A Bird's-Eye View of Cell Sources for Cell-Based Therapies in Blood Cancers
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article, Review
Grant support
No. CZ.02.1.01/0.0/0.0/17_049/0008440
Cell Coolab Ostrava - Research and Development Center for Cell Therapy in Hematology and Oncology
No. CZ.02.1.01/0.0/0.0/18_069/0010060
New Directions of Biomedical Research in the Ostrava Region
project no. IRP03_2018-2020
Institutional Development Plan of University of Ostrava, allocated by The Ministry of Education, Youth and Sports
PubMed
32456165
PubMed Central
PMC7281611
DOI
10.3390/cancers12051333
PII: cancers12051333
Knihovny.cz E-resources
- Keywords
- CAR-T cells, NK cells, blood cancer, cell-based therapy, dendritic cells, iPSC, macrophages, platelets, stem cells,
- Publication type
- Journal Article MeSH
- Review MeSH
: Hematological malignancies comprise over a hundred different types of cancers and account for around 6.5% of all cancers. Despite the significant improvements in diagnosis and treatment, many of those cancers remain incurable. In recent years, cancer cell-based therapy has become a promising approach to treat those incurable hematological malignancies with striking results in different clinical trials. The most investigated, and the one that has advanced the most, is the cell-based therapy with T lymphocytes modified with chimeric antigen receptors. Those promising initial results prepared the ground to explore other cell-based therapies to treat patients with blood cancer. In this review, we want to provide an overview of the different types of cell-based therapies in blood cancer, describing them according to the cell source.
Department of Haematooncology University Hospital Ostrava Ostrava 708 52 Czech Republic
Faculty of Medicine University of Ostrava Ostrava 703 00 Czech Republic
Faculty of Science University of Ostrava Ostrava 701 03 Czech Republic
See more in PubMed
SEER Cancer Statistics Review (CSR) 1975-2014. [(accessed on 22 May 2020)]; Available online: https://seer.cancer.gov.
DeSantis C.E., Miller K.D., Dale W., Mohile S.G., Cohen H.J., Leach C.R., Goding Sauer A., Jemal A., Siegel R.L. Cancer statistics for adults aged 85 years and older, 2019. CA Cancer J. Clin. 2019;69:452–467. doi: 10.3322/caac.21577. PubMed DOI
Oostindie S.C., van der Horst H.J., Kil L.P., Strumane K., Overdijk M.B., van den Brink E.N., van den Brakel J.H.N., Rademaker H.J., van Kessel B., van den Noort J., et al. DuoHexaBody-CD37((R)), a novel biparatopic CD37 antibody with enhanced Fc-mediated hexamerization as a potential therapy for B-cell malignancies. Blood Cancer J. 2020;10:30. doi: 10.1038/s41408-020-0292-7. PubMed DOI PMC
Bonello F., D’Agostino M., Moscvin M., Cerrato C., Boccadoro M., Gay F. CD38 as an immunotherapeutic target in multiple myeloma. Expert Opin. Biol. Ther. 2018;18:1209–1221. doi: 10.1080/14712598.2018.1544240. PubMed DOI
Salles G., Barrett M., Foa R., Maurer J., O’Brien S., Valente N., Wenger M., Maloney D.G. Rituximab in B-Cell Hematologic Malignancies: A Review of 20 Years of Clinical Experience. Adv. Ther. 2017;34:2232–2273. doi: 10.1007/s12325-017-0612-x. PubMed DOI PMC
Gottardi M., Mosna F., de Angeli S., Papayannidis C., Candoni A., Clavio M., Tecchio C., Piccin A., dell’Orto M.C., Benedetti F., et al. Clinical and experimental efficacy of gemtuzumab ozogamicin in core binding factor acute myeloid leukemia. Hematol. Rep. 2017;9:7029. doi: 10.4081/hr.2017.7028. PubMed DOI PMC
Abdallah N., Kumar S.K. Daratumumab in untreated newly diagnosed multiple myeloma. Ther. Adv. Hematol. 2019;10:2040620719894871. doi: 10.1177/2040620719894871. PubMed DOI PMC
Mori Y., Choi I., Yoshimoto G., Muta T., Yamasaki S., Tanimoto K., Kamimura T., Iwasaki H., Ogawa R., Akashi K., et al. Phase I/II study of bortezomib, lenalidomide, and dexamethasone treatment for relapsed and refractory multiple myeloma. Int. J. Hematol. 2020;111:673–680. doi: 10.1007/s12185-020-02833-w. PubMed DOI
Fathi E., Farahzadi R., Sheervalilou R., Sanaat Z., Vietor I. A general view of CD33(+) leukemic stem cells and CAR-T cells as interesting targets in acute myeloblatsic leukemia therapy. Blood Res. 2020;55:10–16. doi: 10.5045/br.2020.55.1.10. PubMed DOI PMC
Lee H.R., Baek K.H. Role of natural killer cells for immunotherapy in chronic myeloid leukemia (Review) Oncol. Rep. 2019;41:2625–2635. doi: 10.3892/or.2019.7059. PubMed DOI
Van Acker H.H., Versteven M., Lichtenegger F.S., Roex G., Campillo-Davo D., Lion E., Subklewe M., Van Tendeloo V.F., Berneman Z.N., Anguille S. Dendritic Cell-Based Immunotherapy of Acute Myeloid Leukemia. J. Clin. Med. 2019;8:579. doi: 10.3390/jcm8050579. PubMed DOI PMC
Maude S.L., Laetsch T.W., Buechner J., Rives S., Boyer M., Bittencourt H., Bader P., Verneris M.R., Stefanski H.E., Myers G.D., et al. Tisagenlecleucel in Children and Young Adults with B-Cell Lymphoblastic Leukemia. N. Engl. J. Med. 2018;378:439–448. doi: 10.1056/NEJMoa1709866. PubMed DOI PMC
Song W., Zhang M. Use of CAR-T cell therapy, PD-1 blockade, and their combination for the treatment of hematological malignancies. Clin. Immunol. 2020;214:108382. doi: 10.1016/j.clim.2020.108382. PubMed DOI
Bollard C.M., Gottschalk S., Torrano V., Diouf O., Ku S., Hazrat Y., Carrum G., Ramos C., Fayad L., Shpall E.J., et al. Sustained complete responses in patients with lymphoma receiving autologous cytotoxic T lymphocytes targeting Epstein-Barr virus latent membrane proteins. J. Clin. Oncol. 2014;32:798–808. doi: 10.1200/JCO.2013.51.5304. PubMed DOI PMC
Gross G., Waks T., Eshhar Z. Expression of immunoglobulin-T-cell receptor chimeric molecules as functional receptors with antibody-type specificity. Proc. Natl. Acad. Sci. USA. 1989;86:10024–10028. doi: 10.1073/pnas.86.24.10024. PubMed DOI PMC
Abate-Daga D., Davila M.L. CAR models: Next-generation CAR modifications for enhanced T-cell function. Mol. Ther. Oncolytics. 2016;3:16014. doi: 10.1038/mto.2016.14. PubMed DOI PMC
Davila M.L., Riviere I., Wang X., Bartido S., Park J., Curran K., Chung S.S., Stefanski J., Borquez-Ojeda O., Olszewska M., et al. Efficacy and toxicity management of 19-28z CAR T cell therapy in B cell acute lymphoblastic leukemia. Sci. Transl. Med. 2014;6:224ra225. doi: 10.1126/scitranslmed.3008226. PubMed DOI PMC
Drent E., Poels R., Ruiter R., van de Donk N., Zweegman S., Yuan H., de Bruijn J., Sadelain M., Lokhorst H.M., Groen R.W.J., et al. Combined CD28 and 4-1BB Costimulation Potentiates Affinity-tuned Chimeric Antigen Receptor-engineered T Cells. Clin. Cancer Res. 2019;25:4014–4025. doi: 10.1158/1078-0432.CCR-18-2559. PubMed DOI PMC
Chmielewski M., Abken H. TRUCKs: The fourth generation of CARs. Expert Opin. Biol. Ther. 2015;15:1145–1154. doi: 10.1517/14712598.2015.1046430. PubMed DOI
Zhao J., Song Y., Liu D. Clinical trials of dual-target CAR T cells, donor-derived CAR T cells, and universal CAR T cells for acute lymphoid leukemia. J. Hematol. Oncol. 2019;12:17. doi: 10.1186/s13045-019-0705-x. PubMed DOI PMC
Cho J.H., Collins J.J., Wong W.W. Universal Chimeric Antigen Receptors for Multiplexed and Logical Control of T Cell Responses. Cell. 2018;173:1426–1438. doi: 10.1016/j.cell.2018.03.038. PubMed DOI PMC
Lohmueller J.J., Ham J.D., Kvorjak M., Finn O.J. mSA2 affinity-enhanced biotin-binding CAR T cells for universal tumor targeting. Oncoimmunology. 2017;7:e1368604. doi: 10.1080/2162402X.2017.1368604. PubMed DOI PMC
Brentjens R.J., Riviere I., Park J.H., Davila M.L., Wang X., Stefanski J., Taylor C., Yeh R., Bartido S., Borquez-Ojeda O., et al. Safety and persistence of adoptively transferred autologous CD19-targeted T cells in patients with relapsed or chemotherapy refractory B-cell leukemias. Blood. 2011;118:4817–4828. doi: 10.1182/blood-2011-04-348540. PubMed DOI PMC
MacKay M. CARGlobalTrials. [(accessed on 22 May 2020)]; Available online: https://carglobaltrials.com/
Maude S.L., Frey N., Shaw P.A., Aplenc R., Barrett D.M., Bunin N.J., Chew A., Gonzalez V.E., Zheng Z., Lacey S.F., et al. Chimeric antigen receptor T cells for sustained remissions in leukemia. N. Engl. J. Med. 2014;371:1507–1517. doi: 10.1056/NEJMoa1407222. PubMed DOI PMC
Vairy S., Garcia J.L., Teira P., Bittencourt H. CTL019 (tisagenlecleucel): CAR-T therapy for relapsed and refractory B-cell acute lymphoblastic leukemia. Drug Des. Devel. Ther. 2018;12:3885–3898. doi: 10.2147/DDDT.S138765. PubMed DOI PMC
Raje N., Berdeja J., Lin Y., Siegel D., Jagannath S., Madduri D., Liedtke M., Rosenblatt J., Maus M.V., Turka A., et al. Anti-BCMA CAR T-Cell Therapy bb2121 in Relapsed or Refractory Multiple Myeloma. N. Engl. J. Med. 2019;380:1726–1737. doi: 10.1056/NEJMoa1817226. PubMed DOI PMC
Zhang W.Y., Wang Y., Guo Y.L., Dai H.R., Yang Q.M., Zhang Y.J., Zhang Y., Chen M.X., Wang C.M., Feng K.C., et al. Treatment of CD20-directed Chimeric Antigen Receptor-modified T cells in patients with relapsed or refractory B-cell non-Hodgkin lymphoma: An early phase IIa trial report. Signal Transduct. Target. Ther. 2016;1:16002. doi: 10.1038/sigtrans.2016.2. PubMed DOI PMC
Fry T.J., Shah N.N., Orentas R.J., Stetler-Stevenson M., Yuan C.M., Ramakrishna S., Wolters P., Martin S., Delbrook C., Yates B., et al. CD22-targeted CAR T cells induce remission in B-ALL that is naive or resistant to CD19-targeted CAR immunotherapy. Nat. Med. 2018;24:20–28. doi: 10.1038/nm.4441. PubMed DOI PMC
Ramos C.A., Ballard B., Zhang H., Dakhova O., Gee A.P., Mei Z., Bilgi M., Wu M.F., Liu H., Grilley B., et al. Clinical and immunological responses after CD30-specific chimeric antigen receptor-redirected lymphocytes. J. Clin. Invest. 2017;127:3462–3471. doi: 10.1172/JCI94306. PubMed DOI PMC
Ritchie D.S., Neeson P.J., Khot A., Peinert S., Tai T., Tainton K., Chen K., Shin M., Wall D.M., Honemann D., et al. Persistence and efficacy of second generation CAR T cell against the LeY antigen in acute myeloid leukemia. Mol. Ther. 2013;21:2122–2129. doi: 10.1038/mt.2013.154. PubMed DOI PMC
Picanco-Castro V., Moco P.D., Mizukami A., Vaz L.D., de Souza Fernandes Pereira M., Silvestre R.N., de Azevedo J.T.C., de Sousa Bomfim A., de Abreu Neto M.S., Malmegrim K.C.R., et al. Establishment of a simple and efficient platform for car-t cell generation and expansion: From lentiviral production to in vivo studies. Hematol. Transfus. Cell Ther. 2019 doi: 10.1016/j.htct.2019.06.007. PubMed DOI PMC
Pampusch M.S., Haran K.P., Hart G.T., Rakasz E.G., Rendahl A.K., Berger E.A., Connick E., Skinner P.J. Rapid Transduction and Expansion of Transduced T Cells with Maintenance of Central Memory Populations. Mol. Ther. Methods Clin. Dev. 2020;16:1–10. doi: 10.1016/j.omtm.2019.09.007. PubMed DOI PMC
Schlimgen R., Howard J., Wooley D., Thompson M., Baden L.R., Yang O.O., Christiani D.C., Mostoslavsky G., Diamond D.V., Duane E.G., et al. Risks Associated With Lentiviral Vector Exposures and Prevention Strategies. J. Occup. Environ. Med. 2016;58:1159–1166. doi: 10.1097/JOM.0000000000000879. PubMed DOI PMC
Kebriaei P., Singh H., Huls M.H., Figliola M.J., Bassett R., Olivares S., Jena B., Dawson M.J., Kumaresan P.R., Su S., et al. Phase I trials using Sleeping Beauty to generate CD19-specific CAR T cells. J. Clin. Invest. 2016;126:3363–3376. doi: 10.1172/JCI86721. PubMed DOI PMC
Morita D., Nishio N., Saito S., Tanaka M., Kawashima N., Okuno Y., Suzuki S., Matsuda K., Maeda Y., Wilson M.H., et al. Enhanced Expression of Anti-CD19 Chimeric Antigen Receptor in piggyBac Transposon-Engineered T Cells. Mol. Ther. Methods Clin. Dev. 2018;8:131–140. doi: 10.1016/j.omtm.2017.12.003. PubMed DOI PMC
Eyquem J., Mansilla-Soto J., Giavridis T., van der Stegen S.J., Hamieh M., Cunanan K.M., Odak A., Gonen M., Sadelain M. Targeting a CAR to the TRAC locus with CRISPR/Cas9 enhances tumour rejection. Nature. 2017;543:113–117. doi: 10.1038/nature21405. PubMed DOI PMC
Janssen E.M., Lemmens E.E., Wolfe T., Christen U., von Herrath M.G., Schoenberger S.P. CD4+ T cells are required for secondary expansion and memory in CD8+ T lymphocytes. Nature. 2003;421:852–856. doi: 10.1038/nature01441. PubMed DOI
Berger C., Jensen M.C., Lansdorp P.M., Gough M., Elliott C., Riddell S.R. Adoptive transfer of effector CD8+ T cells derived from central memory cells establishes persistent T cell memory in primates. J. Clin. Invest. 2008;118:294–305. doi: 10.1172/JCI32103. PubMed DOI PMC
Xu Y., Zhang M., Ramos C.A., Durett A., Liu E., Dakhova O., Liu H., Creighton C.J., Gee A.P., Heslop H.E., et al. Closely related T-memory stem cells correlate with in vivo expansion of CAR.CD19-T cells and are preserved by IL-7 and IL-15. Blood. 2014;123:3750–3759. doi: 10.1182/blood-2014-01-552174. PubMed DOI PMC
Golubovskaya V., Wu L. Different Subsets of T Cells, Memory, Effector Functions, and CAR-T Immunotherapy. Cancers (Basel) 2016;8:36. doi: 10.3390/cancers8030036. PubMed DOI PMC
Chavez J.C., Bachmeier C., Kharfan-Dabaja M.A. CAR T-cell therapy for B-cell lymphomas: Clinical trial results of available products. Ther. Adv. Hematol. 2019;10:2040620719841581. doi: 10.1177/2040620719841581. PubMed DOI PMC
Depil S., Duchateau P., Grupp S.A., Mufti G., Poirot L. ‘Off-the-shelf’ allogeneic CAR T cells: Development and challenges. Nat. Rev. Drug Discov. 2020;19:185–199. doi: 10.1038/s41573-019-0051-2. PubMed DOI
Bonifant C.L., Jackson H.J., Brentjens R.J., Curran K.J. Toxicity and management in CAR T-cell therapy. Mol. Ther. Oncolytics. 2016;3:16011. doi: 10.1038/mto.2016.11. PubMed DOI PMC
Yu S., Yi M., Qin S., Wu K. Next generation chimeric antigen receptor T cells: Safety strategies to overcome toxicity. Mol. Cancer. 2019;18:125. doi: 10.1186/s12943-019-1057-4. PubMed DOI PMC
Diaconu I., Ballard B., Zhang M., Chen Y., West J., Dotti G., Savoldo B. Inducible Caspase-9 Selectively Modulates the Toxicities of CD19-Specific Chimeric Antigen Receptor-Modified T Cells. Mol. Ther. 2017;25:580–592. doi: 10.1016/j.ymthe.2017.01.011. PubMed DOI PMC
Gargett T., Brown M.P. The inducible caspase-9 suicide gene system as a “safety switch” to limit on-target, off-tumor toxicities of chimeric antigen receptor T cells. Front. Pharmacol. 2014;5:235. doi: 10.3389/fphar.2014.00235. PubMed DOI PMC
Griffioen M., van Egmond E.H., Kester M.G., Willemze R., Falkenburg J.H., Heemskerk M.H. Retroviral transfer of human CD20 as a suicide gene for adoptive T-cell therapy. Haematologica. 2009;94:1316–1320. doi: 10.3324/haematol.2008.001677. PubMed DOI PMC
Paszkiewicz P.J., Frassle S.P., Srivastava S., Sommermeyer D., Hudecek M., Drexler I., Sadelain M., Liu L., Jensen M.C., Riddell S.R., et al. Targeted antibody-mediated depletion of murine CD19 CAR T cells permanently reverses B cell aplasia. J. Clin. Invest. 2016;126:4262–4272. doi: 10.1172/JCI84813. PubMed DOI PMC
Grada Z., Hegde M., Byrd T., Shaffer D.R., Ghazi A., Brawley V.S., Corder A., Schonfeld K., Koch J., Dotti G., et al. TanCAR: A Novel Bispecific Chimeric Antigen Receptor for Cancer Immunotherapy. Mol. Ther. Nucleic Acids. 2013;2:e105. doi: 10.1038/mtna.2013.32. PubMed DOI PMC
Yuan X., Wu H., Xu H., Xiong H., Chu Q., Yu S., Wu G.S., Wu K. Notch signaling: An emerging therapeutic target for cancer treatment. Cancer Lett. 2015;369:20–27. doi: 10.1016/j.canlet.2015.07.048. PubMed DOI
Fedorov V.D., Themeli M., Sadelain M. PD-1- and CTLA-4-based inhibitory chimeric antigen receptors (iCARs) divert off-target immunotherapy responses. Sci. Transl. Med. 2013;5:215ra172. doi: 10.1126/scitranslmed.3006597. PubMed DOI PMC
Wu C.Y., Roybal K.T., Puchner E.M., Onuffer J., Lim W.A. Remote control of therapeutic T cells through a small molecule-gated chimeric receptor. Science. 2015;350:aab4077. doi: 10.1126/science.aab4077. PubMed DOI PMC
Garrido F., Perea F., Bernal M., Sanchez-Palencia A., Aptsiauri N., Ruiz-Cabello F. The Escape of Cancer from T Cell-Mediated Immune Surveillance: HLA Class I Loss and Tumor Tissue Architecture. Vaccines (Basel) 2017;5:7. doi: 10.3390/vaccines5010007. PubMed DOI PMC
Paul S., Lal G. The Molecular Mechanism of Natural Killer Cells Function and Its Importance in Cancer Immunotherapy. Front. Immunol. 2017;8:1124. doi: 10.3389/fimmu.2017.01124. PubMed DOI PMC
Jaiswal S.R., Zaman S., Nedunchezhian M., Chakrabarti A., Bhakuni P., Ahmed M., Sharma K., Rawat S., O’Donnell P., Chakrabarti S. CD56-enriched donor cell infusion after post-transplantation cyclophosphamide for haploidentical transplantation of advanced myeloid malignancies is associated with prompt reconstitution of mature natural killer cells and regulatory T cells with reduced incidence of acute graft versus host disease: A pilot study. Cytotherapy. 2017;19:531–542. doi: 10.1016/j.jcyt.2016.12.006. PubMed DOI
Williams B.A., Law A.D., Routy B., denHollander N., Gupta V., Wang X.H., Chaboureau A., Viswanathan S., Keating A. A phase I trial of NK-92 cells for refractory hematological malignancies relapsing after autologous hematopoietic cell transplantation shows safety and evidence of efficacy. Oncotarget. 2017;8:89256–89268. doi: 10.18632/oncotarget.19204. PubMed DOI PMC
Maki G., Klingemann H.G., Martinson J.A., Tam Y.K. Factors regulating the cytotoxic activity of the human natural killer cell line, NK-92. J. Hematother. Stem Cell Res. 2001;10:369–383. doi: 10.1089/152581601750288975. PubMed DOI
Masuyama J., Murakami T., Iwamoto S., Fujita S. Ex vivo expansion of natural killer cells from human peripheral blood mononuclear cells co-stimulated with anti-CD3 and anti-CD52 monoclonal antibodies. Cytotherapy. 2016;18:80–90. doi: 10.1016/j.jcyt.2015.09.011. PubMed DOI
Herrera L., Santos S., Vesga M.A., Anguita J., Martin-Ruiz I., Carrascosa T., Juan M., Eguizabal C. Adult peripheral blood and umbilical cord blood NK cells are good sources for effective CAR therapy against CD19 positive leukemic cells. Sci. Rep. 2019;9:18729. doi: 10.1038/s41598-019-55239-y. PubMed DOI PMC
Herrera L., Salcedo J.M., Santos S., Vesga M.A., Borrego F., Eguizabal C. OP9 Feeder Cells Are Superior to M2-10B4 Cells for the Generation of Mature and Functional Natural Killer Cells from Umbilical Cord Hematopoietic Progenitors. Front. Immunol. 2017;8:755. doi: 10.3389/fimmu.2017.00755. PubMed DOI PMC
Nianias A., Themeli M. Induced Pluripotent Stem Cell (iPSC)-Derived Lymphocytes for Adoptive Cell Immunotherapy: Recent Advances and Challenges. Curr. Hematol. Malig. Rep. 2019;14:261–268. doi: 10.1007/s11899-019-00528-6. PubMed DOI PMC
Topfer K., Cartellieri M., Michen S., Wiedemuth R., Muller N., Lindemann D., Bachmann M., Fussel M., Schackert G., Temme A. DAP12-based activating chimeric antigen receptor for NK cell tumor immunotherapy. J. Immunol. 2015;194:3201–3212. doi: 10.4049/jimmunol.1400330. PubMed DOI
Jiang H., Zhang W., Shang P., Zhang H., Fu W., Ye F., Zeng T., Huang H., Zhang X., Sun W., et al. Transfection of chimeric anti-CD138 gene enhances natural killer cell activation and killing of multiple myeloma cells. Mol. Oncol. 2014;8:297–310. doi: 10.1016/j.molonc.2013.12.001. PubMed DOI PMC
Tang X., Yang L., Li Z., Nalin A.P., Dai H., Xu T., Yin J., You F., Zhu M., Shen W., et al. First-in-man clinical trial of CAR NK-92 cells: Safety test of CD33-CAR NK-92 cells in patients with relapsed and refractory acute myeloid leukemia. Am. J. Cancer Res. 2018;8:1083–1089. PubMed PMC
Liu E., Marin D., Banerjee P., Macapinlac H.A., Thompson P., Basar R., Nassif Kerbauy L., Overman B., Thall P., Kaplan M., et al. Use of CAR-Transduced Natural Killer Cells in CD19-Positive Lymphoid Tumors. N. Engl. J. Med. 2020;382:545–553. doi: 10.1056/NEJMoa1910607. PubMed DOI PMC
Carlsten M., Childs R.W. Genetic Manipulation of NK Cells for Cancer Immunotherapy: Techniques and Clinical Implications. Front. Immunol. 2015;6:266. doi: 10.3389/fimmu.2015.00266. PubMed DOI PMC
Colamartino A.B.L., Lemieux W., Bifsha P., Nicoletti S., Chakravarti N., Sanz J., Romero H., Selleri S., Beland K., Guiot M., et al. Efficient and Robust NK-Cell Transduction With Baboon Envelope Pseudotyped Lentivector. Front. Immunol. 2019;10:2873. doi: 10.3389/fimmu.2019.02873. PubMed DOI PMC
Ingegnere T., Mariotti F.R., Pelosi A., Quintarelli C., De Angelis B., Tumino N., Besi F., Cantoni C., Locatelli F., Vacca P., et al. Human CAR NK Cells: A New Non-viral Method Allowing High Efficient Transfection and Strong Tumor Cell Killing. Front. Immunol. 2019;10:957. doi: 10.3389/fimmu.2019.00957. PubMed DOI PMC
Wang J., Lupo K.B., Chambers A.M., Matosevic S. Purinergic targeting enhances immunotherapy of CD73(+) solid tumors with piggyBac-engineered chimeric antigen receptor natural killer cells. J. Immunother. Cancer. 2018;6:136. doi: 10.1186/s40425-018-0441-8. PubMed DOI PMC
Steinman R.M., Cohn Z.A. Identification of a novel cell type in peripheral lymphoid organs of mice. I. Morphology, quantitation, tissue distribution. J. Exp. Med. 1973;137:1142–1162. doi: 10.1084/jem.137.5.1142. PubMed DOI PMC
Ma Y., Shurin G.V., Peiyuan Z., Shurin M.R. Dendritic cells in the cancer microenvironment. J. Cancer. 2013;4:36–44. doi: 10.7150/jca.5046. PubMed DOI PMC
Gabrilovich D. Mechanisms and functional significance of tumour-induced dendritic-cell defects. Nat. Rev. Immunol. 2004;4:941–952. doi: 10.1038/nri1498. PubMed DOI
Timmerman J.M., Czerwinski D.K., Davis T.A., Hsu F.J., Benike C., Hao Z.M., Taidi B., Rajapaksa R., Caspar C.B., Okada C.Y., et al. Idiotype-pulsed dendritic cell vaccination for B-cell lymphoma: Clinical and immune responses in 35 patients. Blood. 2002;99:1517–1526. doi: 10.1182/blood.V99.5.1517. PubMed DOI
Kokhaei P., Choudhury A., Mahdian R., Lundin J., Moshfegh A., Osterborg A., Mellstedt H. Apoptotic tumor cells are superior to tumor cell lysate, and tumor cell RNA in induction of autologous T cell response in B-CLL. Leukemia. 2004;18:1810–1815. doi: 10.1038/sj.leu.2403517. PubMed DOI
Ho V.T., Vanneman M., Kim H., Sasada T., Kang Y.J., Pasek M., Cutler C., Koreth J., Alyea E., Sarantopoulos S., et al. Biologic activity of irradiated, autologous, GM-CSF-secreting leukemia cell vaccines early after allogeneic stem cell transplantation. Proc. Natl. Acad. Sci. USA. 2009;106:15825–15830. doi: 10.1073/pnas.0908358106. PubMed DOI PMC
Van Driessche A., Van de Velde A.L., Nijs G., Braeckman T., Stein B., De Vries J.M., Berneman Z.N., Van Tendeloo V.F. Clinical-grade manufacturing of autologous mature mRNA-electroporated dendritic cells and safety testing in acute myeloid leukemia patients in a phase I dose-escalation clinical trial. Cytotherapy. 2009;11:653–668. doi: 10.1080/14653240902960411. PubMed DOI
Roddie H., Klammer M., Thomas C., Thomson R., Atkinson A., Sproul A., Waterfall M., Samuel K., Yin J., Johnson P., et al. Phase I/II study of vaccination with dendritic-like leukaemia cells for the immunotherapy of acute myeloid leukaemia. Br. J. Haematol. 2006;133:152–157. doi: 10.1111/j.1365-2141.2006.05997.x. PubMed DOI
Tel J., Anguille S., Waterborg C.E., Smits E.L., Figdor C.G., de Vries I.J. Tumoricidal activity of human dendritic cells. Trends Immunol. 2014;35:38–46. doi: 10.1016/j.it.2013.10.007. PubMed DOI PMC
Zhou L.J., Tedder T.F. CD14+ blood monocytes can differentiate into functionally mature CD83+ dendritic cells. Proc. Natl. Acad. Sci. USA. 1996;93:2588–2592. doi: 10.1073/pnas.93.6.2588. PubMed DOI PMC
Fidler I.J. Inhibition of pulmonary metastasis by intravenous injection of specifically activated macrophages. Cancer Res. 1974;34:1074–1078. PubMed
Andreesen R., Hennemann B., Krause S.W. Adoptive immunotherapy of cancer using monocyte-derived macrophages: Rationale, current status, and perspectives. J. Leukoc. Biol. 1998;64:419–426. doi: 10.1002/jlb.64.4.419. PubMed DOI
Stevenson H.C., Keenan A.M., Woodhouse C., Ottow R.T., Miller P., Steller E.P., Foon K.A., Abrams P.G., Beman J., Larson S.M., et al. Fate of gamma-interferon-activated killer blood monocytes adoptively transferred into the abdominal cavity of patients with peritoneal carcinomatosis. Cancer Res. 1987;47:6100–6103. PubMed
Quillien V., Moisan A., Lesimple T., Leberre C., Toujas L. Biodistribution of 111indium-labeled macrophages infused intravenously in patients with renal carcinoma. Cancer Immunol. Immunother. 2001;50:477–482. doi: 10.1007/s002620100224. PubMed DOI PMC
Ruffell B., Affara N.I., Coussens L.M. Differential macrophage programming in the tumor microenvironment. Trends Immunol. 2012;33:119–126. doi: 10.1016/j.it.2011.12.001. PubMed DOI PMC
Squadrito M.L., De Palma M. Macrophage regulation of tumor angiogenesis: Implications for cancer therapy. Mol. Aspects Med. 2011;32:123–145. doi: 10.1016/j.mam.2011.04.005. PubMed DOI
Kan O., Day D., Iqball S., Burke F., Grimshaw M.J., Naylor S., Binley K. Genetically modified macrophages expressing hypoxia regulated cytochrome P450 and P450 reductase for the treatment of cancer. Int. J. Mol. Med. 2011;27:173–180. doi: 10.3892/ijmm.2010.583. PubMed DOI
Basel M.T., Balivada S., Shrestha T.B., Seo G.M., Pyle M.M., Tamura M., Bossmann S.H., Troyer D.L. A cell-delivered and cell-activated SN38-dextran prodrug increases survival in a murine disseminated pancreatic cancer model. Small. 2012;8:913–920. doi: 10.1002/smll.201101879. PubMed DOI PMC
Hagemann T., Lawrence T., McNeish I., Charles K.A., Kulbe H., Thompson R.G., Robinson S.C., Balkwill F.R. “Re-educating” tumor-associated macrophages by targeting NF-kappaB. J. Exp. Med. 2008;205:1261–1268. doi: 10.1084/jem.20080108. PubMed DOI PMC
Yang T.D., Choi W., Yoon T.H., Lee K.J., Lee J.S., Joo J.H., Lee M.G., Yim H.S., Choi K.M., Kim B., et al. In vivo photothermal treatment by the peritumoral injection of macrophages loaded with gold nanoshells. Biomed. Opt. Express. 2016;7:185–193. doi: 10.1364/BOE.7.000185. PubMed DOI PMC
Morrissey M.A., Williamson A.P., Steinbach A.M., Roberts E.W., Kern N., Headley M.B., Vale R.D. Chimeric antigen receptors that trigger phagocytosis. Elife. 2018;7 doi: 10.7554/eLife.36688. PubMed DOI PMC
Van Tendeloo V.F., Van de Velde A., Van Driessche A., Cools N., Anguille S., Ladell K., Gostick E., Vermeulen K., Pieters K., Nijs G., et al. Induction of complete and molecular remissions in acute myeloid leukemia by Wilms’ tumor 1 antigen-targeted dendritic cell vaccination. Proc. Natl. Acad. Sci. USA. 2010;107:13824–13829. doi: 10.1073/pnas.1008051107. PubMed DOI PMC
Rosenblatt J., Avivi I., Vasir B., Uhl L., Munshi N.C., Katz T., Dey B.R., Somaiya P., Mills H., Campigotto F., et al. Vaccination with dendritic cell/tumor fusions following autologous stem cell transplant induces immunologic and clinical responses in multiple myeloma patients. Clin. Cancer Res. 2013;19:3640–3648. doi: 10.1158/1078-0432.CCR-13-0282. PubMed DOI PMC
van de Loosdrecht A.A., van Wetering S., Santegoets S., Singh S.K., Eeltink C.M., den Hartog Y., Koppes M., Kaspers J., Ossenkoppele G.J., Kruisbeek A.M., et al. A novel allogeneic off-the-shelf dendritic cell vaccine for post-remission treatment of elderly patients with acute myeloid leukemia. Cancer Immunol. Immunother. 2018;67:1505–1518. doi: 10.1007/s00262-018-2198-9. PubMed DOI PMC
Neelapu S.S., Locke F.L., Bartlett N.L., Lekakis L.J., Miklos D.B., Jacobson C.A., Braunschweig I., Oluwole O.O., Siddiqi T., Lin Y., et al. Axicabtagene Ciloleucel CAR T-Cell Therapy in Refractory Large B-Cell Lymphoma. N. Engl. J. Med. 2017;377:2531–2544. doi: 10.1056/NEJMoa1707447. PubMed DOI PMC
Yan Z., Cao J., Cheng H., Qiao J., Zhang H., Wang Y., Shi M., Lan J., Fei X., Jin L., et al. A combination of humanised anti-CD19 and anti-BCMA CAR T cells in patients with relapsed or refractory multiple myeloma: A single-arm, phase 2 trial. Lancet Haematol. 2019;6:e521–e529. doi: 10.1016/S2352-3026(19)30115-2. PubMed DOI
Lavergne M., Janus-Bell E., Schaff M., Gachet C., Mangin P.H. Platelet Integrins in Tumor Metastasis: Do They Represent a Therapeutic Target? Cancers (Basel) 2017;9:133. doi: 10.3390/cancers9100133. PubMed DOI PMC
Zhang Y., Liu G., Wei J., Nie G. Platelet membrane-based and tumor-associated platelettargeted drug delivery systems for cancer therapy. Front. Med. 2018;12:667–677. doi: 10.1007/s11684-017-0583-y. PubMed DOI
Xu P., Zuo H., Chen B., Wang R., Ahmed A., Hu Y., Ouyang J. Corrigendum: Doxorubicin-loaded platelets as a smart drug delivery system: An improved therapy for lymphoma. Sci. Rep. 2017;7:44974. doi: 10.1038/srep44974. PubMed DOI PMC
Grozovsky R., Giannini S., Falet H., Hoffmeister K.M. Regulating billions of blood platelets: Glycans and beyond. Blood. 2015;126:1877–1884. doi: 10.1182/blood-2015-01-569129. PubMed DOI PMC
Janowska-Wieczorek A., Wysoczynski M., Kijowski J., Marquez-Curtis L., Machalinski B., Ratajczak J., Ratajczak M.Z. Microvesicles derived from activated platelets induce metastasis and angiogenesis in lung cancer. Int. J. Cancer. 2005;113:752–760. doi: 10.1002/ijc.20657. PubMed DOI
Gasic G.J., Gasic T.B., Galanti N., Johnson T., Murphy S. Platelet-tumor-cell interactions in mice. The role of platelets in the spread of malignant disease. Int. J. Cancer. 1973;11:704–718. doi: 10.1002/ijc.2910110322. PubMed DOI
Cho M.S., Bottsford-Miller J., Vasquez H.G., Stone R., Zand B., Kroll M.H., Sood A.K., Afshar-Kharghan V. Platelets increase the proliferation of ovarian cancer cells. Blood. 2012;120:4869–4872. doi: 10.1182/blood-2012-06-438598. PubMed DOI PMC
Radziwon-Balicka A., Medina C., O’Driscoll L., Treumann A., Bazou D., Inkielewicz-Stepniak I., Radomski A., Jow H., Radomski M.W. Platelets increase survival of adenocarcinoma cells challenged with anticancer drugs: Mechanisms and implications for chemoresistance. Br. J. Pharmacol. 2012;167:787–804. doi: 10.1111/j.1476-5381.2012.01991.x. PubMed DOI PMC
Tran C., Damaser M.S. Stem cells as drug delivery methods: Application of stem cell secretome for regeneration. Adv. Drug. Deliv. Rev. 2015;82–83:1–11. doi: 10.1016/j.addr.2014.10.007. PubMed DOI PMC
Kavari S.L., Shah K. Engineered stem cells targeting multiple cell surface receptors in tumors. Stem Cells. 2020;38:34–44. doi: 10.1002/stem.3069. PubMed DOI PMC
van Rood J.J., Scaradavou A., Stevens C.E. Indirect evidence that maternal microchimerism in cord blood mediates a graft-versus-leukemia effect in cord blood transplantation. Proc. Natl. Acad. Sci. USA. 2012;109:2509–2514. doi: 10.1073/pnas.1119541109. PubMed DOI PMC
Pessina A., Cocce V., Pascucci L., Bonomi A., Cavicchini L., Sisto F., Ferrari M., Ciusani E., Crovace A., Falchetti M.L., et al. Mesenchymal stromal cells primed with Paclitaxel attract and kill leukaemia cells, inhibit angiogenesis and improve survival of leukaemia-bearing mice. Br. J. Haematol. 2013;160:766–778. doi: 10.1111/bjh.12196. PubMed DOI
Ciavarella S., Grisendi G., Dominici M., Tucci M., Brunetti O., Dammacco F., Silvestris F. In vitro anti-myeloma activity of TRAIL-expressing adipose-derived mesenchymal stem cells. Br. J. Haematol. 2012;157:586–598. doi: 10.1111/j.1365-2141.2012.09082.x. PubMed DOI
Bock A.M., Knorr D., Kaufman D.S. Development, expansion, and in vivo monitoring of human NK cells from human embryonic stem cells (hESCs) and and induced pluripotent stem cells (iPSCs) J. Vis. Exp. 2013:e50337. doi: 10.3791/50337. PubMed DOI PMC
Themeli M., Kloss C.C., Ciriello G., Fedorov V.D., Perna F., Gonen M., Sadelain M. Generation of tumor-targeted human T lymphocytes from induced pluripotent stem cells for cancer therapy. Nat. Biotechnol. 2013;31:928–933. doi: 10.1038/nbt.2678. PubMed DOI PMC
Thomas E.D., Lochte H.L., Jr., Lu W.C., Ferrebee J.W. Intravenous infusion of bone marrow in patients receiving radiation and chemotherapy. N. Engl. J. Med. 1957;257:491–496. doi: 10.1056/NEJM195709122571102. PubMed DOI
Singh A.K., McGuirk J.P. Allogeneic Stem Cell Transplantation: A Historical and Scientific Overview. Cancer Res. 2016;76:6445–6451. doi: 10.1158/0008-5472.CAN-16-1311. PubMed DOI
Bair S.M., Brandstadter J.D., Ayers E.C., Stadtmauer E.A. Hematopoietic stem cell transplantation for blood cancers in the era of precision medicine and immunotherapy. Cancer. 2020;126:1837–1855. doi: 10.1002/cncr.32659. PubMed DOI
Panch S.R., Szymanski J., Savani B.N., Stroncek D.F. Sources of Hematopoietic Stem and Progenitor Cells and Methods to Optimize Yields for Clinical Cell Therapy. Biol. Blood Marrow Transplant. 2017;23:1241–1249. doi: 10.1016/j.bbmt.2017.05.003. PubMed DOI
Khaddour K., Mewawalla P. StatPearls StatPearls [Internet], Treasure Island (FL) StatPearls Publishing; Petersburg, FL, USA: 2020. Hematopoietic Stem Cell Transplantation. PubMed
Gschweng E., De Oliveira S., Kohn D.B. Hematopoietic stem cells for cancer immunotherapy. Immunol. Rev. 2014;257:237–249. doi: 10.1111/imr.12128. PubMed DOI PMC
Puig-Saus C., Parisi G., Garcia-Diaz A., Krystofinski P.E., Sandoval S., Zhang R., Champhekar A.S., McCabe J., Cheung-Lau G.C., Truong N.A., et al. IND-Enabling Studies for a Clinical Trial to Genetically Program a Persistent Cancer-Targeted Immune System. Clin. Cancer Res. 2019;25:1000–1011. doi: 10.1158/1078-0432.CCR-18-0963. PubMed DOI PMC
Rapoport A.P., Stadtmauer E.A., Binder-Scholl G.K., Goloubeva O., Vogl D.T., Lacey S.F., Badros A.Z., Garfall A., Weiss B., Finklestein J., et al. NY-ESO-1-specific TCR-engineered T cells mediate sustained antigen-specific antitumor effects in myeloma. Nat. Med. 2015;21:914–921. doi: 10.1038/nm.3910. PubMed DOI PMC
Gimble J.M., Guilak F., Nuttall M.E., Sathishkumar S., Vidal M., Bunnell B.A. In vitro Differentiation Potential of Mesenchymal Stem Cells. Transfus. Med. Hemother. 2008;35:228–238. doi: 10.1159/000124281. PubMed DOI PMC
Luo L., Li T.S. Mini review: Recent advances in the cell-based therapies for cardiac regeneration. Curr. Stem Cell Res. Ther. 2020 doi: 10.2174/1574888X15666200102103755. PubMed DOI
Rozier P., Maria A., Goulabchand R., Jorgensen C., Guilpain P., Noel D. Mesenchymal Stem Cells in Systemic Sclerosis: Allogenic or Autologous Approaches for Therapeutic Use? Front. Immunol. 2018;9:2938. doi: 10.3389/fimmu.2018.02938. PubMed DOI PMC
Conrad S., Weber K., Walliser U., Geburek F., Skutella T. Stem Cell Therapy for Tendon Regeneration: Current Status and Future Directions. Adv. Exp. Med. Biol. 2019;1084:61–93. doi: 10.1007/5584_2018_194. PubMed DOI
Bago J.R., Soler-Botija C., Casani L., Aguilar E., Alieva M., Rubio N., Bayes-Genis A., Blanco J. Bioluminescence imaging of cardiomyogenic and vascular differentiation of cardiac and subcutaneous adipose tissue-derived progenitor cells in fibrin patches in a myocardium infarct model. Int. J. Cardiol. 2013;169:288–295. doi: 10.1016/j.ijcard.2013.09.013. PubMed DOI
Chulpanova D.S., Kitaeva K.V., Tazetdinova L.G., James V., Rizvanov A.A., Solovyeva V.V. Application of Mesenchymal Stem Cells for Therapeutic Agent Delivery in Anti-tumor Treatment. Front. Pharmacol. 2018;9:259. doi: 10.3389/fphar.2018.00259. PubMed DOI PMC
Bago J.R., Pegna G.J., Okolie O., Hingtgen S.D. Fibrin matrices enhance the transplant and efficacy of cytotoxic stem cell therapy for post-surgical cancer. Biomaterials. 2016;84:42–53. doi: 10.1016/j.biomaterials.2016.01.007. PubMed DOI PMC
Sun Z., Wang S., Zhao R.C. The roles of mesenchymal stem cells in tumor inflammatory microenvironment. J. Hematol. Oncol. 2014;7:14. doi: 10.1186/1756-8722-7-14. PubMed DOI PMC
Xu S., Menu E., De Becker A., Van Camp B., Vanderkerken K., Van Riet I. Bone marrow-derived mesenchymal stromal cells are attracted by multiple myeloma cell-produced chemokine CCL25 and favor myeloma cell growth in vitro and in vivo. Stem Cells. 2012;30:266–279. doi: 10.1002/stem.787. PubMed DOI
Klopp A.H., Spaeth E.L., Dembinski J.L., Woodward W.A., Munshi A., Meyn R.E., Cox J.D., Andreeff M., Marini F.C. Tumor irradiation increases the recruitment of circulating mesenchymal stem cells into the tumor microenvironment. Cancer Res. 2007;67:11687–11695. doi: 10.1158/0008-5472.CAN-07-1406. PubMed DOI PMC
Li X., Lu Y., Huang W., Xu H., Chen X., Geng Q., Fan H., Tan Y., Xue G., Jiang X. In vitro effect of adenovirus-mediated human Gamma Interferon gene transfer into human mesenchymal stem cells for chronic myelogenous leukemia. Hematol. Oncol. 2006;24:151–158. doi: 10.1002/hon.779. PubMed DOI
Bonomi A., Steimberg N., Benetti A., Berenzi A., Alessandri G., Pascucci L., Boniotti J., Cocce V., Sordi V., Pessina A., et al. Paclitaxel-releasing mesenchymal stromal cells inhibit the growth of multiple myeloma cells in a dynamic 3D culture system. Hematol. Oncol. 2017;35:693–702. doi: 10.1002/hon.2306. PubMed DOI
Cocce V., Farronato D., Brini A.T., Masia C., Gianni A.B., Piovani G., Sisto F., Alessandri G., Angiero F., Pessina A. Drug Loaded Gingival Mesenchymal Stromal Cells (GinPa-MSCs) Inhibit In Vitro Proliferation of Oral Squamous Cell Carcinoma. Sci. Rep. 2017;7:9376. doi: 10.1038/s41598-017-09175-4. PubMed DOI PMC
Dwyer R.M., Khan S., Barry F.P., O’Brien T., Kerin M.J. Advances in mesenchymal stem cell-mediated gene therapy for cancer. Stem Cell Res. Ther. 2010;1:25. doi: 10.1186/scrt25. PubMed DOI PMC
Klingemann H., Matzilevich D., Marchand J. Mesenchymal Stem Cells—Sources and Clinical Applications. Transfus. Med. Hemother. 2008;35:272–277. doi: 10.1159/000142333. PubMed DOI PMC
Lin H.D., Fong C.Y., Biswas A., Choolani M., Bongso A. Human Umbilical Cord Wharton’s Jelly Stem Cell Conditioned Medium Induces Tumoricidal Effects on Lymphoma Cells Through Hydrogen Peroxide Mediation. J. Cell. Biochem. 2016;117:2045–2055. doi: 10.1002/jcb.25501. PubMed DOI
Lee M.W., Park Y.J., Kim D.S., Park H.J., Jung H.L., Lee J.W., Sung K.W., Koo H.H., Yoo K.H. Human Adipose Tissue Stem Cells Promote the Growth of Acute Lymphoblastic Leukemia Cells in NOD/SCID Mice. Stem Cell Rev. Rep. 2018;14:451–460. doi: 10.1007/s12015-018-9806-0. PubMed DOI
Song N., Gao L., Qiu H., Huang C., Cheng H., Zhou H., Lv S., Chen L., Wang J. Mouse bone marrow-derived mesenchymal stem cells inhibit leukemia/lymphoma cell proliferation in vitro and in a mouse model of allogeneic bone marrow transplant. Int. J. Mol. Med. 2015;36:139–149. doi: 10.3892/ijmm.2015.2191. PubMed DOI PMC
Ramasamy R., Lam E.W., Soeiro I., Tisato V., Bonnet D., Dazzi F. Mesenchymal stem cells inhibit proliferation and apoptosis of tumor cells: Impact on in vivo tumor growth. Leukemia. 2007;21:304–310. doi: 10.1038/sj.leu.2404489. PubMed DOI
Sarmadi V.H., Tong C.K., Vidyadaran S., Abdullah M., Seow H.F., Ramasamy R. Mesenchymal stem cells inhibit proliferation of lymphoid origin haematopoietic tumour cells by inducing cell cycle arrest. Med. J. Malaysia. 2010;65:209–214. PubMed
Ning H., Yang F., Jiang M., Hu L., Feng K., Zhang J., Yu Z., Li B., Xu C., Li Y., et al. The correlation between cotransplantation of mesenchymal stem cells and higher recurrence rate in hematologic malignancy patients: Outcome of a pilot clinical study. Leukemia. 2008;22:593–599. doi: 10.1038/sj.leu.2405090. PubMed DOI
Manabe A., Coustan-Smith E., Behm F.G., Raimondi S.C., Campana D. Bone marrow-derived stromal cells prevent apoptotic cell death in B-lineage acute lymphoblastic leukemia. Blood. 1992;79:2370–2377. doi: 10.1182/blood.V79.9.2370.2370. PubMed DOI
Nwabo Kamdje A.H., Mosna F., Bifari F., Lisi V., Bassi G., Malpeli G., Ricciardi M., Perbellini O., Scupoli M.T., Pizzolo G., et al. Notch-3 and Notch-4 signaling rescue from apoptosis human B-ALL cells in contact with human bone marrow-derived mesenchymal stromal cells. Blood. 2011;118:380–389. doi: 10.1182/blood-2010-12-326694. PubMed DOI
Di Ianni M., Del Papa B., De Ioanni M., Moretti L., Bonifacio E., Cecchini D., Sportoletti P., Falzetti F., Tabilio A. Mesenchymal cells recruit and regulate T regulatory cells. Exp. Hematol. 2008;36:309–318. doi: 10.1016/j.exphem.2007.11.007. PubMed DOI
Sotiropoulou P.A., Perez S.A., Gritzapis A.D., Baxevanis C.N., Papamichail M. Interactions between human mesenchymal stem cells and natural killer cells. Stem Cells. 2006;24:74–85. doi: 10.1634/stemcells.2004-0359. PubMed DOI
Roorda B.D., ter Elst A., Kamps W.A., de Bont E.S. Bone marrow-derived cells and tumor growth: Contribution of bone marrow-derived cells to tumor micro-environments with special focus on mesenchymal stem cells. Crit. Rev. Oncol. Hematol. 2009;69:187–198. doi: 10.1016/j.critrevonc.2008.06.004. PubMed DOI
Xia B., Tian C., Guo S., Zhang L., Zhao D., Qu F., Zhao W., Wang Y., Wu X., Da W., et al. c-Myc plays part in drug resistance mediated by bone marrow stromal cells in acute myeloid leukemia. Leuk. Res. 2015;39:92–99. doi: 10.1016/j.leukres.2014.11.004. PubMed DOI
Cai J., Wang J., Huang Y., Wu H., Xia T., Xiao J., Chen X., Li H., Qiu Y., Wang Y., et al. ERK/Drp1-dependent mitochondrial fission is involved in the MSC-induced drug resistance of T-cell acute lymphoblastic leukemia cells. Cell Death Dis. 2016;7:e2459. doi: 10.1038/cddis.2016.370. PubMed DOI PMC
Lee M.W., Ryu S., Kim D.S., Lee J.W., Sung K.W., Koo H.H., Yoo K.H. Mesenchymal stem cells in suppression or progression of hematologic malignancy: Current status and challenges. Leukemia. 2019;33:597–611. doi: 10.1038/s41375-018-0373-9. PubMed DOI PMC
Barber C.L., Iruela-Arispe M.L. The ever-elusive endothelial progenitor cell: Identities, functions and clinical implications. Pediatr. Res. 2006;59:26R–32R. doi: 10.1203/01.pdr.0000203553.46471.18. PubMed DOI
Chopra H., Hung M.K., Kwong D.L., Zhang C.F., Pow E.H.N. Insights into Endothelial Progenitor Cells: Origin, Classification, Potentials, and Prospects. Stem Cells Int. 2018;2018:9847015. doi: 10.1155/2018/9847015. PubMed DOI PMC
Laurenzana A., Margheri F., Chilla A., Biagioni A., Margheri G., Calorini L., Fibbi G., Del Rosso M. Endothelial Progenitor Cells as Shuttle of Anticancer Agents. Hum. Gene Ther. 2016;27:784–791. doi: 10.1089/hum.2016.066. PubMed DOI
Keighron C., Lyons C.J., Creane M., O’Brien T., Liew A. Recent Advances in Endothelial Progenitor Cells Toward Their Use in Clinical Translation. Front. Med. (Lausanne) 2018;5:354. doi: 10.3389/fmed.2018.00354. PubMed DOI PMC
Zhao X., Liu H.Q., Li J., Liu X.L. Endothelial progenitor cells promote tumor growth and progression by enhancing new vessel formation. Oncol. Lett. 2016;12:793–799. doi: 10.3892/ol.2016.4733. PubMed DOI PMC
Takahashi K., Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 2006;126:663–676. doi: 10.1016/j.cell.2006.07.024. PubMed DOI
Lei F., Haque R., Weiler L., Vrana K.E., Song J. T lineage differentiation from induced pluripotent stem cells. Cell Immunol. 2009;260:1–5. doi: 10.1016/j.cellimm.2009.09.005. PubMed DOI
Watarai H., Fujii S., Yama da D., Rybouchkin A., Sakata S., Nagata Y., Iida-Kobayashi M., Sekine-Kondo E., Shimizu K., Shozaki Y., et al. Murine induced pluripotent stem cells can be derived from and differentiate into natural killer T cells. J. Clin. Invest. 2010;120:2610–2618. doi: 10.1172/JCI42027. PubMed DOI PMC
Zhang L., Tian L., Dai X., Yu H., Wang J., Lei A., Zhao W., Zhu Y., Sun Z., Zhang H., et al. Induced Pluripotent Stem Cell-derived CAR-Macrophage Cells with Antigen-dependent Anti-Cancer Cell Functions for Liquid and Solid Tumors. bioRxiv. 2020 doi: 10.1101/2020.03.28.011270. PubMed DOI PMC
Yasuda S., Kusakawa S., Kuroda T., Miura T., Tano K., Takada N., Matsuyama S., Matsuyama A., Nasu M., Umezawa A., et al. Tumorigenicity-associated characteristics of human iPS cell lines. PLoS ONE. 2018;13:e0205022. doi: 10.1371/journal.pone.0205022. PubMed DOI PMC