• This record comes from PubMed

Myxoinflammatory fibroblastic sarcoma: an immunohistochemical and molecular genetic study of 73 cases

. 2020 Dec ; 33 (12) : 2520-2533. [epub] 20200608

Language English Country United States Media print-electronic

Document type Journal Article, Multicenter Study

Myxoinflammatory fibroblastic sarcoma (MIFS) is a rare, low-grade soft tissue neoplasm preferentially arising in the extremities of young to middle-aged adults characterized histologically by a variegated appearance and absence of a distinctive immunophenotype. Herein we have evaluated a series of 73 cases of MIFS to define potential features and markers that may facilitate diagnosis. An immunohistochemical study with a large panel of antibodies showed strong positivity of the tumor cells for bcl-1 (94.5%), FXIIIa (89%), CD10 (80%), and D2-40 (56%). FISH and array comparative genomic hybridization (aCGH) were performed in a large subset of cases to investigate the utility for detecting the TGFBR3 and OGA t(1;10) rearrangement and BRAF abnormalities. Using a combination of FISH and/or aCGH, t(1;10) was detected in only 3 of 54 cases (5.5%). The aCGH study also demonstrated amplification of VGLL3 on chromosome 3 that was detected in 8 of 20 cases (40%). BRAF alterations were observed by FISH in 4 of 70 cases (5.7%) and correlated with gain of chromosome 3p12 (VGLL3). A novel fusion transcript involving exon 6 of ZNF335 and exon 10 of BRAF was identified in one case. Demonstration of amplification of VGLL3 on chromosome 3 in combination with expression of bcl-1 and FXIIIa may help support the diagnosis, however, due to their low specificity these markers are not sufficient for a definitive diagnosis in the absence of the appropriate clinical-pathological context. Until a more robust genetic or immunohistochemical signature is identified, the diagnosis of MIFS rests on its characteristic clinicopathological features.

See more in PubMed

Montgomery EA, Devaney KO, Giordano TJ, Weiss SW. Inflammatory myxohyaline tumor of distal extremities with virocyte or Reed-Sternberg-like cells. A distinctive lesion with features simulating inflammatory conditions, Hodgkin’s disease, and various sarcomas. Mod Pathol. 1998;11:384–91. PubMed

Meis-Kindblom J, Kindblom L-G. Acral myxoinflammatory fibroblastic sarcoma. A low-grade tumor of the hands and feet. Am J Surg Pathol. 1998;22:911–24. PubMed DOI

Michal M. Inflammatory myxoid tumor of the soft parts with bizarre giant cells. Pathol Res Pr. 1998;194:520–33.

Meis JM, Kindblom LG, Mertens F. Myxoinflammatory fibroblastic sarcoma, In: Fletcher CDM, Bridge JA, Hogendoorn PCW, Mertens F, editors. WHO classification of tumors of soft tissue and bone, 4th. edn., Lyon: IARC Press; 2013. p. 87–88.

Jurcic V, Zidar A, Perez-Montiel MD, Frković-Grazio S, Nayler SJ, Cooper K, et al. Myxoinflammatory fibroblastic sarcoma: a tumor not restricted to acral sites. Ann Diagn Pathol. 2002;6:272–80. PubMed DOI

Kovarik CL, Barrett T, Auerbach A, Cassarino DS. Acral myxoinflammatory fibroblastic sarcoma: case series and immunohistochemical analysis. J Cutan Pathol. 2008;35:192–6. PubMed

Ieremia E, Thway K. Myxoinflammatory fibroblastic sarcoma. Morphologic and genetic updates. Arch Pathol Lab Med. 2014;138:1406–11. PubMed DOI

Laskin WB, Fetsch JF, Miettinen M. Myxoinflammatory fibroblastic sarcoma. A clinicopathologic analysis of 104 cases, with emphasis on predictors of outcome. Am J Surg Pathol. 2014;38:1–12. PubMed DOI PMC

Lucas DR. Myxoinflammatory fibroblastic sarcoma. Review and Update. Arch Pathol Lab Med. 2017;141:1503–7. PubMed DOI

Lambert I, Debiec-Rychter M, Guelinks P, Hagemeijer A, Sciot R. Acral myxoinflammatory sarcoma with unique clonal chromosomal changes. Virchows Arch. 2001;438:509–12. PubMed DOI

Hallor KH, Sciot R, Staaf J, Heidenblad M, Rydholm A, Bauer CB, et al. Two genetic pathways, t(1;10) and amplification of 3p11-12, in myxoinflammatory fibroblastic sarcoma, hemosiderotic fibrolipomatous tumor, and morphologically similar lesions. J Pathol. 2009;217:716–27. PubMed DOI

Antonescu CR, Zhang L, Nielsen GP, Rosenberg AE, Dal Cin P, Fletcher CDM. Consistent t(1;10) with rearrangements of TGFBR3 and MGEA5 in both myxoinflammatory fibroblastic sarcoma and hemosiderotic fibrolipomatous tumor. Genes Chromo Cancer. 2011;50:757–64. DOI

Carter JM, Sukov WR, Montgomery E, Goldblum JR, Billings SD, Fritchie KJ, et al. TGFBR3 and MGEA5 rearrangements in pleomorphic angiectatic tumor and the spectrum of related neoplasms. Am J Surg Pathol. 2014;38:1182–992. PubMed DOI

Zreik RT, Carter JM, Sukov WR, Ahrens WA, Fritchie KJ, Montgomery EA, et al. TGFBR3 and MGEA5 rearrangements are much more common in “hybrid” hemosiderotic fibrolipomatous tumors-myxoinflammatory fibroblastic sarcomas than in classical myxoinflammatory fibroblastic sarcomas: a morphological and fluorescence in-situ hybridization study. Hum Pathol. 2016;53:14–24. PubMed DOI

Kao YC, Ranucci V, Zhang L, Sung YS, Athanasian EA, Swanson D, et al. Recurrent BRAF gene rearrangements in myxoinflammatory fibroblastic sarcomas but not hemosiderotic fibrolipomatous tumors. Am J Surg Pathol. 2017;41:1456–65. PubMed DOI PMC

Wettach GR, Boyd LJ, Lawse HJ, Magenis RE, Mansoor A. Cytogenetic analysis of a hemosiderotic fibrolipomatous tumor. Cancer Genet Cytogenet. 2008;182:140–3. PubMed DOI

Elco CP, Marino-Enriquez A, Abraham JA, Del Cin P, Hornick JL. Hybrid myxoinflammatory fibroblastic sarcoma/hemosiderotic fibrolipomatous tumor: report of a case providing further evidence for a pathogenetic link. Am J Surg Pathol. 2010;34:1723–7. PubMed DOI

Arbajian E, Hofvander J, Magnusson L, Mertens F. Deep sequencing of myxoinflammatory fibroblastic sarcoma. Genes Chromosom Cancer. 2020;59:309–17. [Epub ahead of print] PubMed DOI

Michal M, Kazakov DV, Hadravsky L, Kinkor Z, Kuroda N, Michal M. High-grade myxoinflammatory fibroblastic sarcoma: a report of 23 cases. Ann Diagn Pathol. 2015;19:157–63. PubMed DOI

Michal M, Kazakov DV, Hadravsky L, Agaimy A, Švajdler M, Kuroda N, et al. Pleomorphic hyalinizing angiectatic tumor revisited: all tumors manifest typical morphologic features of myxoinflammatory fibroblastic sarcoma, further suggesting 2 morphologic variants of the same entity. Ann Diagn Pathol. 2015;20:40–43. PubMed DOI

Boland JM, Folpe AL. Hemosiderotic fibrolipomatous tumor, pleomorphic hyalinizing angiectatic tumor and myxoinflammatory fibroblastic sarcoma: related or not? Adv Anat Pathol. 2017;24:268–77. PubMed DOI

Liu H, Sukov WR, Ro JY. The t(1;10)(p22;q24) TGFBR3/MGEA5 translocation in pleomorphic hyalinizing angiectatic tumor, myxoinflammatory fibroblastic sarcoma, and hemosiderotic fibrolipomatous tumor. Arch Pathol Lab Med. 2019;143:212–21. PubMed DOI

Lombardi R, Jovine E, Zanini N, Salone MC, Gambarotti M, Righi A, et al. A case of lung metastasis in myxoinflammatory fibroblastic sarcoma: analytical review of one hundred and thirty eight cases. Int Orthop. 2013;37:2429–36. PubMed DOI PMC

Weiss VL, Antonescu CR, Alaggio R, Cates JM, Gaskin D, Stefanovici C, et al. Myxoinflammatory fibroblastic sarcoma in children and adolescents: clinicopathologic aspects of a rare neoplasm. Ped Dev Pathol. 2013;16:425–31. DOI

Vroobel K, Miah A, Fisher C, Thway K. Myxoinflammatory fibroblastic sarcoma of the scalp: aggressive behavior at a rare nonextremity site. Int J Surg Pathol. 2015;23:292–7. PubMed DOI

Gómez Martín C, Ortega MI, Aramburu JA, Fernandez-Canamaque JL. Myxoinflammatory fibroblastic sarcoma of the face. Am J Dermatopathol. 2012;34(Aug):663–5. PubMed DOI

Auw-Haedrich C, Mentzel T, Reinhard T. Myxoinflammatory fibroblastic sarcoma of the iris. Pathology. 2017;49(Dec):794–5. PubMed DOI

Tejwani A, Kobayashi W, Chen YL, Rosenberg AE, Yoon S, Raskin KA, et al. Management of acral myxoinflammatory fibroblastic sarcoma. Cancer. 2010;116:5733–9. PubMed DOI

Massanein A, Atkinson SP, Al-Quran SZ, Jain SM, Reith JD. Acral myxoinflammatory fibroblastic sarcomas: are they all low-grade neoplasms? J Cutan Pathol. 2008;35:186–91.

Faust JB, Meeker TC. Amplification and expression of the bcl-1 gene in human solid tumor cell lines. Cancer Res. 1992;52:2460–3. PubMed

Diehl JA. Cycling to cancer with cyclin D1. Cancer Biol Ther. 2002;1:226–31. PubMed DOI

Yoo J, Park SY, Kang SJ, Shim SI, Kim BK. Altered expression of G1 regulatory proteins in human soft tissue sarcomas. Arch Pathol Lab Med. 2002;126:567–73.

Lee CH, Ali RH, Rousbahman M, Marino-Enriquez A, Zhu M, Guo X, et al. Cyclin D1 as a diagnostic immunomarker for endometrial stromal sarcoma with YWHAE-FAM22 rearrangement. Am J Surg Pathol. 2012;36:1562–70. PubMed DOI PMC

Lin L, Hicks D, Xu B, Sigel JE, Bergfeld WF, Montgomery E, et al. Expression profile and molecular genetic regulation of Cyclin-D1 expression in epithelioid sarcoma. Mod Pathol. 2005;18:705–9. PubMed DOI

Horvai AE, Kraemer MJ, O’Donnell R. B-catenin nuclear expression correlates with cyclin D-1 expression in primary and metastatic synovial sarcoma. A tissue microarray study. Arch Pathol Lab Med. 2006;130:792–8. PubMed DOI

Inbal A, Dardik R. Role of coagulation factor XIII (FXIII) in angiogenesis and tissue repair. Pathophysiol Haemost Thromb. 2006;35:162–5. PubMed DOI

Abenoza P, Lillemoe T. CD34 and Factor XIIIa in the differential diagnosis of dermatofibroma and dermatofibrosarcoma protuberans. Am J Dermatopathol. 1993;15:429–34. PubMed DOI

Deniz K, Çoban G, Okten T. Anti-CD10 (56C6) expression in soft tissue sarcomas. Pathol Res Pr. 2012;208(May):281–5. DOI

Kanner WA, Brill LB, Patterson JW, Wick MR. CD10, p63 and CD99 expression in the differential diagnosis of atypical fibroxanthoma, spindle cell squamous cell carcinoma and desmoplastic melanoma. J Cutan Pathol. 2010;37:744–50. PubMed DOI

Ugorski M, Sziegiel P, Suchanski J. Podoplanin – a small glycoprotein with many faces. Am J Cancer Res. 2016;6:370–86. PubMed PMC

Baumhoer D, Glatz K, Schulten HJ, Fuzesi L, Fricker R, Kettelhack C, et al. Myxoinflammatory fibroblastic sarcoma: investigations by comparative genomic hybridization of two cases and review of the literature. Virchow Arch. 2007;451:923–8. DOI

Hélias-Rodzewicz Z, Pérot G, Chibon F, Ferreira C, Lagarde P, Terrier P, et al. YAP1 and VGLL3, encoding two cofactors of TEAD transcription factors, are amplified and overexpressed in a subset of soft tissue sarcomas. Genes Chromosom Cancer. 2010;49(Dec):1161–71. PubMed DOI

Szymanska J, Tarkkanen M, Wiklund T, Virolainen M, Blomqvist C, Asko-Seljavaara S, et al. A cytogenetic study of malignant fibrous histiocytoma. Cancer Genet Cytogenet. 1995;85:91–96. PubMed DOI

Newest 20 citations...

See more in
Medvik | PubMed

Human monkeypox disease (MPX)

. 2022 ; 30 (3) : 372-391. [epub] 20220901

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...