Fractionation of Enriched Phosphopeptides Using pH/Acetonitrile-Gradient-Reversed-Phase Microcolumn Separation in Combination with LC-MS/MS Analysis
Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
long-term organization development plan Medical Aspects of Weapons of Mass Destruction of the Faculty of Military Health Sciences
Ministry of Defense of the Czech Republic
NV19-02-00297
Ministry of Health of the Czech Republic
PubMed
32492839
PubMed Central
PMC7312998
DOI
10.3390/ijms21113971
PII: ijms21113971
Knihovny.cz E-resources
- Keywords
- acetonitrile, enrichment, fractionation, gradient, mass spectrometry, phosphopeptides, titanium dioxide,
- MeSH
- Acetonitriles chemistry MeSH
- Chemical Fractionation methods MeSH
- Chromatography, Liquid methods MeSH
- Phosphopeptides chemistry MeSH
- Phosphoproteins metabolism MeSH
- Hydrogen-Ion Concentration MeSH
- Humans MeSH
- Cell Line, Tumor MeSH
- Proteome MeSH
- Proteomics MeSH
- Tandem Mass Spectrometry methods MeSH
- Titanium chemistry MeSH
- Pressure MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- acetonitrile MeSH Browser
- Acetonitriles MeSH
- Phosphopeptides MeSH
- Phosphoproteins MeSH
- Proteome MeSH
- Titanium MeSH
- titanium dioxide MeSH Browser
Mass spectrometry (MS) is a powerful and sensitive method often used for the identification of phosphoproteins. However, in phosphoproteomics, there is an identified need to compensate for the low abundance, insufficient ionization, and suppression effects of non-phosphorylated peptides. These may hamper the subsequent liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS) analysis, resulting in incomplete phosphoproteome characterization, even when using high-resolution instruments. To overcome these drawbacks, we present here an effective microgradient chromatographic technique that yields specific fractions of enriched phosphopeptides compatible with LC-MS/MS analysis. The purpose of our study was to increase the number of identified phosphopeptides, and thus, the coverage of the sample phosphoproteome using the reproducible and straightforward fractionation method. This protocol includes a phosphopeptide enrichment step followed by the optimized microgradient fractionation of enriched phosphopeptides and final LC-MS/MS analysis of the obtained fractions. The simple fractionation system consists of a gas-tight microsyringe delivering the optimized gradient mobile phase to reversed-phase microcolumn. Our data indicate that combining the phosphopeptide enrichment with the microgradient separation is a promising technique for in-depth phosphoproteomic analysis due to moderate input material requirements and more than 3-fold enhanced protein identification.
See more in PubMed
Cohen P. The origins of protein phosphorylation. Nat. Cell Biol. 2002;4:E127–E130. doi: 10.1038/ncb0502-e127. PubMed DOI
Ardito F., Giuliani M., Perrone D., Troiano G., Lo Muzio L. The crucial role of protein phosphorylation in cell signaling and its use as targeted therapy (Review) Int. J. Mol. Med. 2017;40:271–280. doi: 10.3892/ijmm.2017.3036. PubMed DOI PMC
Vlastaridis P., Kyriakidou P., Chaliotis A., Van de Peer Y., Oliver S.G., Amoutzias G.D. Estimating the total number of phosphoproteins and phosphorylation sites in eukaryotic proteomes. Gigascience. 2017;6:1–11. doi: 10.1093/gigascience/giw015. PubMed DOI PMC
Chan C.Y.X., Gritsenko M.A., Smith R.D., Qian W.-J. The current state of the art of quantitative phosphoproteomics and its applications to diabetes research. Expert Rev. Proteom. 2016;13:421–433. doi: 10.1586/14789450.2016.1164604. PubMed DOI PMC
Mayya V., Han D.K. Phosphoproteomics by Mass Spectrometry: insights, implications, applications, and limitations. Expert Rev. Proteom. 2009;6:605–618. doi: 10.1586/epr.09.84. PubMed DOI PMC
Tichy A., Salovska B., Rehulka P., Klimentova J., Vavrova J., Stulik J., Hernychova L. Phosphoproteomics: searching for a needle in a haystack. J. Proteom. 2011;74:2786–2797. doi: 10.1016/j.jprot.2011.07.018. PubMed DOI
Fíla J., Honys D. Enrichment techniques employed in phosphoproteomics. Amino Acids. 2012;43:1025–1047. doi: 10.1007/s00726-011-1111-z. PubMed DOI PMC
Dunn J.D., Reid G.E., Bruening M.L. Techniques for phosphopeptide enrichment prior to analysis by mass spectrometry. Mass Spectrom. Rev. 2010;29:29–54. doi: 10.1002/mas.20219. PubMed DOI
Thingholm T.E., Larsen M.R. The use of titanium dioxide for selective enrichment of phosphorylated peptides. Methods Mol. Biol. 2016;1355:135–146. doi: 10.1007/978-1-4939-3049-4_9. PubMed DOI
Pinkse M.W.H., Uitto P.M., Hilhorst M.J., Ooms B., Heck A.J.R. Selective isolation at the femtomole level of phosphopeptides from proteolytic digests using 2D-NanoLC-ESI-MS/MS and titanium oxide precolumns. Anal. Chem. 2004;76:3935–3943. doi: 10.1021/ac0498617. PubMed DOI
Ruprecht B., Koch H., Medard G., Mundt M., Kuster B., Lemeer S. Comprehensive and reproducible phosphopeptide enrichment using iron immobilized metal ion affinity chromatography (Fe-IMAC) columns. Mol. Cell. Proteom. 2015;14:205–215. doi: 10.1074/mcp.M114.043109. PubMed DOI PMC
Fenselau C. A review of quantitative methods for proteomic studies. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 2007;855:14–20. doi: 10.1016/j.jchromb.2006.10.071. PubMed DOI
Nita-Lazar A., Saito-Benz H., White F.M. Quantitative phosphoproteomics by mass spectrometry: past, present, and future. Proteomics. 2008;8:4433–4443. doi: 10.1002/pmic.200800231. PubMed DOI PMC
Deracinois B., Flahaut C., Duban-Deweer S., Karamanos Y. Comparative and quantitative global proteomics approaches: an overview. Proteomes. 2013;1:180–218. doi: 10.3390/proteomes1030180. PubMed DOI PMC
Manadas B., Mendes V.M., English J., Dunn M.J. Peptide fractionation in proteomics approaches. Expert Rev. Proteom. 2010;7:655–663. doi: 10.1586/epr.10.46. PubMed DOI
Ly L., Wasinger V.C. Protein and peptide fractionation, enrichment and depletion: tools for the complex proteome. Proteomics. 2011;11:513–534. doi: 10.1002/pmic.201000394. PubMed DOI
Cao Z., Tang H.-Y., Wang H., Liu Q., Speicher D.W. Systematic comparison of fractionation methods for in-depth analysis of plasma proteomes. J. Proteome Res. 2012;11:3090–3100. doi: 10.1021/pr201068b. PubMed DOI PMC
Gilar M., Olivova P., Daly A.E., Gebler J.C. Two-dimensional separation of peptides using RP-RP-HPLC system with different pH in first and second separation dimensions. J. Sep. Sci. 2005;28:1694–1703. doi: 10.1002/jssc.200500116. PubMed DOI
Que A.H., Kahle V., Novotny M.V. A microgradient elution system for capillary electrochromatography. J. Microcolumn Sep. 2000;12:1–5. doi: 10.1002/(SICI)1520-667X(2000)12:1<1::AID-MCS1>3.0.CO;2-W. DOI
Moravcová D., Kahle V., Rehulková H., Chmelík J., Rehulka P. Short monolithic columns for purification and fractionation of peptide samples for matrix-assisted laser desorption/ionization time-of-flight/time-of-flight mass spectrometry analysis in proteomics. J. Chromatogr. A. 2009;1216:3629–3636. doi: 10.1016/j.chroma.2009.01.075. PubMed DOI
Franc V., Řehulka P., Medda R., Padiglia A., Floris G., Šebela M. Analysis of the glycosylation pattern of plant copper amine oxidases by MALDI-TOF/TOF MS coupled to a manual chromatographic separation of glycans and glycopeptides. Electrophoresis. 2013;34:2357–2367. doi: 10.1002/elps.201200622. PubMed DOI
Franc V., Řehulka P., Raus M., Stulík J., Novak J., Renfrow M.B., Šebela M. Elucidating heterogeneity of IgA1 hinge-region O-glycosylation by use of MALDI-TOF/TOF mass spectrometry: role of cysteine alkylation during sample processing. J. Proteom. 2013;92:299–312. doi: 10.1016/j.jprot.2013.07.013. PubMed DOI PMC
Franc V., Sebela M., Rehulka P., Končitíková R., Lenobel R., Madzak C., Kopečný D. Analysis of N-glycosylation in maize cytokinin oxidase/dehydrogenase 1 using a manual microgradient chromatographic separation coupled offline to MALDI-TOF/TOF mass spectrometry. J. Proteom. 2012;75:4027–4037. doi: 10.1016/j.jprot.2012.05.013. PubMed DOI
Rehulka P., Zahradnikova M., Rehulkova H., Dvorakova P., Nenutil R., Valik D., Vojtesek B., Hernychova L., Novotny M.V. Microgradient separation technique for purification and fractionation of permethylated N-glycans before mass spectrometric analyses. J. Sep. Sci. 2018;41:1973–1982. doi: 10.1002/jssc.201701339. PubMed DOI
Lenobel R., Rehulkova H., Sebela M., Franc V., Kahle V., Moravcova D., Rehulka P. Analysis of peptide mixtures for proteomics research using LC–ESI-MS with a simple microgradient device. LC GC N. Am. 2015;33:420–428.
Yang F., Shen Y., Camp D.G., Smith R.D. High-pH reversed-phase chromatography with fraction concatenation for 2D proteomic analysis. Expert Rev. Proteom. 2012;9:129–134. doi: 10.1586/epr.12.15. PubMed DOI PMC
Batth T.S., Francavilla C., Olsen J.V. Off-line high-pH reversed-phase fractionation for in-depth phosphoproteomics. J. Proteome Res. 2014;13:6176–6186. doi: 10.1021/pr500893m. PubMed DOI
Matsuda H., Nakamura H., Nakajima T. New ceramic titania: selective adsorbent for organic phosphates. Anal. Sci. 1990;6:911–912. doi: 10.2116/analsci.6.911. DOI
Wang H., Chang-Wong T., Tang H.-Y., Speicher D.W. Comparison of extensive protein fractionation and repetitive LC-MS/MS analyses on depth of analysis for complex proteomes. J. Proteome Res. 2010;9:1032–1040. doi: 10.1021/pr900927y. PubMed DOI PMC
Yeh T.-T., Ho M.-Y., Chen W.-Y., Hsu Y.-C., Ku W.-C., Tseng H.-W., Chen S.-T., Chen S.-F. Comparison of different fractionation strategies for in-depth phosphoproteomics by liquid chromatography tandem mass spectrometry. Anal. Bioanal. Chem. 2019;411:3417–3424. doi: 10.1007/s00216-019-01823-0. PubMed DOI
McNulty D.E., Annan R.S. Hydrophilic interaction chromatography reduces the complexity of the phosphoproteome and improves global phosphopeptide isolation and detection. Mol. Cell. Proteom. 2008;7:971–980. doi: 10.1074/mcp.M700543-MCP200. PubMed DOI
Chien K.-Y., Liu H.-C., Goshe M.B. Development and application of a phosphoproteomic method using electrostatic repulsion-hydrophilic interaction chromatography (ERLIC), IMAC, and LC-MS/MS analysis to study Marek’s Disease Virus infection. J. Proteome Res. 2011;10:4041–4053. doi: 10.1021/pr2002403. PubMed DOI
Ritorto M.S., Cook K., Tyagi K., Pedrioli P.G.A., Trost M. Hydrophilic strong anion exchange (hSAX) chromatography for highly orthogonal peptide separation of complex proteomes. J. Proteome Res. 2013;12:2449–2457. doi: 10.1021/pr301011r. PubMed DOI PMC
Mertins P., Yang F., Liu T., Mani D.R., Petyuk V.A., Gillette M.A., Clauser K.R., Qiao J.W., Gritsenko M.A., Moore R.J., et al. Ischemia in tumors induces early and sustained phosphorylation changes in stress kinase pathways but does not affect global protein levels. Mol. Cell. Proteom. 2014;13:1690–1704. doi: 10.1074/mcp.M113.036392. PubMed DOI PMC
Mertins P., Qiao J.W., Patel J., Udeshi N.D., Clauser K.R., Mani D.R., Burgess M.W., Gillette M.A., Jaffe J.D., Carr S.A. Integrated proteomic analysis of post-translational modifications by serial enrichment. Nat. Methods. 2013;10:634–637. doi: 10.1038/nmeth.2518. PubMed DOI PMC
Batth T.S., Olsen J.V. Offline high pH reversed-phase peptide fractionation for deep phosphoproteome coverage. Methods Mol. Biol. 2016;1355:179–192. doi: 10.1007/978-1-4939-3049-4_12. PubMed DOI
Snyder L.R., Kirkland J.J., Dolan J.W. Introduction to Modern Liquid Chromatography. John Wiley & Sons, Ltd.; Hoboken, NJ, USA: 2010. Ionic samples: Reversed-phase, ion-pair, and ion-exchange chromatography; pp. 303–360.
Kemp B.E. Relative alkali stability of some peptide o-phosphoserine and o-phosphothreonine esters. FEBS Lett. 1980;110:308–312. doi: 10.1016/0014-5793(80)80099-8. PubMed DOI
Sickmann A., Meyer H.E. Phosphoamino acid analysis. Proteomics. 2001;1:200–206. doi: 10.1002/1615-9861(200102)1:2<200::AID-PROT200>3.0.CO;2-V. PubMed DOI
Kahle V., Vázlerová M., Welsch T. Automated microgradient system for capillary electrochromatography. J. Chromatogr. A. 2003;990:3–9. doi: 10.1016/S0021-9673(02)01806-X. PubMed DOI
Potel C.M., Lin M.-H., Heck A.J.R., Lemeer S. Defeating major contaminants in Fe3+- immobilized metal ion affinity chromatography (IMAC) phosphopeptide enrichment. Mol. Cell. Proteom. 2018;17:1028–1034. doi: 10.1074/mcp.TIR117.000518. PubMed DOI PMC
Yeung Y.-G., Stanley E.R. Rapid detergent removal from peptide samples with ethyl acetate for mass spectrometry analysis. Curr. Protoc. Protein Sci. 2010;59 doi: 10.1002/0471140864.ps1612s59. PubMed DOI PMC
Larsen M.R., Thingholm T.E., Jensen O.N., Roepstorff P., Jørgensen T.J.D. Highly selective enrichment of phosphorylated peptides from peptide mixtures using titanium dioxide microcolumns. Mol. Cell. Proteom. 2005;4:873–886. doi: 10.1074/mcp.T500007-MCP200. PubMed DOI
R Development Core Team . R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing; Vienna, Austria: 2009. [(accessed on 25 May 2020)]. Available online: https://www.R-project.org/