Myxoinflammatory fibroblastic sarcoma: an immunohistochemical and molecular genetic study of 73 cases

. 2020 Dec ; 33 (12) : 2520-2533. [epub] 20200608

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, multicentrická studie

Perzistentní odkaz   https://www.medvik.cz/link/pmid32514165

Myxoinflammatory fibroblastic sarcoma (MIFS) is a rare, low-grade soft tissue neoplasm preferentially arising in the extremities of young to middle-aged adults characterized histologically by a variegated appearance and absence of a distinctive immunophenotype. Herein we have evaluated a series of 73 cases of MIFS to define potential features and markers that may facilitate diagnosis. An immunohistochemical study with a large panel of antibodies showed strong positivity of the tumor cells for bcl-1 (94.5%), FXIIIa (89%), CD10 (80%), and D2-40 (56%). FISH and array comparative genomic hybridization (aCGH) were performed in a large subset of cases to investigate the utility for detecting the TGFBR3 and OGA t(1;10) rearrangement and BRAF abnormalities. Using a combination of FISH and/or aCGH, t(1;10) was detected in only 3 of 54 cases (5.5%). The aCGH study also demonstrated amplification of VGLL3 on chromosome 3 that was detected in 8 of 20 cases (40%). BRAF alterations were observed by FISH in 4 of 70 cases (5.7%) and correlated with gain of chromosome 3p12 (VGLL3). A novel fusion transcript involving exon 6 of ZNF335 and exon 10 of BRAF was identified in one case. Demonstration of amplification of VGLL3 on chromosome 3 in combination with expression of bcl-1 and FXIIIa may help support the diagnosis, however, due to their low specificity these markers are not sufficient for a definitive diagnosis in the absence of the appropriate clinical-pathological context. Until a more robust genetic or immunohistochemical signature is identified, the diagnosis of MIFS rests on its characteristic clinicopathological features.

Zobrazit více v PubMed

Montgomery EA, Devaney KO, Giordano TJ, Weiss SW. Inflammatory myxohyaline tumor of distal extremities with virocyte or Reed-Sternberg-like cells. A distinctive lesion with features simulating inflammatory conditions, Hodgkin’s disease, and various sarcomas. Mod Pathol. 1998;11:384–91. PubMed

Meis-Kindblom J, Kindblom L-G. Acral myxoinflammatory fibroblastic sarcoma. A low-grade tumor of the hands and feet. Am J Surg Pathol. 1998;22:911–24. PubMed DOI

Michal M. Inflammatory myxoid tumor of the soft parts with bizarre giant cells. Pathol Res Pr. 1998;194:520–33.

Meis JM, Kindblom LG, Mertens F. Myxoinflammatory fibroblastic sarcoma, In: Fletcher CDM, Bridge JA, Hogendoorn PCW, Mertens F, editors. WHO classification of tumors of soft tissue and bone, 4th. edn., Lyon: IARC Press; 2013. p. 87–88.

Jurcic V, Zidar A, Perez-Montiel MD, Frković-Grazio S, Nayler SJ, Cooper K, et al. Myxoinflammatory fibroblastic sarcoma: a tumor not restricted to acral sites. Ann Diagn Pathol. 2002;6:272–80. PubMed DOI

Kovarik CL, Barrett T, Auerbach A, Cassarino DS. Acral myxoinflammatory fibroblastic sarcoma: case series and immunohistochemical analysis. J Cutan Pathol. 2008;35:192–6. PubMed

Ieremia E, Thway K. Myxoinflammatory fibroblastic sarcoma. Morphologic and genetic updates. Arch Pathol Lab Med. 2014;138:1406–11. PubMed DOI

Laskin WB, Fetsch JF, Miettinen M. Myxoinflammatory fibroblastic sarcoma. A clinicopathologic analysis of 104 cases, with emphasis on predictors of outcome. Am J Surg Pathol. 2014;38:1–12. PubMed DOI PMC

Lucas DR. Myxoinflammatory fibroblastic sarcoma. Review and Update. Arch Pathol Lab Med. 2017;141:1503–7. PubMed DOI

Lambert I, Debiec-Rychter M, Guelinks P, Hagemeijer A, Sciot R. Acral myxoinflammatory sarcoma with unique clonal chromosomal changes. Virchows Arch. 2001;438:509–12. PubMed DOI

Hallor KH, Sciot R, Staaf J, Heidenblad M, Rydholm A, Bauer CB, et al. Two genetic pathways, t(1;10) and amplification of 3p11-12, in myxoinflammatory fibroblastic sarcoma, hemosiderotic fibrolipomatous tumor, and morphologically similar lesions. J Pathol. 2009;217:716–27. PubMed DOI

Antonescu CR, Zhang L, Nielsen GP, Rosenberg AE, Dal Cin P, Fletcher CDM. Consistent t(1;10) with rearrangements of TGFBR3 and MGEA5 in both myxoinflammatory fibroblastic sarcoma and hemosiderotic fibrolipomatous tumor. Genes Chromo Cancer. 2011;50:757–64. DOI

Carter JM, Sukov WR, Montgomery E, Goldblum JR, Billings SD, Fritchie KJ, et al. TGFBR3 and MGEA5 rearrangements in pleomorphic angiectatic tumor and the spectrum of related neoplasms. Am J Surg Pathol. 2014;38:1182–992. PubMed DOI

Zreik RT, Carter JM, Sukov WR, Ahrens WA, Fritchie KJ, Montgomery EA, et al. TGFBR3 and MGEA5 rearrangements are much more common in “hybrid” hemosiderotic fibrolipomatous tumors-myxoinflammatory fibroblastic sarcomas than in classical myxoinflammatory fibroblastic sarcomas: a morphological and fluorescence in-situ hybridization study. Hum Pathol. 2016;53:14–24. PubMed DOI

Kao YC, Ranucci V, Zhang L, Sung YS, Athanasian EA, Swanson D, et al. Recurrent BRAF gene rearrangements in myxoinflammatory fibroblastic sarcomas but not hemosiderotic fibrolipomatous tumors. Am J Surg Pathol. 2017;41:1456–65. PubMed DOI PMC

Wettach GR, Boyd LJ, Lawse HJ, Magenis RE, Mansoor A. Cytogenetic analysis of a hemosiderotic fibrolipomatous tumor. Cancer Genet Cytogenet. 2008;182:140–3. PubMed DOI

Elco CP, Marino-Enriquez A, Abraham JA, Del Cin P, Hornick JL. Hybrid myxoinflammatory fibroblastic sarcoma/hemosiderotic fibrolipomatous tumor: report of a case providing further evidence for a pathogenetic link. Am J Surg Pathol. 2010;34:1723–7. PubMed DOI

Arbajian E, Hofvander J, Magnusson L, Mertens F. Deep sequencing of myxoinflammatory fibroblastic sarcoma. Genes Chromosom Cancer. 2020;59:309–17. [Epub ahead of print] PubMed DOI

Michal M, Kazakov DV, Hadravsky L, Kinkor Z, Kuroda N, Michal M. High-grade myxoinflammatory fibroblastic sarcoma: a report of 23 cases. Ann Diagn Pathol. 2015;19:157–63. PubMed DOI

Michal M, Kazakov DV, Hadravsky L, Agaimy A, Švajdler M, Kuroda N, et al. Pleomorphic hyalinizing angiectatic tumor revisited: all tumors manifest typical morphologic features of myxoinflammatory fibroblastic sarcoma, further suggesting 2 morphologic variants of the same entity. Ann Diagn Pathol. 2015;20:40–43. PubMed DOI

Boland JM, Folpe AL. Hemosiderotic fibrolipomatous tumor, pleomorphic hyalinizing angiectatic tumor and myxoinflammatory fibroblastic sarcoma: related or not? Adv Anat Pathol. 2017;24:268–77. PubMed DOI

Liu H, Sukov WR, Ro JY. The t(1;10)(p22;q24) TGFBR3/MGEA5 translocation in pleomorphic hyalinizing angiectatic tumor, myxoinflammatory fibroblastic sarcoma, and hemosiderotic fibrolipomatous tumor. Arch Pathol Lab Med. 2019;143:212–21. PubMed DOI

Lombardi R, Jovine E, Zanini N, Salone MC, Gambarotti M, Righi A, et al. A case of lung metastasis in myxoinflammatory fibroblastic sarcoma: analytical review of one hundred and thirty eight cases. Int Orthop. 2013;37:2429–36. PubMed DOI PMC

Weiss VL, Antonescu CR, Alaggio R, Cates JM, Gaskin D, Stefanovici C, et al. Myxoinflammatory fibroblastic sarcoma in children and adolescents: clinicopathologic aspects of a rare neoplasm. Ped Dev Pathol. 2013;16:425–31. DOI

Vroobel K, Miah A, Fisher C, Thway K. Myxoinflammatory fibroblastic sarcoma of the scalp: aggressive behavior at a rare nonextremity site. Int J Surg Pathol. 2015;23:292–7. PubMed DOI

Gómez Martín C, Ortega MI, Aramburu JA, Fernandez-Canamaque JL. Myxoinflammatory fibroblastic sarcoma of the face. Am J Dermatopathol. 2012;34(Aug):663–5. PubMed DOI

Auw-Haedrich C, Mentzel T, Reinhard T. Myxoinflammatory fibroblastic sarcoma of the iris. Pathology. 2017;49(Dec):794–5. PubMed DOI

Tejwani A, Kobayashi W, Chen YL, Rosenberg AE, Yoon S, Raskin KA, et al. Management of acral myxoinflammatory fibroblastic sarcoma. Cancer. 2010;116:5733–9. PubMed DOI

Massanein A, Atkinson SP, Al-Quran SZ, Jain SM, Reith JD. Acral myxoinflammatory fibroblastic sarcomas: are they all low-grade neoplasms? J Cutan Pathol. 2008;35:186–91.

Faust JB, Meeker TC. Amplification and expression of the bcl-1 gene in human solid tumor cell lines. Cancer Res. 1992;52:2460–3. PubMed

Diehl JA. Cycling to cancer with cyclin D1. Cancer Biol Ther. 2002;1:226–31. PubMed DOI

Yoo J, Park SY, Kang SJ, Shim SI, Kim BK. Altered expression of G1 regulatory proteins in human soft tissue sarcomas. Arch Pathol Lab Med. 2002;126:567–73.

Lee CH, Ali RH, Rousbahman M, Marino-Enriquez A, Zhu M, Guo X, et al. Cyclin D1 as a diagnostic immunomarker for endometrial stromal sarcoma with YWHAE-FAM22 rearrangement. Am J Surg Pathol. 2012;36:1562–70. PubMed DOI PMC

Lin L, Hicks D, Xu B, Sigel JE, Bergfeld WF, Montgomery E, et al. Expression profile and molecular genetic regulation of Cyclin-D1 expression in epithelioid sarcoma. Mod Pathol. 2005;18:705–9. PubMed DOI

Horvai AE, Kraemer MJ, O’Donnell R. B-catenin nuclear expression correlates with cyclin D-1 expression in primary and metastatic synovial sarcoma. A tissue microarray study. Arch Pathol Lab Med. 2006;130:792–8. PubMed DOI

Inbal A, Dardik R. Role of coagulation factor XIII (FXIII) in angiogenesis and tissue repair. Pathophysiol Haemost Thromb. 2006;35:162–5. PubMed DOI

Abenoza P, Lillemoe T. CD34 and Factor XIIIa in the differential diagnosis of dermatofibroma and dermatofibrosarcoma protuberans. Am J Dermatopathol. 1993;15:429–34. PubMed DOI

Deniz K, Çoban G, Okten T. Anti-CD10 (56C6) expression in soft tissue sarcomas. Pathol Res Pr. 2012;208(May):281–5. DOI

Kanner WA, Brill LB, Patterson JW, Wick MR. CD10, p63 and CD99 expression in the differential diagnosis of atypical fibroxanthoma, spindle cell squamous cell carcinoma and desmoplastic melanoma. J Cutan Pathol. 2010;37:744–50. PubMed DOI

Ugorski M, Sziegiel P, Suchanski J. Podoplanin – a small glycoprotein with many faces. Am J Cancer Res. 2016;6:370–86. PubMed PMC

Baumhoer D, Glatz K, Schulten HJ, Fuzesi L, Fricker R, Kettelhack C, et al. Myxoinflammatory fibroblastic sarcoma: investigations by comparative genomic hybridization of two cases and review of the literature. Virchow Arch. 2007;451:923–8. DOI

Hélias-Rodzewicz Z, Pérot G, Chibon F, Ferreira C, Lagarde P, Terrier P, et al. YAP1 and VGLL3, encoding two cofactors of TEAD transcription factors, are amplified and overexpressed in a subset of soft tissue sarcomas. Genes Chromosom Cancer. 2010;49(Dec):1161–71. PubMed DOI

Szymanska J, Tarkkanen M, Wiklund T, Virolainen M, Blomqvist C, Asko-Seljavaara S, et al. A cytogenetic study of malignant fibrous histiocytoma. Cancer Genet Cytogenet. 1995;85:91–96. PubMed DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Human monkeypox disease (MPX)

. 2022 ; 30 (3) : 372-391. [epub] 20220901

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...