Application of spike sorting algorithm to neuronal signals originated from boron doped diamond micro-electrode arrays
Jazyk angličtina Země Česko Médium print-electronic
Typ dokumentu časopisecké články
PubMed
32469239
PubMed Central
PMC8648311
DOI
10.33549/physiolres.934366
PII: 934366
Knihovny.cz E-zdroje
- MeSH
- akční potenciály MeSH
- algoritmy MeSH
- bor chemie MeSH
- diamant chemie MeSH
- hipokampus fyziologie MeSH
- krysa rodu Rattus MeSH
- mikroelektrody MeSH
- neurony fyziologie MeSH
- potkani Wistar MeSH
- titan chemie MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- bor MeSH
- diamant MeSH
- titan MeSH
- titanium nitride MeSH Prohlížeč
In this work we report on the implementation of methods for data processing signals from microelectrode arrays (MEA) and the application of these methods for signals originated from two types of MEAs to detect putative neurons and sort them into subpopulations. We recorded electrical signals from firing neurons using titanium nitride (TiN) and boron doped diamond (BDD) MEAs. In previous research, we have shown that these methods have the capacity to detect neurons using commercially-available TiN-MEAs. We have managed to cultivate and record hippocampal neurons for the first time using a newly developed custom-made multichannel BDD-MEA with 20 recording sites. We have analysed the signals with the algorithms developed and employed them to inspect firing bursts and enable spike sorting. We did not observe any significant difference between BDD- and TiN-MEAs over the parameters, which estimated spike shape variability per each detected neuron. This result supports the hypothesis that we have detected real neurons, rather than noise, in the BDD-MEA signal. BDD materials with suitable mechanical, electrical and biocompatibility properties have a large potential in novel therapies for treatments of neural pathologies, such as deep brain stimulation in Parkinson's disease.
Zobrazit více v PubMed
BALUCHOVA S, TAYLOR A, MORTET V, SEDLAKOVA S, KLIMSA L, KOPECEK J, HAK O, SCHWARZOVA-PECKOVA K. Porous boron doped diamond for dopamine sensing: Effect of boron doping level on morphology and electrochemical performance. Electrochim Acta. 2019;327:135025. doi: 10.1016/j.electacta.2019.135025. DOI
BECHT E, McINNES L, HEALY J, DUTERTRE CA, KWOK IWH, NG LG, GINHOUX F, NEWELL EW. Dimensionality reduction for visualizing single-cell data using UMAP. Nat Biotechnol. 2019;37:38–44. doi: 10.1038/nbt.4314. PubMed DOI
BENNET KE, LEE KH, KRUCHOWSKI JN, CHANG SY, MARSCH MP, Van ORSOW AA, PAEZ A, MANCIU FS. Development of conductive boron-doped diamond electrode: a microscopic, spectroscopic, and voltammetric study. Materials (Basel) 2013;6:5726–5741. doi: 10.3390/ma6125726. PubMed DOI PMC
BENNET KE, TOMSHINE JR, MIN HK, MANCIU FS, MARSH MP, PAEK SB, SETTELL ML, NICOLAI EN, BLAHA CD, KOUZANI AZ, CHANG SY, LEE KH. A diamond-based electrode for detection of neurochemicals in the human brain. Front Hum Neurosci. 2016;10:102. doi: 10.3389/fnhum.2016.00102. PubMed DOI PMC
FERREA E, MACCIONE A, MEDRIHAN L, NIEUS T, GHEZZI D, BALDELLI P, BENFENATI F, BERDONDINI L. Large-scale, high-resolution electrophysiological imaging of field potentials in brain slices with microelectronic multielectrode arrays. Front Neural Circuits. 2012;6:8. doi: 10.3389/fncir.2012.00080. PubMed DOI PMC
JONSSON A, INAL S, UGUZ I, WILLIAMSON AJ, KERGOAT L, RIVNAY J, KHODAGHOLY D, BERGGREN M, BERNARD CH, MALLIARAS GG, SIMON DT. Bioelectronic neural pixel: Chemical stimulation and electrical sensing at the same site. Proc Natl Acad Sci U S A. 2016;113:9440–9445. doi: 10.1073/pnas.1604231113. PubMed DOI PMC
KIM S, McNAMES J. Automatic spike detection based on adaptive template matching for extracellular neural recordings. J Neurosci Meth. 2007;165:165–174. doi: 10.1016/j.jneumeth.2007.05.033. PubMed DOI
KLEMPIR O, KRUPICKA R, PETRAKOVA V, KRUSEK J, DITTERT I, TAYLOR A. Automated neurons recognition and sorting for diamond based microelectrode arrays recording: A feasibility study. In: LHOTSKA L, SUKUPOVA L, LACKOVIC I, IBBOTT G, editors. World Congress on Medical Physics and Biomedical Engineering 2018. Springer; Singapore: 2019. pp. 281–286. DOI
KRUSEK J, DITTERT I, SMEJKALOVA T, KORINEK M, GOTTFRIEDOVA K, FREISLEBENOVA H, NEUHOFEROVA E, KLIMSA L, SEDLAKOVA S, TAYLOR A, MORTET V, PETRAK V, PETRAKOVA V. Molecular functionalization of planar nanocrystalline and porous nanostructured diamond to form an interface with newborn and adult neurons. Phys Status Solidi. 2019;256:1800424. doi: 10.1002/pssb.201800424. DOI
KUNZINGER S. Signal recording of 3D neurospheres on high-resolution CMOS MEA platform. In: HUSNIK L, editor. Proceedings of the International Student Scientific Conference Poster – 23/2019. Czech Technical University in Prague; Prague: 2019. pp. 33–35.
LINDOVSKY J, PYSANENKO K, POPELAR J, SYKA J. Fast tonotopy mapping of the rat auditory cortex with a custom-made electrode array. Physiol Res. 2018;67:993–998. doi: 10.33549/physiolres.933835. PubMed DOI
MACCIONE A, GANDOLFO M, ZORDAN S, AMIN H, Di MARCO S, NIEUS T, ANGOTZI GN, BERDONDINI L. Microelectronics, bioinformatics and neurocomputation for massive neuronal recordings in brain circuits with large scale multielectrode array probes. Brain Res Bull. 2015;119:118–126. doi: 10.1016/j.brainresbull.2015.07.008. PubMed DOI
MATSUBARA T, UJIE M, YAMAMOTO T, AKAHORI M, EINAGA Y, SATO T. Highly sensitive detection of influenza virus by boron-doped diamond electrode terminated with sialic acid-mimic peptide. Proc Natl Acad Sci U S A. 2016;113:8981–8984. doi: 10.1073/pnas.1603609113. PubMed DOI PMC
MAYBECK V, EDGINGTON R, BONGRAIN A, WELCH JO, SCORSONE E, BERGONZO P, JACKMAN RB, OFFENHAUSSER A. Boron-doped nanocrystalline diamond microelectrode arrays monitor cardiac action potentials. Adv Healthc Mater. 2014;3:283–289. doi: 10.1002/adhm.201300062. PubMed DOI
OBIEN ME, DELIGKARIS K, BULLMANN T, BAKKUM DJ, FREY U. Revealing neuronal function through microelectrode array recordings. Front Neurosci. 2015;8:423. doi: 10.3389/fnins.2014.00423. PubMed DOI PMC
PINE J. Recording action potentials from cultured neurons with extracellular microcircuit electrodes. J Neurosci Meth. 1980;2:19–31. doi: 10.1016/0165-0270(80)90042-4. PubMed DOI
PIRET G, HEBERT C, MAZELLIER JP, ROUSSEAU L, SCORSONE E, COTTANCE M, LISSORGUES G, HEUSCHKEL MO, PICAUD S, BERGONZO P, YVERT B. 3D-nanostructured boron-doped diamond for microelectrode array neural interfacing. Biomaterials. 2015;53:173–183. doi: 10.1016/j.biomaterials.2015.02.021. PubMed DOI
RUSINEK CA, GUO Y, RECHENBERG R, BECKER MF, PURCELL E, VERBER M, McKINNEY C, LI W. All-diamond microfiber electrodes for neurochemical analysis. J Electrochem Soc. 2018;165:3087–3092. doi: 10.1149/2.0141812jes. DOI
STRATTON P, CHEUNG A, WILES J, KIYATKIN E, SAH P, WINDELS F, ARABZADEH E. Action potential waveform variability limits multi-unit separation in freely behaving rats. PLoS One. 2012;7:e38482. doi: 10.1371/journal.pone.0038482. PubMed DOI PMC
TAYLOR A, ASHCHEULOV P, HUBIK P, KLIMSA L, KOPECEK J, REMES Z, VLCKOVA ZIVCOVA Z, REMZOVA M. Precursor gas composition optimisation for large area boron doped nano-crystalline diamond growth by MW-LA-PECVD. Carbon. 2018;128:164–171. doi: 10.1016/j.carbon.2017.11.063. DOI
TYSZCZUK-ROTKO K, JAWORSKA I, JEDRUCHNIEWICZ K. Application of unmodified boron-doped diamond electrode for determination of dopamine and paracetamol. Microchem J. 2019;146:664–672. doi: 10.1016/j.microc.2019.01.064. DOI
WILSON SB, EMERSON R. Spike detection: a review and comparison of algorithms. Clin Neurophysiol. 2002;113:1873–1881. doi: 10.1016/s1388-2457(02)00297-3. PubMed DOI
WOLF FA, ANGERER P, THEIS FJ. SCANPY: large-scale single-cell gene expression data analysis. Genome Biol. 2018;19:15. doi: 10.1186/s13059-017-1382-0. PubMed DOI PMC
ZEHANI N, FORTGANG P, SADDEK LACHGAR M, BARAKET A, ARAB M, DZYADEVYCH SV, KHERRAT R, JAFFREZIC-RENAULT N. Highly sensitive electrochemical biosensor for bisphenol A detection based on a diazonium-functionalized boron-doped diamond electrode modified with a multi-walled carbon nanotube-tyrosinase hybrid film. Biosens Bioelectron. 2015;74:830–835. doi: 10.1016/j.bios.2015.07.051. PubMed DOI