R. S., Dahmus M. E. Purification and characterization of a phosphatase from HeLa cells which dephosphorylates the C-terminal domain of RNA polymerase II. The Journal of Biological Chemistry. 1994;269(269):26243–26248. PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...