Myxoinflammatory fibroblastic sarcoma: an immunohistochemical and molecular genetic study of 73 cases
Language English Country United States Media print-electronic
Document type Journal Article, Multicenter Study
PubMed
32514165
DOI
10.1038/s41379-020-0580-6
PII: S0893-3952(22)00422-7
Knihovny.cz E-resources
- MeSH
- Gene Amplification MeSH
- Molecular Diagnostic Techniques * MeSH
- Adult MeSH
- Phenotype MeSH
- Fibroblasts chemistry pathology MeSH
- Fibrosarcoma chemistry genetics pathology MeSH
- Gene Fusion MeSH
- Genetic Predisposition to Disease MeSH
- Gene Rearrangement MeSH
- In Situ Hybridization, Fluorescence MeSH
- Immunohistochemistry * MeSH
- Middle Aged MeSH
- Humans MeSH
- Young Adult MeSH
- Biomarkers, Tumor * analysis genetics MeSH
- Soft Tissue Neoplasms chemistry genetics pathology MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- Comparative Genomic Hybridization MeSH
- Translocation, Genetic MeSH
- High-Throughput Nucleotide Sequencing MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Young Adult MeSH
- Male MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Multicenter Study MeSH
- Geographicals
- Europe MeSH
- United States MeSH
- Names of Substances
- Biomarkers, Tumor * MeSH
Myxoinflammatory fibroblastic sarcoma (MIFS) is a rare, low-grade soft tissue neoplasm preferentially arising in the extremities of young to middle-aged adults characterized histologically by a variegated appearance and absence of a distinctive immunophenotype. Herein we have evaluated a series of 73 cases of MIFS to define potential features and markers that may facilitate diagnosis. An immunohistochemical study with a large panel of antibodies showed strong positivity of the tumor cells for bcl-1 (94.5%), FXIIIa (89%), CD10 (80%), and D2-40 (56%). FISH and array comparative genomic hybridization (aCGH) were performed in a large subset of cases to investigate the utility for detecting the TGFBR3 and OGA t(1;10) rearrangement and BRAF abnormalities. Using a combination of FISH and/or aCGH, t(1;10) was detected in only 3 of 54 cases (5.5%). The aCGH study also demonstrated amplification of VGLL3 on chromosome 3 that was detected in 8 of 20 cases (40%). BRAF alterations were observed by FISH in 4 of 70 cases (5.7%) and correlated with gain of chromosome 3p12 (VGLL3). A novel fusion transcript involving exon 6 of ZNF335 and exon 10 of BRAF was identified in one case. Demonstration of amplification of VGLL3 on chromosome 3 in combination with expression of bcl-1 and FXIIIa may help support the diagnosis, however, due to their low specificity these markers are not sufficient for a definitive diagnosis in the absence of the appropriate clinical-pathological context. Until a more robust genetic or immunohistochemical signature is identified, the diagnosis of MIFS rests on its characteristic clinicopathological features.
Department of Human Genetics KU Leuven and University Hospitals Leuven Belgium
Departments of Pathology Mount Sinai Hospital and the Icahn School of Medicine New York NY USA
Medical College of Wisconsin Milwaukee WI USA
Sikl's Department of Pathology Charles University Plsen Czech Republic
The Robert J Tomsich Pathology and Laboratory Medicine Institute Cleveland Clinic Cleveland OH USA
See more in PubMed
Montgomery EA, Devaney KO, Giordano TJ, Weiss SW. Inflammatory myxohyaline tumor of distal extremities with virocyte or Reed-Sternberg-like cells. A distinctive lesion with features simulating inflammatory conditions, Hodgkin’s disease, and various sarcomas. Mod Pathol. 1998;11:384–91. PubMed
Meis-Kindblom J, Kindblom L-G. Acral myxoinflammatory fibroblastic sarcoma. A low-grade tumor of the hands and feet. Am J Surg Pathol. 1998;22:911–24. PubMed DOI
Michal M. Inflammatory myxoid tumor of the soft parts with bizarre giant cells. Pathol Res Pr. 1998;194:520–33.
Meis JM, Kindblom LG, Mertens F. Myxoinflammatory fibroblastic sarcoma, In: Fletcher CDM, Bridge JA, Hogendoorn PCW, Mertens F, editors. WHO classification of tumors of soft tissue and bone, 4th. edn., Lyon: IARC Press; 2013. p. 87–88.
Jurcic V, Zidar A, Perez-Montiel MD, Frković-Grazio S, Nayler SJ, Cooper K, et al. Myxoinflammatory fibroblastic sarcoma: a tumor not restricted to acral sites. Ann Diagn Pathol. 2002;6:272–80. PubMed DOI
Kovarik CL, Barrett T, Auerbach A, Cassarino DS. Acral myxoinflammatory fibroblastic sarcoma: case series and immunohistochemical analysis. J Cutan Pathol. 2008;35:192–6. PubMed
Ieremia E, Thway K. Myxoinflammatory fibroblastic sarcoma. Morphologic and genetic updates. Arch Pathol Lab Med. 2014;138:1406–11. PubMed DOI
Laskin WB, Fetsch JF, Miettinen M. Myxoinflammatory fibroblastic sarcoma. A clinicopathologic analysis of 104 cases, with emphasis on predictors of outcome. Am J Surg Pathol. 2014;38:1–12. PubMed DOI PMC
Lucas DR. Myxoinflammatory fibroblastic sarcoma. Review and Update. Arch Pathol Lab Med. 2017;141:1503–7. PubMed DOI
Lambert I, Debiec-Rychter M, Guelinks P, Hagemeijer A, Sciot R. Acral myxoinflammatory sarcoma with unique clonal chromosomal changes. Virchows Arch. 2001;438:509–12. PubMed DOI
Hallor KH, Sciot R, Staaf J, Heidenblad M, Rydholm A, Bauer CB, et al. Two genetic pathways, t(1;10) and amplification of 3p11-12, in myxoinflammatory fibroblastic sarcoma, hemosiderotic fibrolipomatous tumor, and morphologically similar lesions. J Pathol. 2009;217:716–27. PubMed DOI
Antonescu CR, Zhang L, Nielsen GP, Rosenberg AE, Dal Cin P, Fletcher CDM. Consistent t(1;10) with rearrangements of TGFBR3 and MGEA5 in both myxoinflammatory fibroblastic sarcoma and hemosiderotic fibrolipomatous tumor. Genes Chromo Cancer. 2011;50:757–64. DOI
Carter JM, Sukov WR, Montgomery E, Goldblum JR, Billings SD, Fritchie KJ, et al. TGFBR3 and MGEA5 rearrangements in pleomorphic angiectatic tumor and the spectrum of related neoplasms. Am J Surg Pathol. 2014;38:1182–992. PubMed DOI
Zreik RT, Carter JM, Sukov WR, Ahrens WA, Fritchie KJ, Montgomery EA, et al. TGFBR3 and MGEA5 rearrangements are much more common in “hybrid” hemosiderotic fibrolipomatous tumors-myxoinflammatory fibroblastic sarcomas than in classical myxoinflammatory fibroblastic sarcomas: a morphological and fluorescence in-situ hybridization study. Hum Pathol. 2016;53:14–24. PubMed DOI
Kao YC, Ranucci V, Zhang L, Sung YS, Athanasian EA, Swanson D, et al. Recurrent BRAF gene rearrangements in myxoinflammatory fibroblastic sarcomas but not hemosiderotic fibrolipomatous tumors. Am J Surg Pathol. 2017;41:1456–65. PubMed DOI PMC
Wettach GR, Boyd LJ, Lawse HJ, Magenis RE, Mansoor A. Cytogenetic analysis of a hemosiderotic fibrolipomatous tumor. Cancer Genet Cytogenet. 2008;182:140–3. PubMed DOI
Elco CP, Marino-Enriquez A, Abraham JA, Del Cin P, Hornick JL. Hybrid myxoinflammatory fibroblastic sarcoma/hemosiderotic fibrolipomatous tumor: report of a case providing further evidence for a pathogenetic link. Am J Surg Pathol. 2010;34:1723–7. PubMed DOI
Arbajian E, Hofvander J, Magnusson L, Mertens F. Deep sequencing of myxoinflammatory fibroblastic sarcoma. Genes Chromosom Cancer. 2020;59:309–17. [Epub ahead of print] PubMed DOI
Michal M, Kazakov DV, Hadravsky L, Kinkor Z, Kuroda N, Michal M. High-grade myxoinflammatory fibroblastic sarcoma: a report of 23 cases. Ann Diagn Pathol. 2015;19:157–63. PubMed DOI
Michal M, Kazakov DV, Hadravsky L, Agaimy A, Švajdler M, Kuroda N, et al. Pleomorphic hyalinizing angiectatic tumor revisited: all tumors manifest typical morphologic features of myxoinflammatory fibroblastic sarcoma, further suggesting 2 morphologic variants of the same entity. Ann Diagn Pathol. 2015;20:40–43. PubMed DOI
Boland JM, Folpe AL. Hemosiderotic fibrolipomatous tumor, pleomorphic hyalinizing angiectatic tumor and myxoinflammatory fibroblastic sarcoma: related or not? Adv Anat Pathol. 2017;24:268–77. PubMed DOI
Liu H, Sukov WR, Ro JY. The t(1;10)(p22;q24) TGFBR3/MGEA5 translocation in pleomorphic hyalinizing angiectatic tumor, myxoinflammatory fibroblastic sarcoma, and hemosiderotic fibrolipomatous tumor. Arch Pathol Lab Med. 2019;143:212–21. PubMed DOI
Lombardi R, Jovine E, Zanini N, Salone MC, Gambarotti M, Righi A, et al. A case of lung metastasis in myxoinflammatory fibroblastic sarcoma: analytical review of one hundred and thirty eight cases. Int Orthop. 2013;37:2429–36. PubMed DOI PMC
Weiss VL, Antonescu CR, Alaggio R, Cates JM, Gaskin D, Stefanovici C, et al. Myxoinflammatory fibroblastic sarcoma in children and adolescents: clinicopathologic aspects of a rare neoplasm. Ped Dev Pathol. 2013;16:425–31. DOI
Vroobel K, Miah A, Fisher C, Thway K. Myxoinflammatory fibroblastic sarcoma of the scalp: aggressive behavior at a rare nonextremity site. Int J Surg Pathol. 2015;23:292–7. PubMed DOI
Gómez Martín C, Ortega MI, Aramburu JA, Fernandez-Canamaque JL. Myxoinflammatory fibroblastic sarcoma of the face. Am J Dermatopathol. 2012;34(Aug):663–5. PubMed DOI
Auw-Haedrich C, Mentzel T, Reinhard T. Myxoinflammatory fibroblastic sarcoma of the iris. Pathology. 2017;49(Dec):794–5. PubMed DOI
Tejwani A, Kobayashi W, Chen YL, Rosenberg AE, Yoon S, Raskin KA, et al. Management of acral myxoinflammatory fibroblastic sarcoma. Cancer. 2010;116:5733–9. PubMed DOI
Massanein A, Atkinson SP, Al-Quran SZ, Jain SM, Reith JD. Acral myxoinflammatory fibroblastic sarcomas: are they all low-grade neoplasms? J Cutan Pathol. 2008;35:186–91.
Faust JB, Meeker TC. Amplification and expression of the bcl-1 gene in human solid tumor cell lines. Cancer Res. 1992;52:2460–3. PubMed
Diehl JA. Cycling to cancer with cyclin D1. Cancer Biol Ther. 2002;1:226–31. PubMed DOI
Yoo J, Park SY, Kang SJ, Shim SI, Kim BK. Altered expression of G1 regulatory proteins in human soft tissue sarcomas. Arch Pathol Lab Med. 2002;126:567–73.
Lee CH, Ali RH, Rousbahman M, Marino-Enriquez A, Zhu M, Guo X, et al. Cyclin D1 as a diagnostic immunomarker for endometrial stromal sarcoma with YWHAE-FAM22 rearrangement. Am J Surg Pathol. 2012;36:1562–70. PubMed DOI PMC
Lin L, Hicks D, Xu B, Sigel JE, Bergfeld WF, Montgomery E, et al. Expression profile and molecular genetic regulation of Cyclin-D1 expression in epithelioid sarcoma. Mod Pathol. 2005;18:705–9. PubMed DOI
Horvai AE, Kraemer MJ, O’Donnell R. B-catenin nuclear expression correlates with cyclin D-1 expression in primary and metastatic synovial sarcoma. A tissue microarray study. Arch Pathol Lab Med. 2006;130:792–8. PubMed DOI
Inbal A, Dardik R. Role of coagulation factor XIII (FXIII) in angiogenesis and tissue repair. Pathophysiol Haemost Thromb. 2006;35:162–5. PubMed DOI
Abenoza P, Lillemoe T. CD34 and Factor XIIIa in the differential diagnosis of dermatofibroma and dermatofibrosarcoma protuberans. Am J Dermatopathol. 1993;15:429–34. PubMed DOI
Deniz K, Çoban G, Okten T. Anti-CD10 (56C6) expression in soft tissue sarcomas. Pathol Res Pr. 2012;208(May):281–5. DOI
Kanner WA, Brill LB, Patterson JW, Wick MR. CD10, p63 and CD99 expression in the differential diagnosis of atypical fibroxanthoma, spindle cell squamous cell carcinoma and desmoplastic melanoma. J Cutan Pathol. 2010;37:744–50. PubMed DOI
Ugorski M, Sziegiel P, Suchanski J. Podoplanin – a small glycoprotein with many faces. Am J Cancer Res. 2016;6:370–86. PubMed PMC
Baumhoer D, Glatz K, Schulten HJ, Fuzesi L, Fricker R, Kettelhack C, et al. Myxoinflammatory fibroblastic sarcoma: investigations by comparative genomic hybridization of two cases and review of the literature. Virchow Arch. 2007;451:923–8. DOI
Hélias-Rodzewicz Z, Pérot G, Chibon F, Ferreira C, Lagarde P, Terrier P, et al. YAP1 and VGLL3, encoding two cofactors of TEAD transcription factors, are amplified and overexpressed in a subset of soft tissue sarcomas. Genes Chromosom Cancer. 2010;49(Dec):1161–71. PubMed DOI
Szymanska J, Tarkkanen M, Wiklund T, Virolainen M, Blomqvist C, Asko-Seljavaara S, et al. A cytogenetic study of malignant fibrous histiocytoma. Cancer Genet Cytogenet. 1995;85:91–96. PubMed DOI