An Original HPLC Method with Coulometric Detection to Monitor Hydroxyl Radical Generation via Fenton Chemistry

. 2019 Aug 23 ; 24 (17) : . [epub] 20190823

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31450723

Hydroxyl radicals (•OH) can be generated via Fenton chemistry catalyzed by transition metals. An in vitro Fenton system was developed to test both the inhibition and stimulation of •OH formation, by monitoring salicylate aromatic hydroxylation derivatives as markers of •OH production. The reaction was optimized with either iron or copper, and target analytes were determined by means of an original HPLC method coupled to coulometric detection. The method granted good sensitivity and precision, while method applicability was tested on antioxidant compounds with and without chelating properties in different substance to metal ratios. This analytical approach shows how Fenton's reaction can be monitored by HPLC coupled to coulometric detection, as a powerful tool for studying molecules' redox behavior.

Zobrazit více v PubMed

Rahal A., Kumar A., Singh V., Yadav B., Tiwari R., Chakraborty S., Dhama K. Oxidative stress, prooxidants, and antioxidants: The interplay. Biomed. Res. Int. 2014;2014 doi: 10.1155/2014/761264. PubMed DOI PMC

Blokhina O., Virolainen E., Fagerstedt K.V. Antioxidants, oxidative damage and oxygen deprivation stress: A review. Ann. Bot. 2003;91:179–194. doi: 10.1093/aob/mcf118. PubMed DOI PMC

Anderson P.R., Kirby K., Orr W.C., Hilliker A.J., Phillips J.P. Hydrogen peroxide scavenging rescues frataxin deficiency in a Drosophila model of Friedreich’s ataxia. PNAS. 2008;105:611–616. doi: 10.1073/pnas.0709691105. PubMed DOI PMC

Dawson T.M., Dawson V.L. Molecular pathways of neurodegeneration in Parkinson’s disease. Science. 2003;302:819–822. doi: 10.1126/science.1087753. PubMed DOI

Giasson B.I., Duda J.E., Murray I.V., Chen Q., Souza J.M., Hurtig H.I., Ischiropoulos H., Trojanowski J.Q., Lee V.M. Oxidative damage linked to neurodegeneration by selective alpha-synuclein nitration in synucleinopathy lesions. Science. 2000;290:985–989. doi: 10.1126/science.290.5493.985. PubMed DOI

Orr W.C., Sohal R.S. Extension of life-span by overexpression of superoxide dismutase and catalase in Drosophila melanogaster. Science. 1994;263:1128–1130. doi: 10.1126/science.8108730. PubMed DOI

Shigenaga M.K., Hagen T.M., Ames B.N. Oxidative damage and mitochondrial decay in aging. PNAS. 1994;91:10771–10778. doi: 10.1073/pnas.91.23.10771. PubMed DOI PMC

Wojtunik-Kulesza K.A., Oniszczuk A., Oniszczuk T., Waksmundzka-Hajnos M. The influence of common free radicals and antioxidants on development of Alzheimer’s Disease. Biomed. Pharmacother. 2016;78:39–49. doi: 10.1016/j.biopha.2015.12.024. PubMed DOI

Jomova K., Valko M. Advances in metal-induced oxidative stress and human disease. Toxicology. 2011;283:65–87. doi: 10.1016/j.tox.2011.03.001. PubMed DOI

Valko M., Rhodes C.J., Moncol J., Izakovic M., Mazur M. Free radicals, metals and antioxidants in oxidative stress-induced cancer. Chem. Biol. Interact. 2006;160:1–40. doi: 10.1016/j.cbi.2005.12.009. PubMed DOI

Acton R.T., Barton J.C., Passmore L.V., Adams P.C., McLaren G.D., Leiendecker-Foster C., Speechley M.R., Harris E.L., Castro O., Reiss J.A., et al. Accuracy of family history of hemochromatosis or iron overload: The hemochromatosis and iron overload screening study. Clin. Gastroenterol. Hepatol. 2008;6:934–938. doi: 10.1016/j.cgh.2008.04.003. PubMed DOI PMC

Montgomery E.B., Jr. Heavy metals and the etiology of Parkinson’s disease and other movement disorders. Toxicology. 1995;97:3–9. doi: 10.1016/0300-483X(94)02962-T. PubMed DOI

Schipper H.M. Brain iron deposition and the free radical-mitochondrial theory of ageing. Ageing Res. Rev. 2004;3:265–301. doi: 10.1016/j.arr.2004.02.001. PubMed DOI

Schipper H.M., Vininsky R., Brull R., Small L., Brawer J.R. Astrocyte mitochondria: A substrate for iron deposition in the aging rat substantia nigra. Exp. Neurol. 1998;152:188–196. doi: 10.1006/exnr.1998.6854. PubMed DOI

Harris E.D. Copper homeostasis: The role of cellular transporters. Nutr. Rev. 2001;59:281–285. doi: 10.1111/j.1753-4887.2001.tb07017.x. PubMed DOI

Johnson F., Giulivi C. Superoxide dismutases and their impact upon human health. Mol. Aspects Med. 2005;26:340–352. doi: 10.1016/j.mam.2005.07.006. PubMed DOI

Rottkamp C.A., Nunomura A., Raina A.K., Sayre L.M., Perry G., Smith M.M.A. Oxidative stress, antioxidants, and Alzheimer disease. Alzheimer Dis. Assoc. Disord. 2000;14:62–66. doi: 10.1097/00002093-200000001-00010. PubMed DOI

Christen Y. Oxidative stress and Alzheimer disease. Am. J. Clin. Nutr. 2000;71:621–629. doi: 10.1093/ajcn/71.2.621s. PubMed DOI

Nappi A.J., Vass E. Hydroxyl radical formation via iron-mediated Fenton’s chemistry is inhibited by methylated catechols. Biochim. Biophys. Acta. 1998;1425:159–167. doi: 10.1016/S0304-4165(98)00062-2. PubMed DOI

Nappi A.J., Vass E., Collins M.A. Contrasting effects of catecholic and O-methylated tetrahydroisoquinolines on hydroxyl radical production. Biochim. Biophys. Acta. 1999;1434:64–73. doi: 10.1016/S0167-4838(99)00175-2. PubMed DOI

Protti M., Gualandi I., Mandrioli R., Zappoli S., Tonelli D., Mercolini L. Analytical profiling of selected antioxidants and total antioxidant capacity of goji, Lycium spp., berries. J. Pharm. Biomed. Anal. 2017;143:252–260. doi: 10.1016/j.jpba.2017.05.048. PubMed DOI

Riley P.A. Free-radicals in biology-Oxidative stress and the effects of ionizing-radiation. Int. J. Radiat. Biol. 1994;65:27–33. doi: 10.1080/09553009414550041. PubMed DOI

Haber F.W., Weiss J. The catalytic decomposition of hydrogen peroxide by iron salts. Proc. R. Soc. A. 1934;147:332–351.

Fenton H.J.H. Oxidation of tartaric acid in presence of iron. J. Chem. Soc. Trans. 1894;65:899–910. doi: 10.1039/CT8946500899. DOI

Catapano M.C., Tvrdý V., Karlíčková J., Mercolini L., Mladěnka P. A simple, cheap but reliable method for evaluation of zinc chelating properties. Bioorg. Chem. 2018;77:287–292. doi: 10.1016/j.bioorg.2018.01.015. PubMed DOI

Kishimoto N., Kitamura T., Kato M., Otsu H. Influence of chelating agents on Fenton-type reaction using ferrous ion and hypochlorous acid. J. Water Environ. Technol. 2013;11:21–32. doi: 10.2965/jwet.2013.21. DOI

Nappi A.J., Vass E. Hydroxyl radical production by ascorbate and hydrogen peroxide. Neurotox. Res. 2000;2:343–355. doi: 10.1007/BF03033342. DOI

Hall E.D., Andrus P.K., Althaus J.S., Von Voigtlander P.F. Hydroxyl radical production and lipid peroxidation parallels selective post-ischemic vulnerability in gerbil brain. J. Neurosc. Res. 1993;34:107–112. doi: 10.1002/jnr.490340111. PubMed DOI

Pluangklang T., Wydallis J.B., Cate D.M., Nacapricha D., Henry C.S. A simple microfluidic electrochemical HPLC detector for quantifying Fenton reactivity from welding fumes. Anal. Methods. 2014;6:8180–8186. doi: 10.1039/C4AY01534G. PubMed DOI PMC

Thomas C., Mackey M.M., Diaz A.A., Cox D.P. Hydroxyl radical is produced via the Fenton reaction in submitochondrial particles under oxidative stress: Implications for diseases associated with iron accumulation. Redox Rep. 2009;14:102–108. doi: 10.1179/135100009X392566. PubMed DOI

Sloot W.N., Gramsbergen J.B.P. Detection of salicylate and its hydroxylated adducts 2,3-and 2,5-dihydroxybenzoic acids as possible indices for in vivo hydroxyl radical formation in combination with catechol- and indoleamines and their metabolites in cerebrospinal fluid and brain tissue. J. Neurosci. Methods. 1995;60:141–149. doi: 10.1016/0165-0270(95)00005-F. PubMed DOI

Coudray C., Favier A. Determination of salicylate hydroxylation products as an in vivo oxidative stress marker. Free Radic. Biol. Med. 2000;29:1064–1070. doi: 10.1016/S0891-5849(00)00403-2. PubMed DOI

Puppo A. Effect of flavonoids on hydroxyl radical formation by fenton-type reactions; influence of the iron chelator. Phytochemistry. 1992;31:85–88. doi: 10.1016/0031-9422(91)83011-9. DOI

Shah V.P., Midha K.K., Findlay J.W.A., Hill H.M., Hulse J.D., McGilveray I.J., McKay G., Miller K.J., Patnaik R.N., Powell M.L., et al. Bioanalytical method validation. A revisit with a decade of progress. Pharm. Res. 2000;17:1551–1557. doi: 10.1023/A:1007669411738. PubMed DOI

Bioanalytical Method-Validation Guidance for Industry. U.S. Food and Drug Administration; U.S. Department of Health and Human Services; Center for Drug Evaluation and Research; Rockville, ML, USA: 2018. [(accessed on 15 August 2019)]. Available online: https://www.fda.gov/media/70858/download.

Freinbichler W., Colivicchi M.A., Stefanini C., Bianchi L., Ballini C., Misini B., Weinberger P., Linert W., Varešlija D., Tipton K.F., et al. Highly reactive oxygen species: Detection, formation, and possible functions. Cell. Mol. Life Sci. 2011;68:2067–2079. doi: 10.1007/s00018-011-0682-x. PubMed DOI PMC

Hu R., Zhang L., Hu J. Study on the kinetics and transformation products of salicylic acid in water via ozonation. Chemosphere. 2016;153:394–404. doi: 10.1016/j.chemosphere.2016.03.074. PubMed DOI

Saracino M.A., Santarcangelo L., Raggi M.A., Mercolini L. Microextraction by packed sorbent, MEPS, to analyze catecholamines in innovative biological samples. J. Pharm. Biomed. Anal. 2015;104:122–129. doi: 10.1016/j.jpba.2014.11.003. PubMed DOI

Saracino M.A., Mandrioli R., Mercolini L., Ferranti A., Zaimovic A., Leonardi C., Raggi M.A. Determination of homovanillic acid, HVA, in human plasma by HPLC with coulometric detection and a new SPE procedure. J. Pharm. Biomed. Anal. 2006;42:107–112. doi: 10.1016/j.jpba.2005.11.030. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace