Comprehensive phenotypic and functional analysis of dominant and recessive FOXE3 alleles in ocular developmental disorders

. 2021 Aug 12 ; 30 (17) : 1591-1606.

Jazyk angličtina Země Velká Británie, Anglie Médium print

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid34046667

Grantová podpora
R01 EY015518 NEI NIH HHS - United States
R01 EY019497 NEI NIH HHS - United States
R01 EY025718 NEI NIH HHS - United States

The forkhead transcription factor FOXE3 is critical for vertebrate eye development. Recessive and dominant variants cause human ocular disease but the full range of phenotypes and mechanisms of action for the two classes of variants are unknown. We identified FOXE3 variants in individuals with congenital eye malformations and carried out in vitro functional analysis on selected alleles. Sixteen new recessive and dominant families, including six novel variants, were identified. Analysis of new and previously reported genetic and clinical data demonstrated a broad phenotypic range with an overlap between recessive and dominant disease. Most families with recessive alleles, composed of truncating and forkhead-domain missense variants, had severe corneal opacity (90%; sclerocornea in 47%), aphakia (83%) and microphthalmia (80%), but some had milder features including isolated cataract. The phenotype was most variable for recessive missense variants, suggesting that the functional consequences may be highly dependent on the type of amino acid substitution and its position. When assessed, aniridia or iris hypoplasia were noted in 89% and optic nerve anomalies in 60% of recessive cases, indicating that these defects are also common and may be underrecognized. In dominant pedigrees, caused by extension variants, normal eye size (96%), cataracts (99%) and variable anterior segment anomalies were seen in most, but some individuals had microphthalmia, aphakia or sclerocornea, more typical of recessive disease. Functional studies identified variable effects on the protein stability, DNA binding, nuclear localization and transcriptional activity for recessive FOXE3 variants, whereas dominant alleles showed severe impairment in all areas and dominant-negative characteristics.

Zobrazit více v PubMed

Semina, E.V., Brownell, I., Mintz-Hittner, H.A., Murray, J.C. and Jamrich, M. (2001) Mutations in the human forkhead transcription factor FOXE3 associated with anterior segment ocular dysgenesis and cataracts. Hum. Mol. Genet., 10, 231–236. PubMed

Blixt, A., Mahlapuu, M., Aitola, M., Pelto-Huikko, M., Enerback, S. and Carlsson, P. (2000) A forkhead gene, FoxE3, is essential for lens epithelial proliferation and closure of the lens vesicle. Genes Dev., 14, 245–254. PubMed PMC

Brownell, I., Dirksen, M. and Jamrich, M. (2000) Forkhead Foxe3 maps to the dysgenetic lens locus and is critical in lens development and differentiation. Genesis, 27, 81–93. PubMed

Golson, M.L. and Kaestner, K.H. (2016) Fox transcription factors: from development to disease. Development, 143, 4558–4570. PubMed PMC

Ormestad, M., Blixt, A., Churchill, A., Martinsson, T., Enerback, S. and Carlsson, P. (2002) Foxe3 haploinsufficiency in mice: a model for Peters' anomaly. Invest. Ophthalmol. Vis. Sci., 43, 1350–1357. PubMed

Valleix, S., Niel, F., Nedelec, B., Algros, M.P., Schwartz, C., Delbosc, B., Delpech, M. and Kantelip, B. (2006) Homozygous nonsense mutation in the FOXE3 gene as a cause of congenital primary aphakia in humans. Am. J. Hum. Genet., 79, 358–364. PubMed PMC

Iseri, S.U., Osborne, R.J., Farrall, M., Wyatt, A.W., Mirza, G., Nurnberg, G., Kluck, C., Herbert, H., Martin, A., Hussain, M.S.  et al. (2009) Seeing clearly: the dominant and recessive nature of FOXE3 in eye developmental anomalies. Hum. Mutat., 30, 1378–1386. PubMed

Bremond-Gignac, D., Bitoun, P., Reis, L.M., Copin, H., Murray, J.C. and Semina, E.V. (2010) Identification of dominant FOXE3 and PAX6 mutations in patients with congenital cataract and aniridia. Mol. Vis., 16, 1705–1711. PubMed PMC

Doucette, L., Green, J., Fernandez, B., Johnson, G.J., Parfrey, P. and Young, T.L. (2011) A novel, non-stop mutation in FOXE3 causes an autosomal dominant form of variable anterior segment dysgenesis including Peters anomaly. EJHG, 19, 293–299. PubMed PMC

Gillespie, R.L., O’Sullivan, J., Ashworth, J., Bhaskar, S., Williams, S., Biswas, S., Kehdi, E., Ramsden, S.C., Clayton-Smith, J., Black, G.C. and Lloyd, I.C. (2014) Personalized diagnosis and management of congenital cataract by next-generation sequencing. Ophthalmology, 121, 2124–2137.e2. PubMed

Reis, L.M., Tyler, R.C., Schneider, A., Bardakjian, T., Stoler, J.M., Melancon, S.B. and Semina, E.V. (2010) FOXE3 plays a significant role in autosomal recessive microphthalmia. Am. J. Med. Genet. A, 152A, 582–590. PubMed PMC

Ali, M., Buentello-Volante, B., McKibbin, M., Rocha-Medina, J.A., Fernandez-Fuentes, N., Koga-Nakamura, W., Ashiq, A., Khan, K., Booth, A.P., Williams, G.  et al. (2010) Homozygous FOXE3 mutations cause non-syndromic, bilateral, total sclerocornea, aphakia, microphthalmia and optic disc coloboma. Mol. Vis., 16, 1162–1168. PubMed PMC

Anjum, I., Eiberg, H., Baig, S.M., Tommerup, N. and Hansen, L. (2010) A mutation in the FOXE3 gene causes congenital primary aphakia in an autosomal recessive consanguineous Pakistani family. Mol. Vis., 16, 549–555. PubMed PMC

Islam, L., Kelberman, D., Williamson, L., Lewis, N., Glindzicz, M.B., Nischal, K.K. and Sowden, J.C. (2015) Functional analysis of FOXE3 mutations causing dominant and recessive ocular anterior segment disease. Hum. Mutat., 36, 296–300. PubMed

Plaisancie, J., Ragge, N.K., Dollfus, H., Kaplan, J., Lehalle, D., Francannet, C., Morin, G., Colineaux, H., Calvas, P. and Chassaing, N. (2018) FOXE3 mutations: genotype-phenotype correlations. Clin. Genet., 93, 837–845. PubMed

Chassaing, N., Causse, A., Vigouroux, A., Delahaye, A., Alessandri, J.L., Boespflug-Tanguy, O., Boute-Benejean, O., Dollfus, H., Duban-Bedu, B., Gilbert-Dussardier, B.  et al. (2014) Molecular findings and clinical data in a cohort of 150 patients with anophthalmia/microphthalmia. Clin. Genet., 86, 326–334. PubMed

Chen, J., Wang, Q., Cabrera, P.E., Zhong, Z., Sun, W., Jiao, X., Chen, Y., Govindarajan, G., Naeem, M.A., Khan, S.N.  et al. (2017) Molecular genetic analysis of Pakistani families with autosomal recessive congenital cataracts by homozygosity screening. Invest. Ophthalmol. Vis. Sci., 58, 2207–2217. PubMed PMC

Garcia-Montalvo, I.A., Pelcastre-Luna, E., Nelson-Mora, J., Buentello-Volante, B., Miranda-Duarte, A. and Zenteno, J.C. (2014) Mutational screening of FOXE3, GDF3, ATOH7, and ALDH1A3 in congenital ocular malformations. Possible contribution of the FOXE3 p.VAL201MET variant to the risk of severe eye malformations. Ophthalmic Genet., 35, 190–192. PubMed

Habibi, I., Youssef, M., Marzouk, E., El Shakankiri, N., Gawdat, G., El Sada, M., Schorderet, D.F. and Abou Zeid, H. (2019) Mutations in VSX2, SOX2, and FOXE3 identified in patients with micro−/anophthalmia. Adv. Exp. Med. Biol., 1185, 221–226. PubMed

Khan, S.Y., Vasanth, S., Kabir, F., Gottsch, J.D., Khan, A.O., Chaerkady, R., Lee, M.C., Leitch, C.C., Ma, Z., Laux, J.  et al. (2016) FOXE3 contributes to Peters anomaly through transcriptional regulation of an autophagy-associated protein termed DNAJB1. Nat. Commun., 7, 10953. PubMed PMC

Pantoja-Melendez, C., Ali, M. and Zenteno, J.C. (2013) An epidemiological investigation of a Forkhead box protein E3 founder mutation underlying the high frequency of sclerocornea, aphakia, and microphthalmia in a Mexican village. Mol. Vis., 19, 1866–1870. PubMed PMC

Quiroz-Casian, N., Chacon-Camacho, O.F., Barragan-Arevalo, T., Nava-Valdez, J., Lieberman, E., Salgado-Medina, A., Navas, A., Graue-Hernandez, E.O. and Zenteno, J.C. (2018) Sclerocornea-microphthalmia-aphakia complex: description of two additional cases associated with novel FOXE3 mutations and review of the literature. Cornea, 37, 1178–1181. PubMed

Saboo, U.S., Penke, D., Mahindrakar, A., Uddaraju, M., Sankurathri, C., Gong, X., Xing, C. and Mootha, V.V. (2017) Exome sequencing reveals novel homozygous FOXE3 mutation in microphthalmos with staphylomatous malformation. Ophthalmic Genet., 38, 295–297. PubMed

Taha Najim, R., Topa, A., Jugard, Y., Casslen, B., Odersjo, M. and Andersson Gronlund, M. (2020) Children and young adults with anophthalmia and microphthalmia: diagnosis and management. Acta Ophthalmol., 98, 848–858. PubMed

Ullah, E., Nadeem Saqib, M.A., Sajid, S., Shah, N., Zubair, M., Khan, M.A., Ahmed, I., Ali, G., Dutta, A.K., Danda, S.  et al. (2016) Genetic analysis of consanguineous families presenting with congenital ocular defects. Exp. Eye Res., 146, 163–171. PubMed

Rashid, M., Qasim, M., Ishaq, R., Bukhari, S.A., Sajid, Z., Ashfaq, U.A., Haque, A. and Ahmed, Z.M. (2020) Pathogenic variants of AIPL1, MERTK, GUCY2D, and FOXE3 in Pakistani families with clinically heterogeneous eye diseases. PLoS One, 15, e0239748. PubMed PMC

Thanikachalam, S., Hodapp, E., Chang, T.C., Swols, D.M., Cengiz, F.B., Guo, S., Zafeer, M.F., Seyhan, S., Bademci, G., Scott, W.K.  et al. (2020) Spectrum of genetic variants associated with anterior segment dysgenesis in South Florida. Genes (Basel), 11, 350. PubMed PMC

Patel, A., Hayward, J.D., Tailor, V., Nyanhete, R., Ahlfors, H., Gabriel, C., Jannini, T.B., Abbou-Rayyah, Y., Henderson, R., Nischal, K.K.  et al. (2019) The Oculome panel test: next-generation sequencing to diagnose a diverse range of genetic developmental eye disorders. Ophthalmology, 126, 888–907. PubMed

Zhang, X.H., Da Wang, J., Jia, H.Y., Zhang, J.S., Li, Y., Xiong, Y., Li, J., Li, X.X., Huang, Y., Zhu, G.Y.  et al. (2018) Mutation profiles of congenital cataract genes in 21 northern Chinese families. Mol. Vis., 24, 471–477. PubMed PMC

Jin, C., Marsden, I., Chen, X. and Liao, X. (1999) Dynamic DNA contacts observed in the NMR structure of winged helix protein-DNA complex. J. Mol. Biol., 289, 683–690. PubMed

Chen, X., Wei, H., Li, J., Liang, X., Dai, S., Jiang, L., Guo, M., Qu, L., Chen, Z., Chen, L.  et al. (2019) Structural basis for DNA recognition by FOXC2. Nucleic Acids Res., 47, 3752–3764. PubMed PMC

Li, J., Dantas Machado, A.C., Guo, M., Sagendorf, J.M., Zhou, Z., Jiang, L., Chen, X., Wu, D., Qu, L., Chen, Z.  et al. (2017) Structure of the Forkhead domain of FOXA2 bound to a complete DNA consensus site. Biochemistry, 56, 3745–3753. PubMed PMC

Saleem, R.A., Banerjee-Basu, S., Murphy, T.C., Baxevanis, A. and Walter, M.A. (2004) Essential structural and functional determinants within the forkhead domain of FOXC1. Nucleic Acids Res., 32, 4182–4193. PubMed PMC

Stroud, J.C., Wu, Y., Bates, D.L., Han, A., Nowick, K., Paabo, S., Tong, H. and Chen, L. (2006) Structure of the forkhead domain of FOXP2 bound to DNA. Structure, 14, 159–166. PubMed

Van Hellemont, R., Monsieurs, P., Thijs, G., de  Moor, B., Van de Peer, Y. and Marchal, K. (2005) A novel approach to identifying regulatory motifs in distantly related genomes. Genome Biol., 6, R113. PubMed PMC

Lamba, P., Fortin, J., Tran, S., Wang, Y. and Bernard, D.J. (2009) A novel role for the forkhead transcription factor FOXL2 in activin A-regulated follicle-stimulating hormone beta subunit transcription. Mol. Endocrinol., 23, 1001–1013. PubMed PMC

Singh, P., Han, E.H., Endrizzi, J.A., O'Brien, R.M. and Chi, Y.I. (2017) Crystal structures reveal a new and novel FoxO1 binding site within the human glucose-6-phosphatase catalytic subunit 1 gene promoter. J. Struct. Biol., 198, 54–64. PubMed PMC

Schimmel, J., Eifler, K., Sigurethsson, J.O., Cuijpers, S.A., Hendriks, I.A., Verlaan-de Vries, M., Kelstrup, C.D., Francavilla, C., Medema, R.H., Olsen, J.V.  et al. (2014) Uncovering SUMOylation dynamics during cell-cycle progression reveals FoxM1 as a key mitotic SUMO target protein. Mol. Cell, 53, 1053–1066. PubMed

Perumal, K., Dirr, H.W. and Fanucchi, S. (2015) A single amino acid in the hinge loop region of the FOXP Forkhead domain is significant for dimerisation. Protein J., 34, 111–121. PubMed

Chaurasia, S., Jakati, S., Ramappa, M., Mishra, D.K. and Edward, D.P. (2020) Anterior segment alterations in congenital primary aphakia-a clinicopathologic report of five cases. Indian J. Ophthalmol., 68, 1564–1568. PubMed PMC

Blixt, A., Landgren, H., Johansson, B.R. and Carlsson, P. (2007) Foxe3 is required for morphogenesis and differentiation of the anterior segment of the eye and is sensitive to Pax6 gene dosage. Dev. Biol., 302, 218–229. PubMed

Kahrizi, K., Hu, H., Hosseini, M., Kalscheuer, V.M., Fattahi, Z., Beheshtian, M., Suckow, V., Mohseni, M., Lipkowitz, B., Mehvari, S.  et al. (2019) Effect of inbreeding on intellectual disability revisited by trio sequencing. Clin. Genet., 95, 151–159. PubMed

Kuang, S.Q., Medina-Martinez, O., Guo, D.C., Gong, L., Regalado, E.S., Reynolds, C.L., Boileau, C., Jondeau, G., Prakash, S.K., Kwartler, C.S.  et al. (2016) FOXE3 mutations predispose to thoracic aortic aneurysms and dissections. J. Clin. Invest., 126, 948–961. PubMed PMC

Saleem, R.A., Banerjee-Basu, S., Berry, F.B., Baxevanis, A.D. and Walter, M.A. (2003) Structural and functional analyses of disease-causing missense mutations in the forkhead domain of FOXC1. Hum. Mol. Genet., 12, 2993–3005. PubMed

Morris, G., Stoychev, S., Naicker, P., Dirr, H.W. and Fanucchi, S. (2018) The forkhead domain hinge-loop plays a pivotal role in DNA binding and transcriptional activity of FOXP2. Biol. Chem., 399, 881–893. PubMed

Stenson, P.D., Mort, M., Ball, E.V., Chapman, M., Evans, K., Azevedo, L., Hayden, M., Heywood, S., Millar, D.S., Phillips, A.D.  et al. (2020) The human gene mutation database (HGMD((R))): optimizing its use in a clinical diagnostic or research setting. Hum. Genet., 139, 1197–1207. PubMed PMC

Reis, L.M., Sorokina, E.A., Thompson, S., Muheisen, S., Velinov, M., Zamora, C., Aylsworth, A.S. and Semina, E.V. (2019) De novo missense variants in WDR37 cause a severe multisystemic syndrome. Am. J. Hum. Genet., 105, 425–433. PubMed PMC

Dudakova, L., Skalicka, P., Ulmanova, O., Hlozanek, M., Stranecky, V., Malinka, F., Vincent, A.L. and Liskova, P. (2020) Pseudodominant nanophthalmos in a Roma family caused by a novel PRSS56 variant. J. Ophthalmol., 2020, 6807809. PubMed PMC

Karczewski, K.J., Francioli, L.C., Tiao, G., Cummings, B.B., Alfoldi, J., Wang, Q., Collins, R.L., Laricchia, K.M., Ganna, A., Birnbaum, D.P.  et al. (2020) The mutational constraint spectrum quantified from variation in 141,456 humans. Nature, 581, 434–443. PubMed PMC

Schilter, K.F., Reis, L.M., Schneider, A., Bardakjian, T.M., Abdul-Rahman, O., Kozel, B.A., Zimmerman, H.H., Broeckel, U. and Semina, E.V. (2013) Whole-genome copy number variation analysis in anophthalmia and microphthalmia. Clin. Genet., 84, 473–481. PubMed PMC

Liu, X., Jian, X. and Boerwinkle, E. (2013) dbNSFP v2.0: a database of human non-synonymous SNVs and their functional predictions and annotations. Hum. Mutat., 34, E2393–E2402. PubMed PMC

McLaren, W., Gil, L., Hunt, S.E., Riat, H.S., Ritchie, G.R., Thormann, A., Flicek, P. and Cunningham, F. (2016) The Ensembl variant effect predictor. Genome Biol., 17, 122. PubMed PMC

Richards, S., Aziz, N., Bale, S., Bick, D., Das, S., Gastier-Foster, J., Grody, W.W., Hegde, M., Lyon, E., Spector, E.  et al. (2015) Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genetics in medicine: official journal of the American College of Medical Genetics, 17, 405–424. PubMed PMC

Yang, J., Yan, R., Roy, A., Xu, D., Poisson, J. and Zhang, Y. (2015) The I-TASSER suite: protein structure and function prediction. Nat. Methods, 12, 7–8. PubMed PMC

The PyMOL Molecular Graphics System, Version 2.0. Schrödinger, LLC.

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Rare disease gene association discovery in the 100,000 Genomes Project

. 2025 Feb 26 ; () : . [epub] 20250226

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...