An Original HPLC Method with Coulometric Detection to Monitor Hydroxyl Radical Generation via Fenton Chemistry
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
PubMed
31450723
PubMed Central
PMC6749383
DOI
10.3390/molecules24173066
PII: molecules24173066
Knihovny.cz E-zdroje
- Klíčová slova
- Fenton’s reaction, HPLC-ED, antioxidant, coulometric detector, hydroxyl radical, method validation,
- MeSH
- hydroxylový radikál analýza chemická syntéza MeSH
- limita detekce MeSH
- molekulární struktura MeSH
- peroxid vodíku chemie MeSH
- reprodukovatelnost výsledků MeSH
- techniky syntetické chemie * MeSH
- vysokoúčinná kapalinová chromatografie * MeSH
- železo chemie MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- Fenton's reagent MeSH Prohlížeč
- hydroxylový radikál MeSH
- peroxid vodíku MeSH
- železo MeSH
Hydroxyl radicals (•OH) can be generated via Fenton chemistry catalyzed by transition metals. An in vitro Fenton system was developed to test both the inhibition and stimulation of •OH formation, by monitoring salicylate aromatic hydroxylation derivatives as markers of •OH production. The reaction was optimized with either iron or copper, and target analytes were determined by means of an original HPLC method coupled to coulometric detection. The method granted good sensitivity and precision, while method applicability was tested on antioxidant compounds with and without chelating properties in different substance to metal ratios. This analytical approach shows how Fenton's reaction can be monitored by HPLC coupled to coulometric detection, as a powerful tool for studying molecules' redox behavior.
Zobrazit více v PubMed
Rahal A., Kumar A., Singh V., Yadav B., Tiwari R., Chakraborty S., Dhama K. Oxidative stress, prooxidants, and antioxidants: The interplay. Biomed. Res. Int. 2014;2014 doi: 10.1155/2014/761264. PubMed DOI PMC
Blokhina O., Virolainen E., Fagerstedt K.V. Antioxidants, oxidative damage and oxygen deprivation stress: A review. Ann. Bot. 2003;91:179–194. doi: 10.1093/aob/mcf118. PubMed DOI PMC
Anderson P.R., Kirby K., Orr W.C., Hilliker A.J., Phillips J.P. Hydrogen peroxide scavenging rescues frataxin deficiency in a Drosophila model of Friedreich’s ataxia. PNAS. 2008;105:611–616. doi: 10.1073/pnas.0709691105. PubMed DOI PMC
Dawson T.M., Dawson V.L. Molecular pathways of neurodegeneration in Parkinson’s disease. Science. 2003;302:819–822. doi: 10.1126/science.1087753. PubMed DOI
Giasson B.I., Duda J.E., Murray I.V., Chen Q., Souza J.M., Hurtig H.I., Ischiropoulos H., Trojanowski J.Q., Lee V.M. Oxidative damage linked to neurodegeneration by selective alpha-synuclein nitration in synucleinopathy lesions. Science. 2000;290:985–989. doi: 10.1126/science.290.5493.985. PubMed DOI
Orr W.C., Sohal R.S. Extension of life-span by overexpression of superoxide dismutase and catalase in Drosophila melanogaster. Science. 1994;263:1128–1130. doi: 10.1126/science.8108730. PubMed DOI
Shigenaga M.K., Hagen T.M., Ames B.N. Oxidative damage and mitochondrial decay in aging. PNAS. 1994;91:10771–10778. doi: 10.1073/pnas.91.23.10771. PubMed DOI PMC
Wojtunik-Kulesza K.A., Oniszczuk A., Oniszczuk T., Waksmundzka-Hajnos M. The influence of common free radicals and antioxidants on development of Alzheimer’s Disease. Biomed. Pharmacother. 2016;78:39–49. doi: 10.1016/j.biopha.2015.12.024. PubMed DOI
Jomova K., Valko M. Advances in metal-induced oxidative stress and human disease. Toxicology. 2011;283:65–87. doi: 10.1016/j.tox.2011.03.001. PubMed DOI
Valko M., Rhodes C.J., Moncol J., Izakovic M., Mazur M. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem. Biol. Interact. 2006;160:1–40. doi: 10.1016/j.cbi.2005.12.009. PubMed DOI
Acton R.T., Barton J.C., Passmore L.V., Adams P.C., McLaren G.D., Leiendecker-Foster C., Speechley M.R., Harris E.L., Castro O., Reiss J.A., et al. Accuracy of family history of hemochromatosis or iron overload: The hemochromatosis and iron overload screening study. Clin. Gastroenterol. Hepatol. 2008;6:934–938. doi: 10.1016/j.cgh.2008.04.003. PubMed DOI PMC
Montgomery E.B., Jr. Heavy metals and the etiology of Parkinson’s disease and other movement disorders. Toxicology. 1995;97:3–9. doi: 10.1016/0300-483X(94)02962-T. PubMed DOI
Schipper H.M. Brain iron deposition and the free radical-mitochondrial theory of ageing. Ageing Res. Rev. 2004;3:265–301. doi: 10.1016/j.arr.2004.02.001. PubMed DOI
Schipper H.M., Vininsky R., Brull R., Small L., Brawer J.R. Astrocyte mitochondria: A substrate for iron deposition in the aging rat substantia nigra. Exp. Neurol. 1998;152:188–196. doi: 10.1006/exnr.1998.6854. PubMed DOI
Harris E.D. Copper homeostasis: The role of cellular transporters. Nutr. Rev. 2001;59:281–285. doi: 10.1111/j.1753-4887.2001.tb07017.x. PubMed DOI
Johnson F., Giulivi C. Superoxide dismutases and their impact upon human health. Mol. Aspects Med. 2005;26:340–352. doi: 10.1016/j.mam.2005.07.006. PubMed DOI
Rottkamp C.A., Nunomura A., Raina A.K., Sayre L.M., Perry G., Smith M.M.A. Oxidative stress, antioxidants, and Alzheimer disease. Alzheimer Dis. Assoc. Disord. 2000;14:62–66. doi: 10.1097/00002093-200000001-00010. PubMed DOI
Christen Y. Oxidative stress and Alzheimer disease. Am. J. Clin. Nutr. 2000;71:621–629. doi: 10.1093/ajcn/71.2.621s. PubMed DOI
Nappi A.J., Vass E. Hydroxyl radical formation via iron-mediated Fenton’s chemistry is inhibited by methylated catechols. Biochim. Biophys. Acta. 1998;1425:159–167. doi: 10.1016/S0304-4165(98)00062-2. PubMed DOI
Nappi A.J., Vass E., Collins M.A. Contrasting effects of catecholic and O-methylated tetrahydroisoquinolines on hydroxyl radical production. Biochim. Biophys. Acta. 1999;1434:64–73. doi: 10.1016/S0167-4838(99)00175-2. PubMed DOI
Protti M., Gualandi I., Mandrioli R., Zappoli S., Tonelli D., Mercolini L. Analytical profiling of selected antioxidants and total antioxidant capacity of goji, Lycium spp., berries. J. Pharm. Biomed. Anal. 2017;143:252–260. doi: 10.1016/j.jpba.2017.05.048. PubMed DOI
Riley P.A. Free-radicals in biology-Oxidative stress and the effects of ionizing-radiation. Int. J. Radiat. Biol. 1994;65:27–33. doi: 10.1080/09553009414550041. PubMed DOI
Haber F.W., Weiss J. The catalytic decomposition of hydrogen peroxide by iron salts. Proc. R. Soc. A. 1934;147:332–351.
Fenton H.J.H. Oxidation of tartaric acid in presence of iron. J. Chem. Soc. Trans. 1894;65:899–910. doi: 10.1039/CT8946500899. DOI
Catapano M.C., Tvrdý V., Karlíčková J., Mercolini L., Mladěnka P. A simple, cheap but reliable method for evaluation of zinc chelating properties. Bioorg. Chem. 2018;77:287–292. doi: 10.1016/j.bioorg.2018.01.015. PubMed DOI
Kishimoto N., Kitamura T., Kato M., Otsu H. Influence of chelating agents on Fenton-type reaction using ferrous ion and hypochlorous acid. J. Water Environ. Technol. 2013;11:21–32. doi: 10.2965/jwet.2013.21. DOI
Nappi A.J., Vass E. Hydroxyl radical production by ascorbate and hydrogen peroxide. Neurotox. Res. 2000;2:343–355. doi: 10.1007/BF03033342. DOI
Hall E.D., Andrus P.K., Althaus J.S., Von Voigtlander P.F. Hydroxyl radical production and lipid peroxidation parallels selective post-ischemic vulnerability in gerbil brain. J. Neurosc. Res. 1993;34:107–112. doi: 10.1002/jnr.490340111. PubMed DOI
Pluangklang T., Wydallis J.B., Cate D.M., Nacapricha D., Henry C.S. A simple microfluidic electrochemical HPLC detector for quantifying Fenton reactivity from welding fumes. Anal. Methods. 2014;6:8180–8186. doi: 10.1039/C4AY01534G. PubMed DOI PMC
Thomas C., Mackey M.M., Diaz A.A., Cox D.P. Hydroxyl radical is produced via the Fenton reaction in submitochondrial particles under oxidative stress: Implications for diseases associated with iron accumulation. Redox Rep. 2009;14:102–108. doi: 10.1179/135100009X392566. PubMed DOI
Sloot W.N., Gramsbergen J.B.P. Detection of salicylate and its hydroxylated adducts 2,3-and 2,5-dihydroxybenzoic acids as possible indices for in vivo hydroxyl radical formation in combination with catechol- and indoleamines and their metabolites in cerebrospinal fluid and brain tissue. J. Neurosci. Methods. 1995;60:141–149. doi: 10.1016/0165-0270(95)00005-F. PubMed DOI
Coudray C., Favier A. Determination of salicylate hydroxylation products as an in vivo oxidative stress marker. Free Radic. Biol. Med. 2000;29:1064–1070. doi: 10.1016/S0891-5849(00)00403-2. PubMed DOI
Puppo A. Effect of flavonoids on hydroxyl radical formation by fenton-type reactions; influence of the iron chelator. Phytochemistry. 1992;31:85–88. doi: 10.1016/0031-9422(91)83011-9. DOI
Shah V.P., Midha K.K., Findlay J.W.A., Hill H.M., Hulse J.D., McGilveray I.J., McKay G., Miller K.J., Patnaik R.N., Powell M.L., et al. Bioanalytical method validation. A revisit with a decade of progress. Pharm. Res. 2000;17:1551–1557. doi: 10.1023/A:1007669411738. PubMed DOI
Bioanalytical Method-Validation Guidance for Industry. U.S. Food and Drug Administration; U.S. Department of Health and Human Services; Center for Drug Evaluation and Research; Rockville, ML, USA: 2018. [(accessed on 15 August 2019)]. Available online: https://www.fda.gov/media/70858/download.
Freinbichler W., Colivicchi M.A., Stefanini C., Bianchi L., Ballini C., Misini B., Weinberger P., Linert W., Varešlija D., Tipton K.F., et al. Highly reactive oxygen species: Detection, formation, and possible functions. Cell. Mol. Life Sci. 2011;68:2067–2079. doi: 10.1007/s00018-011-0682-x. PubMed DOI PMC
Hu R., Zhang L., Hu J. Study on the kinetics and transformation products of salicylic acid in water via ozonation. Chemosphere. 2016;153:394–404. doi: 10.1016/j.chemosphere.2016.03.074. PubMed DOI
Saracino M.A., Santarcangelo L., Raggi M.A., Mercolini L. Microextraction by packed sorbent, MEPS, to analyze catecholamines in innovative biological samples. J. Pharm. Biomed. Anal. 2015;104:122–129. doi: 10.1016/j.jpba.2014.11.003. PubMed DOI
Saracino M.A., Mandrioli R., Mercolini L., Ferranti A., Zaimovic A., Leonardi C., Raggi M.A. Determination of homovanillic acid, HVA, in human plasma by HPLC with coulometric detection and a new SPE procedure. J. Pharm. Biomed. Anal. 2006;42:107–112. doi: 10.1016/j.jpba.2005.11.030. PubMed DOI