Multiyear phytoremediation and dynamic of foliar metal(loid)s concentration during application of Miscanthus × giganteus Greef et Deu to polluted soil from Bakar, Croatia

. 2020 Sep ; 27 (25) : 31446-31457. [epub] 20200602

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32488706
Odkazy

PubMed 32488706
PubMed Central PMC7651535
DOI 10.1007/s11356-020-09344-5
PII: 10.1007/s11356-020-09344-5
Knihovny.cz E-zdroje

The multiyear cultivation of Miscanthus × giganteus Greef et Deu (M.×giganteus) at the soils polluted by metal(loid)s were researched. The biomass parameters and concentrations of elements: Ti, Mn, Fe, Cu, Zn, As, Sr, and Mo were determined in the plant's organs at harvest. The same metal(loid)s were monitored in the plant's leaves throughout three vegetation seasons. The principal component analysis and general linear model approaches were applied for statistical evaluation followed by Box-Cox transformation. The difference in the distribution of elements in the plant, the content of elements in the soil, various regime of uptake to the plant tissues, and the year of vegetation were analyzed as driving factors of the phytoremediation. The results showed that the leading promoter was the factor of the zone, which was the most essential for Ti, Fe, and Cu and the smallest for Mn. The factor of differences in soil pollution was essential for Zn and Mo, much less for As, Sr, and Mn, limited for Fe, and was not seen for Ti and Cu. The factor of the interrelation effects of the zone and experiment reflected the different regime of uptake for the plant tissues was seen for two elements: more prominent for Cu and smaller for Ti. While analyzing the dynamic of foliar concentrations of the metal(loid)s during 3 years, two groups were defined. Firstly, Fe, Ni, Mn, and Sr showed stable curves with limited distribution of the plant life cycle. Secondly, As, Zn, Cu, and Mo showed different fluctuations in the curves, which can be attributed to essential influence of those elements to the plant life cycle. Further research will be focused on the application of M.×giganteus to the polluted soil in a bigger scale and comparison results of laboratory and field experiments.

Zobrazit více v PubMed

Alebic-Juretic A. Precipitation chemistry within Kvarner Bay area, Northern Adriatic (Croatia), 1984–1991. Water Air Soil Pollut. 1994;78(3):343–357. doi: 10.1007/BF00483042. DOI

Alebić-Juretić A (2011) Air pollution and its impacts–the city of Rijeka case study. In: Moldoveanu AM (ed) Advanced Topics in Environmental Health and Air Pollution Case Studies. IntechOpen. 10.5772/20907

Antonkiewicz J, Kolodziej B, Bielinska EJ, Poplawska A. The possibility of using sewage sludge for energy crop cultivation exemplified by reed canary grass and giant miscanthus. Soil Sci Annu. 2019;70(1):21–33. doi: 10.2478/ssa-2019-0003. DOI

Asar O, Ilk O, Dag O. Estimating Box-Cox power transformation parameter via goodness-of-fit tests. Commun Stat Simul Comput. 2017;46(1):91–105. doi: 10.1080/03610918.2014.957839. DOI

Bartoniček-Brgić V, Matković N (1989) Sulphur dioxide and black smoke air pollution impact on incidence of respiratory diseases among preschool children in Rijeka. Proceedings of the First Yugoslav Clean Air Congress, Book II, pp.734-747, ISBN Zenica, Yugoslavia, June 14-16

Bihari N, Fafandel M, Piškur V. Polycyclic aromatic hydrocarbons and ecotoxicological characterization of seawater, sediment, and mussel Mytilus galloprovincialis from the Gulf of Rijeka, the Adriatic Sea, Croatia. Arch Environ Contam Toxicol. 2007;52(3):379–387. doi: 10.1007/s00244-005-0259-5. PubMed DOI

Burges A, Alkorta I, Epelde L, Garbisu C. From phytoremediation of soil contaminants to phytomanagement of ecosystem services in metal contaminated sites. Int J Phytoremediation. 2018;20(4):384–397. doi: 10.1080/15226514.2017.1365340. PubMed DOI

Butcher JC (2016) Numerical methods for ordinary differential equations, 3rd edn. Wiley, p 538. 10.1002/9781119121534 ISBN: 978-1-119-12150-3

Chaney RL, Reeves RD, Baklanov IA, Centofanti T, Broadhurst CL, Baker AJM, Angle JS, van der Ent A, Rosenberg RJ. Phytoremediation and phytomining: using plants to remediate contaminated or mineralized environments. Chapter 15. In: Rajakaruna R, Boyd RS, Harris T, editors. Plant ecology and evolution in harsh environments. New York: Nova Science Publishers; 2014. pp. 365–391.

Cukrov N, Frančišković-Bilinski S, Bogner D. Metal contamination recorded in the sediment of the semi-closed Bakar Bay (Croatia) Environ Geochem Health. 2014;36(2):195–208. doi: 10.1007/s10653-013-9558-3. PubMed DOI

Cunningham SD, Ow DW. Promises and prospects of phytoremediation. Plant Physiol. 1996;110:715–719. doi: 10.1104/pp.110.3.715. PubMed DOI PMC

Dag O, Ilk O. An algorithm for estimating Box-Cox transformation parameter in ANOVA. Commun Stat Simul Comput. 2017;46(8):6424–6435. doi: 10.1080/03610918.2016.1204458. DOI

Dag O, Asar O, Ilk O. A methodology to Implement Box-Cox transformation when no covariate is available. Commun Stat Simul Comput. 2014;43(7):1740–1759. doi: 10.1080/03610918.2012.744042. DOI

Drazic G, Milovanovic J, Stefanovic S, Petric I. Potential of Miscanthusxgiganteus for heavy metals removing from industrial deposol. Acta Regionalia et Environmentalica. 2017;2:56–58. doi: 10.1515/aree-2017-0009. DOI

European Commission 2018 Final implementation report for Directive 86/278/EEC on sewage sludge: 2013-2015. p 156. Available at: http://www.eunomia.co.uk

FAO (2015) World reference base for soil resources 2014. International soil classification system for naming soils and creating legends for soil maps, p 203. E-ISBN 978-92-5-108370-3 (PDF). Available at: http://www.fao.org/3/i3794en/I3794en.pdf

Gieskes J, Han S, Rathburn A, Rothwell G, Perez ME, Porrachi M, Barbanti A, Deheyn DD. Anthropogenic contaminants in Venice Lagoon sediments and their pore fluids: results from the SIOSED project. Mar Chem. 2015;174:73–84. doi: 10.1016/j.marchem.2015.05.008. DOI

Guarino C, Sciarrilli R. The effectiveness and efficiency of phytoremediation of a multicontaminated industrial site: Porto Marghera (Venice Lagoon, Italy) Chemosphere. 2017;183(September):371–379. doi: 10.1016/j.chemosphere.2017.05.102. PubMed DOI

Hrelja I, Kisic I, Zgolerec Z. Environmental pollution and ecosystem surveys in Rijeka-Bakar, Croatia-a review. Agric Conspec Sci. 2020;85(1):9–17.

Hui Z (2020) The experimental research on the behaviors of trace metals. In: Zhang H (ed) Behaviors of trace metals in environment. The pollution on regional and metropolis areas, vol 2020. Springer, Singapore, pp 253–297. 10.1007/978-981-13-3612-6

Jakšić Ž, Batel R, Bihari N, Mičić M, Karl ZR. Adriatic coast as a microcosm for global genotoxic marine contamination–a long-term field study. Mar Pollut Bull. 2005;50(11):1314–1327. doi: 10.1016/j.marpolbul.2005.04.046. PubMed DOI

Jolliffe IT (2002) Principal component analysis, Series: Springer Series in Statistics. XXIX, second ed. Springer, NY, p 487. ISBN 978-0-387-95442-4. 10.1007/b98835

Kabata-Pendias A. Trace elements in soils and plants. Boca Raton: CRC Press; 2010.

Kharitonov M, Pidlisnyuk V, Stefanovska T, Babenko M, Martynva N, Rula I. The estimation of Miscanthusxgiganteus adaptive potential for cultivation on the mining and post-mining lands in Ukraine. Environ Sci Pollut Res. 2019;26:2974–2986. doi: 10.1007/s11356-018-3741-0. PubMed DOI

Lewandowski I, Clifton-Brown JC, Scurlock JMO, Huisman W. Miscanthus: European experience with a novel energy crop. Biomass Bioenergy. 2000;19(4):209–227. doi: 10.1016/S0961-9534(00)00032-5. DOI

Liu L, Li W, Song W, Guo M. Remediation techniques for heavy metal-contaminated soils: principles and applicability. Sci Total Environ. 2018;633:206–219. doi: 10.1016/j.scitotenv.2018.03.161. PubMed DOI

Medina VF, Maestri E, Marmiroli M, Dietz AC, McCutcheon SC (2003) Plant tolerance to contaminants. In: McCutcheon SC, Schoor JL (eds) Phytoremediation: transformation and control of contaminants. Wiley, p 1890232. ISBN 0-471-39435-1. 10.1002/047127304X.ch6

Naila A, Meerdink G, Jayasena V, Sulaiman AZ, Ajit AB. A review on global metal accumulators-mechanism, enhancement, commercial application, and research trend. Environ Sci Pollut Res. 2019;26(26):26449–26471. doi: 10.1007/s11356-019-05992-4. PubMed DOI

Nsanganwimana F, Pourrut B, Mench M, Douay F. Suitability of Miscanthus species for managing inorganic and organic contaminated land and restoring ecosystem services. A review. J Environ Manag. 2014;143:123–134. doi: 10.1016/j.jenvman.2014.04.027. PubMed DOI

Nsanganwimana F, Waterlot C, Louvel B, Pourrut B, Douay F. Metal, nutrient and biomass accumulation during the growing cycle of Miscanthus established on metal-contaminated soils. J Plant Nutr Soil Sci. 2016;179(2):257–269. doi: 10.1002/jpln.201500163. DOI

Nsangawimana F, Pourrut B, Waterlot C, Louvel B, Bidar G, Labidi S, Fontaine J, Muchembled J, Lounes-Hadj SA, Fiourrier H, Douay F. Metal accumulation and shoot yield of Miscanthusxgiganteus growing in contaminated agricultural soils: insights into agronomic practices. Agric Ecosyst Environ. 2015;213(5):61–71. doi: 10.1016/j.agee.2015.07.023. DOI

Ozretić B, Krajnović-Ozretić M, Santin J. As, Cd, Pb, and Hg in benthic animals from the Kvarner-Rijeka Bay region, Yugoslavia. Mar Pollut Bull. 1990;21(12):595–598. doi: 10.1016/0025-326X(90)90610-K. DOI

Perić L, Fafanđel M, Glad M, Bihari N. Heavy metals concentration and metallothionein content in resident and caged mussels Mytilus galloprovincialis from Rijeka bay, Croatia. Fresenius Environ Bull. 2012;21(9):2785–2794.

Pidlisnyuk V, Erickson L, Trögl J, Shapoval P, Davis L, Popelka J, Stefanovska T, Hettiarachchi G. Metals uptake behavior in Miscanthus x giganteus plant during growth at the contaminated soil from the military site in Sliač, Slovakia. Pol J Chem Technol. 2018;20(2):1–7. doi: 10.2478/pjct-2018-0016. DOI

Pidlisnyuk V, Erickson L, Stefanovska T, Popelka J, Hettiarachchi G, Davis L, Trogl J. Potential phytomanagement of military polluted sites and biomass production using biofuel crop Miscanthus x giganteus. Environ Pollut. 2019;249:330–337. doi: 10.1016/j.envpol.2019.03.018. PubMed DOI

Popadić A, Vidović J, Ćosović V, Medaković D, Dolenec M, Felja I. Impact evaluation of the industrial activities in the bay of Bakar (Adriatic Sea, Croatia): recent benthic foraminifera and heavy metals. Mar Pollut Bull. 2013;76(1–2):333–348. doi: 10.1016/j.marpolbul.2013.09.039. PubMed DOI

R Core Team . A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing; 2018.

Rolka E, Zolnowski AC, Sadowska MM (2020) Assessment of heavy metal content in soils adjacent to the DK16-route in Olsztyn (North-Eastern Poland). Pol J Environ Stud 29(6):1–9. 10.15244/pjoes/118384

Rusinowski S, Krzyzak J, Sitko K. Cultivation of C4 perennial energy grasses on heavy metal contaminated arable land: impact on soil, biomass, and photosynthetic traits. Environ Pollut. 2019;250:300–311. doi: 10.1016/j.envpol.2019.04.048. PubMed DOI

Vareda JP, Valente AJM, Duraes L. Assessment of heavy metal pollution from anthropogenic activities and remediation strategies: a review. J Environ Manag. 2019;246:101–118. doi: 10.1016/j.jenvman.2019.05.126. PubMed DOI

Wanat N, Austruy A, Joussein E, Soubrand M, Hitmi A, Gauthier-Moussard C, Lenain JF, Vernay P, Munch JC, Pichon M. Potentials of Miscanthusxgiganteus grown on highly contaminated Technosols. J Geochem Explor. 2013;126-127:78–84. doi: 10.1016/j.gexplo.2013.01.001. DOI

Yadav KK, Gupta N, Kumar A, Reece LM, Singh N, Rezania S, Khan SA. Mechanistic understanding and holistic approach of phytoremediation: a review on application and future prospects. Ecol Eng. 2018;120:274–298. doi: 10.1016/j.ecoleng.2018.05.039. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...