Axenfeld-Rieger syndrome: more than meets the eye

. 2023 Apr ; 60 (4) : 368-379. [epub] 20220726

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, N.I.H., Extramural

Perzistentní odkaz   https://www.medvik.cz/link/pmid35882526

Grantová podpora
R01 EY015518 NEI NIH HHS - United States
R01 EY025718 NEI NIH HHS - United States
R01 EY033742 NEI NIH HHS - United States
UL1 RR031973 NCRR NIH HHS - United States
R01 EY012994 NEI NIH HHS - United States
R01 EY019497 NEI NIH HHS - United States

BACKGROUND: Axenfeld-Rieger syndrome (ARS) is characterised by typical anterior segment anomalies, with or without systemic features. The discovery of causative genes identified ARS subtypes with distinct phenotypes, but our understanding is incomplete, complicated by the rarity of the condition. METHODS: Genetic and phenotypic characterisation of the largest reported ARS cohort through comprehensive genetic and clinical data analyses. RESULTS: 128 individuals with causative variants in PITX2 or FOXC1, including 81 new cases, were investigated. Ocular anomalies showed significant overlap but with broader variability and earlier onset of glaucoma for FOXC1-related ARS. Systemic anomalies were seen in all individuals with PITX2-related ARS and the majority of those with FOXC1-related ARS. PITX2-related ARS demonstrated typical umbilical anomalies and dental microdontia/hypodontia/oligodontia, along with a novel high rate of Meckel diverticulum. FOXC1-related ARS exhibited characteristic hearing loss and congenital heart defects as well as previously unrecognised phenotypes of dental enamel hypoplasia and/or crowding, a range of skeletal and joint anomalies, hypotonia/early delay and feeding disorders with structural oesophageal anomalies in some. Brain imaging revealed highly penetrant white matter hyperintensities, colpocephaly/ventriculomegaly and frequent arachnoid cysts. The expanded phenotype of FOXC1-related ARS identified here was found to fully overlap features of De Hauwere syndrome. The results were used to generate gene-specific management plans for the two types of ARS. CONCLUSION: Since clinical features of ARS vary significantly based on the affected gene, it is critical that families are provided with a gene-specific diagnosis, PITX2-related ARS or FOXC1-related ARS. De Hauwere syndrome is proposed to be a FOXC1opathy.

Byers Eye Institute Department of Ophthalmology Stanford University and Stanford Children's Health Stanford California USA

Center for Development Behavior and Genetics SUNY Upstate Medical University Syracuse New York USA

Department of Biology and Medical Genetics 2nd Faculty of Medicine Charles University and General University Hospital Prague Prague Czech Republic

Department of Cell Biology and Human Anatomy UC Davis School of Medicine Davis California USA

Department of Clinical Genetics Alberta Children's Hospital Calgary Alberta Canada

Department of Family Medicine McMaster University Hamilton Ontario Canada

Department of Medical Genetics Spectrum Health Grand Rapids Michigan USA

Department of Ophthalmology 1st Faculty of Medicine Charles University and General University Hospital Prague Prague Czech Republic

Department of Ophthalmology Medical College of Wisconsin Milwaukee Wisconsin USA

Department of Ophthalmology School of Medicine Ankara University Ankara Turkey

Department of Pediatric Radiology Medical College of Wisconsin and Children's Wisconsin Milwaukee Wisconsin USA

Department of Pediatrics and Children's Research Institute Medical College of Wisconsin and Children's Wisconsin Milwaukee Wisconsin USA

Department of Pediatrics and Inherited Metabolic Disorders 1st Faculty of Medicine Charles University and General University Hospital Prague Prague Czech Republic

Department of Pediatrics Geisinger Medical Center Danville Pennsylvania USA

Department of Pediatrics University of Iowa Iowa City Iowa USA

Department of Radiology 1st Faculty of Medicine Charles University and General University Hospital Prague Prague Czech Republic

GeneDx Gaithersburg Maryland USA

Gennet Centre for Fetal Medicine and Reproductive Genetics Prague Czech Republic

Pediatric Ophthalmology and Ocular Genetics Flaum Eye Institute Golisano Children's Hospital and University of Rochester Rochester New York USA

Unidad de Genética División de Pediatría Facultad de Medicina Pontificia Universidad Católica de Chile Santiago Chile

Zobrazit více v PubMed

Reis LM, Semina EV. Genetics of anterior segment dysgenesis disorders. Curr Opin Ophthalmol 2011;22:314–24. 10.1097/ICU.0b013e328349412b PubMed DOI PMC

Reis LM, Tyler RC, Volkmann Kloss BA, Schilter KF, Levin AV, Lowry RB, Zwijnenburg PJG, Stroh E, Broeckel U, Murray JC, Semina EV. PITX2 and FOXC1 spectrum of mutations in ocular syndromes. Eur J Hum Genet 2012;20:1224–33. 10.1038/ejhg.2012.80 PubMed DOI PMC

Axenfeld T. Embryotoxon corneae posterius. Ber Deutsch Ophthalmol Ges 1920;42:301–2.

Rieger H. Verlagerung und Schlitzform der Pupille mit Hypoplasie des Irisvorderblattes. Z Augenheilkd 1934;84:98–103.

Shields MB. Axenfeld-Rieger syndrome: a theory of mechanism and distinctions from the iridocorneal endothelial syndrome. Trans Am Ophthalmol Soc 1983;81:736–84. PubMed PMC

Reis LM, Semina EV. PITX2 and PITX3: Axenfeld- Rieger Syndrome, Anterior Segment Dysgenesis, Posterior Polar Congenital Cataract (CPP4), and Microphthalmia with Neurological Impairment. In: Erickson RP, Wynshaw-Boris AJ, eds. Epstein’s Inborn Errors of Development: The Molecular Basis of Clinical Disorders of Morphogenesis. Third ed. Oxford Press, 2016: 727–32.

Phillips JC, del Bono EA, Haines JL, Pralea AM, Cohen JS, Greff LJ, Wiggs JL. A second locus for Rieger syndrome maps to chromosome 13q14. Am J Hum Genet 1996;59:613–9. PubMed PMC

Berry FB, Saleem RA, Walter MA. FOXC1 transcriptional regulation is mediated by N- and C-terminal activation domains and contains a phosphorylated transcriptional inhibitory domain. J Biol Chem 2002;277:10292–7. 10.1074/jbc.M110266200 PubMed DOI

Thau A, Lloyd M, Freedman S, Beck A, Grajewski A, Levin AV. New classification system for pediatric glaucoma: implications for clinical care and a research registry. Curr Opin Ophthalmol 2018;29:385–94. 10.1097/ICU.0000000000000516 PubMed DOI

NCBI . StatPearls. Treasure Island, FL, 2022. https://www.ncbi.nlm.nih.gov/books/NBK430685/

Reis LM, Tyler RC, Schneider A, Bardakjian T, Stoler JM, Melancon SB, Semina EV. FOXE3 plays a significant role in autosomal recessive microphthalmia. Am J Med Genet A 2010;152A:582–90. 10.1002/ajmg.a.33257 PubMed DOI PMC

Reis LM, Sorokina EA, Thompson S, Muheisen S, Velinov M, Zamora C, Aylsworth AS, Semina EV. De novo missense variants in WDR37 cause a severe multisystemic syndrome. Am J Hum Genet 2019;105:425–33. 10.1016/j.ajhg.2019.06.015 PubMed DOI PMC

Dudakova L, Skalicka P, Ulmanová O, Hlozanek M, Stranecky V, Malinka F, Vincent AL, Liskova P. Pseudodominant Nanophthalmos in a Roma Family Caused by a Novel PRSS56 Variant. J Ophthalmol 2020;2020:6807809:1–9. 10.1155/2020/6807809 PubMed DOI PMC

Volkmann BA, Zinkevich NS, Mustonen A, Schilter KF, Bosenko DV, Reis LM, Broeckel U, Link BA, Semina EV. Potential novel mechanism for Axenfeld-Rieger syndrome: deletion of a distant region containing regulatory elements of PITX2. Invest Ophthalmol Vis Sci 2011;52:1450–9. 10.1167/iovs.10-6060 PubMed DOI PMC

Schilter KF, Reis LM, Schneider A, Bardakjian TM, Abdul-Rahman O, Kozel BA, Zimmerman HH, Broeckel U, Semina EV. Whole-Genome copy number variation analysis in anophthalmia and microphthalmia. Clin Genet 2013;84:473–81. 10.1111/cge.12202 PubMed DOI PMC

Amendt BA, Semina EV, Alward WL. Rieger syndrome: a clinical, molecular, and biochemical analysis. Cell Mol Life Sci 2000;57:1652–66. 10.1007/PL00000647 PubMed DOI PMC

Karczewski KJ, Francioli LC, Tiao G, Cummings BB, Alföldi J, Wang Q, Collins RL, Laricchia KM, Ganna A, Birnbaum DP, Gauthier LD, Brand H, Solomonson M, Watts NA, Rhodes D, Singer-Berk M, England EM, Seaby EG, Kosmicki JA, Walters RK, Tashman K, Farjoun Y, Banks E, Poterba T, Wang A, Seed C, Whiffin N, Chong JX, Samocha KE, Pierce-Hoffman E, Zappala Z, O'Donnell-Luria AH, Minikel EV, Weisburd B, Lek M, Ware JS, Vittal C, Armean IM, Bergelson L, Cibulskis K, Connolly KM, Covarrubias M, Donnelly S, Ferriera S, Gabriel S, Gentry J, Gupta N, Jeandet T, Kaplan D, Llanwarne C, Munshi R, Novod S, Petrillo N, Roazen D, Ruano-Rubio V, Saltzman A, Schleicher M, Soto J, Tibbetts K, Tolonen C, Wade G, Talkowski ME, Neale BM, Daly MJ, MacArthur DG, Genome Aggregation Database Consortium . The mutational constraint spectrum quantified from variation in 141,456 humans. Nature 2020;581:434–43. 10.1038/s41586-020-2308-7 PubMed DOI PMC

McLaren W, Gil L, Hunt SE, Riat HS, Ritchie GRS, Thormann A, Flicek P, Cunningham F. The Ensembl variant effect predictor. Genome Biol 2016;17:122. 10.1186/s13059-016-0974-4 PubMed DOI PMC

Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, Grody WW, Hegde M, Lyon E, Spector E, Voelkerding K, Rehm HL, ACMG Laboratory Quality Assurance Committee . Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of medical genetics and genomics and the association for molecular pathology. Genet Med 2015;17:405–24. 10.1038/gim.2015.30 PubMed DOI PMC

Hendee KE, Sorokina EA, Muheisen SS, Reis LM, Tyler RC, Markovic V, Cuturilo G, Link BA, Semina EV. PITX2 deficiency and associated human disease: insights from the zebrafish model. Hum Mol Genet 2018;27:1675–95. 10.1093/hmg/ddy074 PubMed DOI PMC

Semina EV, Reiter R, Leysens NJ, Alward WL, Small KW, Datson NA, Siegel-Bartelt J, Bierke-Nelson D, Bitoun P, Zabel BU, Carey JC, Murray JC. Cloning and characterization of a novel bicoid-related homeobox transcription factor gene, RIEG, involved in Rieger syndrome. Nat Genet 1996;14:392–9. 10.1038/ng1296-392 PubMed DOI

Souzeau E, Siggs OM, Pasutto F, Knight LSW, Perez-Jurado LA, McGregor L, Le Blanc S, Barnett CP, Liebelt J, Craig JE. Gene-Specific facial dysmorphism in Axenfeld-Rieger syndrome caused by FOXC1 and PITX2 variants. Am J Med Genet A 2021;185:434–9. 10.1002/ajmg.a.61982 PubMed DOI PMC

Reis LM, Tyler RC, Weh E, Hendee KE, Schilter KF, Phillips JA, Sequeira S, Schinzel A, Semina EV. Whole exome sequencing identifies multiple diagnoses in congenital glaucoma with systemic anomalies. Clin Genet 2016;90:378–82. 10.1111/cge.12816 PubMed DOI PMC

Ansari M, Rainger J, Hanson IM, Williamson KA, Sharkey F, Harewood L, Sandilands A, Clayton-Smith J, Dollfus H, Bitoun P, Meire F, Fantes J, Franco B, Lorenz B, Taylor DS, Stewart F, Willoughby CE, McEntagart M, Khaw PT, Clericuzio C, Van Maldergem L, Williams D, Newbury-Ecob R, Traboulsi EI, Silva ED, Madlom MM, Goudie DR, Fleck BW, Wieczorek D, Kohlhase J, McTrusty AD, Gardiner C, Yale C, Moore AT, Russell-Eggitt I, Islam L, Lees M, Beales PL, Tuft SJ, Solano JB, Splitt M, Hertz JM, Prescott TE, Shears DJ, Nischal KK, Doco-Fenzy M, Prieur F, Temple IK, Lachlan KL, Damante G, Morrison DA, van Heyningen V, FitzPatrick DR. Genetic Analysis of 'PAX6-Negative' Individuals with Aniridia or Gillespie Syndrome. PLoS One 2016;11:e0153757. 10.1371/journal.pone.0153757 PubMed DOI PMC

Protas ME, Weh E, Footz T, Kasberger J, Baraban SC, Levin AV, Katz LJ, Ritch R, Walter MA, Semina EV, Gould DB. Mutations of conserved non-coding elements of PITX2 in patients with ocular dysgenesis and developmental glaucoma. Hum Mol Genet 2017;26:3630–8. 10.1093/hmg/ddx251 PubMed DOI PMC

Friedman JM. Umbilical dysmorphology. The importance of contemplating the belly button. Clin Genet 1985;28:343–7. 10.1111/j.1399-0004.1985.tb00408.x PubMed DOI

Tümer Z, Bach-Holm D. Axenfeld-Rieger syndrome and spectrum of PITX2 and FOXC1 mutations. Eur J Hum Genet 2009;17:1527–39. 10.1038/ejhg.2009.93 PubMed DOI PMC

D'haene B, Meire F, Claerhout I, Kroes HY, Plomp A, Arens YH, de Ravel T, Casteels I, De Jaegere S, Hooghe S, Wuyts W, van den Ende J, Roulez F, Veenstra-Knol HE, Oldenburg RA, Giltay J, Verheij JBGM, de Faber J-T, Menten B, De Paepe A, Kestelyn P, Leroy BP, De Baere E. Expanding the spectrum of FOXC1 and PITX2 mutations and copy number changes in patients with anterior segment malformations. Invest Ophthalmol Vis Sci 2011;52:324–33. 10.1167/iovs.10-5309 PubMed DOI

Priston M, Kozlowski K, Gill D, Letwin K, Buys Y, Levin AV, Walter MA, Héon E. Functional analyses of two newly identified PITX2 mutants reveal a novel molecular mechanism for Axenfeld-Rieger syndrome. Hum Mol Genet 2001;10:1631–8. 10.1093/hmg/10.16.1631 PubMed DOI

Quentien M-H, Vieira V, Menasche M, Dufier J-L, Herman J-P, Enjalbert A, Abitbol M, Brue T. Truncation of PITX2 differentially affects its activity on physiological targets. J Mol Endocrinol 2011;46:9–19. 10.1677/JME-10-0063 PubMed DOI

Maciolek NL, Alward WLM, Murray JC, Semina EV, McNally MT. Analysis of RNA splicing defects in PITX2 mutants supports a gene dosage model of Axenfeld-Rieger syndrome. BMC Med Genet 2006;7:59. 10.1186/1471-2350-7-59 PubMed DOI PMC

Nishimura DY, Searby CC, Alward WL, Walton D, Craig JE, Mackey DA, Kawase K, Kanis AB, Patil SR, Stone EM, Sheffield VC. A spectrum of FOXC1 mutations suggests gene dosage as a mechanism for developmental defects of the anterior chamber of the eye. Am J Hum Genet 2001;68:364–72. 10.1086/318183 PubMed DOI PMC

Saadi I, Semina EV, Amendt BA, Harris DJ, Murphy KP, Murray JC, Russo AF. Identification of a dominant negative homeodomain mutation in Rieger syndrome. J Biol Chem 2001;276:23034–41. 10.1074/jbc.M008592200 PubMed DOI

Saadi I, Toro R, Kuburas A, Semina E, Murray JC, Russo AF. An unusual class of PITX2 mutations in Axenfeld-Rieger syndrome. Birth Defects Res A Clin Mol Teratol 2006;76:175–81. 10.1002/bdra.20226 PubMed DOI PMC

Kozlowski K, Walter MA. Variation in residual PITX2 activity underlies the phenotypic spectrum of anterior segment developmental disorders. Hum Mol Genet 2000;9:2131–9. 10.1093/hmg/9.14.2131 PubMed DOI

Espinoza HM, Cox CJ, Semina EV, Amendt BA. A molecular basis for differential developmental anomalies in Axenfeld-Rieger syndrome. Hum Mol Genet 2002;11:743–53. 10.1093/hmg/11.7.743 PubMed DOI

Pavone P, Marino SD, Corsello G, Ruggieri M, Chiodo DC, Marino S, Falsaperla R. Cerebral white matter lesions and Dysmorphisms: signs suggestive of 6p25 deletion Syndrome-Literature review. J Pediatr Genet 2019;8:205–11. 10.1055/s-0039-1694015 PubMed DOI PMC

Zepeda EM, Branham K, Moroi SE, Bohnsack BL. Surgical outcomes of glaucoma associated with Axenfeld-Rieger syndrome. BMC Ophthalmol 2020;20:172. 10.1186/s12886-020-01417-w PubMed DOI PMC

Hjalt TA, Semina EV, Amendt BA, Murray JC. The PITX2 protein in mouse development. Dev Dyn 2000;218:195–200. 10.1002/(SICI)1097-0177(200005)218:1<195::AID-DVDY17>3.0.CO;2-C PubMed DOI

Alward WL. Axenfeld-Rieger syndrome in the age of molecular genetics. Am J Ophthalmol 2000;130:107–15. 10.1016/S0002-9394(00)00525-0 PubMed DOI

Al Alam D, Sala FG, Baptista S, Galzote R, Danopoulos S, Tiozzo C, Gage P, Grikscheit T, Warburton D, Frey MR, Bellusci S. FGF9-Pitx2-FGF10 signaling controls cecal formation in mice. Dev Biol 2012;369:340–8. 10.1016/j.ydbio.2012.07.008 PubMed DOI PMC

Gould DB, Jaafar MS, Addison MK, Munier F, Ritch R, MacDonald IM, Walter MA. Phenotypic and molecular assessment of seven patients with 6p25 deletion syndrome: relevance to ocular dysgenesis and hearing impairment. BMC Med Genet 2004;5:17. 10.1186/1471-2350-5-17 PubMed DOI PMC

Kume T, Deng KY, Winfrey V, Gould DB, Walter MA, Hogan BL. The forkhead/winged helix gene Mf1 is disrupted in the pleiotropic mouse mutation congenital hydrocephalus. Cell 1998;93:985–96. 10.1016/S0092-8674(00)81204-0 PubMed DOI

Ferre-Fernández J-J, Sorokina EA, Thompson S, Collery RF, Nordquist E, Lincoln J, Semina EV. Disruption of FOXC1 genes in zebrafish results in dosage-dependent phenotypes overlapping Axenfeld-Rieger syndrome. Hum Mol Genet 2020;29:2723–35. 10.1093/hmg/ddaa163 PubMed DOI PMC

Fei Q, Lin J, Meng H, Wang B, Yang Y, Wang Q, Su N, Li J, Li D. Identification of upstream regulators for synovial expression signature genes in osteoarthritis. Joint Bone Spine 2016;83:545–51. 10.1016/j.jbspin.2015.09.001 PubMed DOI

Micheal S, Siddiqui SN, Zafar SN, Villanueva-Mendoza C, Cortés-González V, Khan MI, den Hollander AI. A novel homozygous mutation in FOXC1 causes axenfeld Rieger syndrome with congenital glaucoma. PLoS One 2016;11:e0160016. 10.1371/journal.pone.0160016 PubMed DOI PMC

De Hauwere RC, Leroy JG, Adriaenssens K, Van Heule R. Iris dysplasia, orbital hypertelorism, and psychomotor retardation: a dominantly inherited developmental syndrome. J Pediatr 1973;82:679–81. 10.1016/S0022-3476(73)80597-9 PubMed DOI

Lowry RB, Gould DB, Walter MA, Savage PR. Absence of PITX2, BARX1, and FOXC1 mutations in De Hauwere syndrome (Axenfeld-Rieger anomaly, hydrocephaly, hearing loss): a 25-year follow up. Am J Med Genet A 2007;143A:1227–30. 10.1002/ajmg.a.31732 PubMed DOI

Chitty LS, McCrimmon R, Temple IK, Russell-Eggitt IM, Baraitser M. Dominantly inherited syndrome comprising partially absent eye muscles, hydrocephaly, skeletal abnormalities, and a distinctive facial phenotype. Am J Med Genet 1991;40:417–20. 10.1002/ajmg.1320400407 PubMed DOI

de Vos IJHM, Stegmann APA, Webers CAB, Stumpel CTRM. The 6p25 deletion syndrome: an update on a rare neurocristopathy. Ophthalmic Genet 2017;38:101–7. 10.3109/13816810.2016.1164191 PubMed DOI

Wu C-HW, Mann N, Nakayama M, Connaughton DM, Dai R, Kolvenbach CM, Kause F, Ottlewski I, Wang C, Klämbt V, Seltzsam S, Lai EW, Selvin A, Senguttuva P, Bodamer O, Stein DR, El Desoky S, Kari JA, Tasic V, Bauer SB, Shril S, Hildebrandt F. Phenotype expansion of heterozygous FOXC1 pathogenic variants toward involvement of congenital anomalies of the kidneys and urinary tract (CAKUT). Genet Med 2020;22:1673–81. 10.1038/s41436-020-0844-z PubMed DOI PMC

Motojima M, Tanimoto S, Ohtsuka M, Matsusaka T, Kume T, Abe K. Characterization of kidney and skeleton phenotypes of mice double heterozygous for FOXC1 and FOXC2. Cells Tissues Organs 2016;201:380–9. 10.1159/000445027 PubMed DOI

Zinkevich NS, Bosenko DV, Tyler RC, Semina EV. Studies of zebrafish PITX2 demonstrate conservation of expression and function with the human gene. Invest Ophthalm Vis Sci 2006;47.

French CR, Seshadri S, Destefano AL, Fornage M, Arnold CR, Gage PJ, Skarie JM, Dobyns WB, Millen KJ, Liu T, Dietz W, Kume T, Hofker M, Emery DJ, Childs SJ, Waskiewicz AJ, Lehmann OJ. Mutation of FOXC1 and PITX2 induces cerebral small-vessel disease. J Clin Invest 2014;124:4877–81. 10.1172/JCI75109 PubMed DOI PMC

d'Arbeloff T, Elliott ML, Knodt AR, Melzer TR, Keenan R, Ireland D, Ramrakha S, Poulton R, Anderson T, Caspi A, Moffitt TE, Hariri AR. White matter hyperintensities are common in midlife and already associated with cognitive decline. Brain Commun 2019;1:fcz041. 10.1093/braincomms/fcz041 PubMed DOI PMC

Maclean K, Smith J, St Heaps L, Chia N, Williams R, Peters GB, Onikul E, McCrossin T, Lehmann OJ, Adès LC. Axenfeld-Rieger malformation and distinctive facial features: clues to a recognizable 6p25 microdeletion syndrome. Am J Med Genet A 2005;132A:381–5. 10.1002/ajmg.a.30274 PubMed DOI

Aldinger KA, Lehmann OJ, Hudgins L, Chizhikov VV, Bassuk AG, Ades LC, Krantz ID, Dobyns WB, Millen KJ. FOXC1 is required for normal cerebellar development and is a major contributor to chromosome 6p25.3 Dandy-Walker malformation. Nat Genet 2009;41:1037–42. 10.1038/ng.422 PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...