• This record comes from PubMed

Bismuthene Metallurgy: Transformation of Bismuth Particles to Ultrahigh-Aspect-Ratio 2D Microsheets

. 2020 Jul ; 16 (29) : e2002037. [epub] 20200609

Status PubMed-not-MEDLINE Language English Country Germany Media print-electronic

Document type Journal Article

Grant support
19-26896X Grant Agency of the Czech Republic
CZ.02.1.01/0.0/0.0/15_003/0000444 EFRR
LQ1601 Ministry of Education, Youth and Sports

Ultrathin bismuth exhibits promising performance for topological insulators due to its narrow band gap and intrinsic strong spin-orbit coupling, as well as for energy-related applications because of its electronic and mechanical properties. However, large-scale production of 2D sheets via liquid-phase exfoliation as an established large-scale method is restricted by the strong interaction between bismuth layers. Here, a sonication method is utilized to produce ultrahigh-aspect-ratio bismuthene microsheets. The studies on the mechanism excludes the exfoliation of the layered bulk bismuth and formation of the microsheets is attributed to the melting of spherical particles (r = 1.5 µm) at a high temperature-generated under the ultrasonic tip-followed by a recrystallization step producing uniformly-shaped ultrathin microsheets (A = 0.5-2 µm2 , t: ≈2 nm). Notably, although the preparation is performed in oxygenated aqueous solution, the sheets are not oxidized, and they are stable under ambient conditions for at least 1 month. The microsheets are used to construct a vapor sensor using electrochemical impedance spectroscopy as detection technique. The device is highly selective, and it shows long-term stability. Overall, this project exhibits a reproducible method for large-scale preparation of ultrathin bismuthene microsheets in a benign environment, demonstrating opportunities to realize devices based on bismuthene.

See more in PubMed

a) O. Prakash, A. Kumar, A. Thamizhavel, S. Ramakrishnan, Science 2017, 355, 52;

b) V. S. Édel'man, Adv. Phys. 1976, 25, 555;

c) A. V. Ettingshausen, W. Nernst, Ann. Phys. Chem. 1886, 265, 343;

d) Y. Fuseya, M. Ogata, H. Fukuyama, J. Phys. Soc. Jpn. 2015, 84, 012001.

L. A. Fal'kovskiĭ, Phys. Usp. 1968, 11, 1.

a) L. Li, J. G. Checkelsky, Y. S. Hor, C. Uher, A. F. Hebard, R. J. Cava, N. P. Ong, Science 2008, 321, 547.

b) E. Aktürk, O. Üzengi Aktürk, S. Ciraci, Phys. Rev. B 2016, 94, 014115.

a) P. Hofmann, Prog. Surf. Sci. 2006, 81, 191;

b) Y. Guo, Y.-F. Zhang, X.-Y. Bao, T.-Z. Han, Z. Tang, L.-X. Zhang, W.-G. Zhu, E. G. Wang, Q. Niu, Z. Q. Qiu, J.-F. Jia, Z.-X. Zhao, Q.-K. Xue, Science 2004, 306, 1915;

c) J. W. Wells, K. Handrup, J. F. Kallehauge, L. Gammelgaard, P. Bøggild, M. B. Balslev, J. E. Hansen, P. R. E. Petersen, P. Hofmann, J. Appl. Phys. 2008, 104, 053717.

a) M. Tian, J. Wang, N. Kumar, T. Han, Y. Kobayashi, Y. Liu, T. E. Mallouk, M. H. W. Chan, Nano Lett. 2006, 6, 2773;

b) T. Hamada, K. Yamakawa, F. E. Fujita, J. Phys. F: Metal Phys. 1981, 11, 657;

c) M. Tian, J. Wang, Q. Zhang, N. Kumar, T. E. Mallouk, M. H. W. Chan, Nano Lett. 2009, 9, 3196;

d) P. J. Hakonen, G. Nunes, J. Phys.: Condens. Mat. 1991, 3, 7153.

L. Cheng, H. Liu, X. Tan, J. Zhang, J. Wei, H. Lv, J. Shi, X. Tang, J. Phys. Chem. C 2014, 118, 904.

a) J. Huang, X. Lin, H. Tan, B. Zhang, Adv. Energy Mater. 2018, 8, 1703496;

b) D. Su, S. Dou, G. Wang, Nano Energy 2015, 12, 88;

c) Y. Zhao, A. Manthiram, Chem. Mater. 2015, 27, 3096;

d) H. Gao, J. Niu, C. Zhang, Z. Peng, Z. Zhang, ACS Nano 2018, 12, 3568;

e) P. Xiong, P. Bai, A. Li, B. Li, M. Cheng, Y. Chen, S. Huang, Q. Jiang, X.-H. Bu, Y. Xu, Adv. Mater. 2019, 31, 1904771.

F. Xu, B. Ge, J. Chen, A. Nathan, L. L. Xin, H. Ma, H. Min, C. Zhu, W. Xia, Z. Li, S. Li, K. Yu, L. Wu, Y. Cui, L. Sun, Y. Zhu, 2D Mater. 2016, 3, 025005.

a) J. Sun, H.-W. Lee, M. Pasta, H. Yuan, G. Zheng, Y. Sun, Y. Li, Y. Cui, Nat. Nanotechnol. 2015, 10, 980;

b) S. M. Beladi-Mousavi, M. Pumera, Chem. Soc. Rev. 2018, 47, 6964.

a) Y.-C. Hao, Y. Guo, L.-W. Chen, M. Shu, X.-Y. Wang, T.-A. Bu, W.-Y. Gao, N. Zhang, X. Su, X. Feng, J.-W. Zhou, B. Wang, C.-W. Hu, A.-X. Yin, R. Si, Y.-W. Zhang, C.-H. Yan, Nat. Catal. 2019, 2, 448;

b) Y. Wang, M.-m. Shi, D. Bao, F.-l. Meng, Q. Zhang, Y.-t. Zhou, K.-h. Liu, Y. Zhang, J.-z. Wang, Z.-w. Chen, D.-p. Liu, Z. Jiang, M. Luo, L. Gu, Q.-h. Zhang, X.-z. Cao, Y. Yao, M.-h. Shao, Y. Zhang, X.-B. Zhang, J. G. Chen, J.-m. Yan, Q. Jiang, Angew. Chem., Int. Ed. 2019, 58, 9464;

c) F. Wang, X. Lv, X. Zhu, J. Du, S. Lu, A. A. Alshehri, K. A. Alzahrani, B. Zheng, X. Sun, Chem. Commun. 2020, 56, 2107.

a) K. Fan, Y. Jia, Y. Ji, P. Kuang, B. Zhu, X. Liu, J. Yu, ACS Catal. 2020, 10, 358;

b) N. Han, Y. Wang, H. Yang, J. Deng, J. Wu, Y. Li, Y. Li, Nat. Commun. 2018, 9, 1320.

a) J. R. Schaibley, H. Yu, G. Clark, P. Rivera, J. S. Ross, K. L. Seyler, W. Yao, X. Xu, Nat. Rev. Mater. 2016, 1, 16055;

b) Z. Sun, A. Martinez, F. Wang, Nat. Photonics 2016, 10, 227;

c) S. M. Beladi-Mousavi, B. Khezri, L. Krejčová, Z. Heger, Z. Sofer, A. C. Fisher, M. Pumera, ACS Appl. Mater. Interfaces 2019, 11, 13359;

d) B. Khezri, S. M. Beladi Mousavi, Z. Sofer, M. Pumera, Nanoscale 2019, 11, 8825;

e) S. M. Beladi-Mousavi, B. Khezri, S. Matějková, Z. Sofer, M. Pumera, Angew. Chem. 2019, 131, 13474.

f) B. Guo, S.-H. Wang, Z.-X. Wu, Z.-X. Wang, D.-H. Wang, H. Huang, F. Zhang, Y.-Q. Ge, H. Zhang, Opt. Express 2018, 26, 22750;

g) C. Xing, W. Huang, Z. Xie, J. Zhao, D. Ma, T. Fan, W. Liang, Y. Ge, B. Dong, J. Li, H. Zhang, ACS Photonics 2018, 5, 621;

h) X. Ren, J. Zhou, X. Qi, Y. Liu, Z. Huang, Z. Li, Y. Ge, S. C. Dhanabalan, J. S. Ponraj, S. Wang, J. Zhong, H. Zhang, Adv. Energy Mater. 2017, 7, 1700396;

i) Y. Zhou, M. Zhang, Z. Guo, L. Miao, S.-T. Han, Z. Wang, X. Zhang, H. Zhang, Z. Peng, Mater. Horiz. 2017, 4, 997.

S. M. Beladi-Mousavi, A. M. Pourrahimi, Z. Sofer, M. Pumera, Adv. Funct. Mater. 2019, 29, 1807004.

a) L. Lu, Z. Liang, L. Wu, Y. Chen, Y. Song, S. C. Dhanabalan, J. S. Ponraj, B. Dong, Y. Xiang, F. Xing, D. Fan, H. Zhang, Laser Photonics Rev. 2018, 12, 1700221;

b) Y. Huang, C. Zhu, S. Zhang, X. Hu, K. Zhang, W. Zhou, S. Guo, F. Xu, H. Zeng, Nano Lett. 2019, 19, 1118;

c) K. Yamada, S. Souma, K. Yamauchi, N. Shimamura, K. Sugawara, C. X. Trang, T. Oguchi, K. Ueno, T. Takahashi, T. Sato, Nano Lett. 2018, 18, 3235;

d) Y. Hu, Z.-H. Qi, J. Lu, R. Chen, M. Zou, T. C. W. Zhang, Y. Wang, X. Xue, J. Ma, Z. Jin, Chem. Mater. 2019, 31, 4524;

e) Z.-H. Qi, Y. Hu, Z. Jin, J. Ma, Phys. Chem. Chem. Phys. 2019, 21, 12087;

f) X. Wang, Y. Hu, J. Mo, J. Zhang, Z. Wang, W. Wei, H. Li, Y. Xu, J. Ma, J. Zhao, Z. Jin, Z. Guo, Angew. Chem., Int. Ed. 2020, 59, 5151.

X. Liu, S. Zhang, S. Guo, B. Cai, S. A. Yang, F. Shan, M. Pumera, H. Zeng, Chem. Soc. Rev. 2020, 49, 263.

E. Aktürk, O. Ü. Aktürk, S. Ciraci, Phys. Rev. B 2016, 94, 014115.

a) Q.-Q. Yang, R.-T. Liu, C. Huang, Y.-F. Huang, L.-F. Gao, B. Sun, Z.-P. Huang, L. Zhang, C.-X. Hu, Z.-Q. Zhang, C.-L. Sun, Q. Wang, Y.-L. Tang, H.-L. Zhang, Nanoscale 2018, 10, 21106;

b) W. Zhang, Y. Hu, L. Ma, G. Zhu, P. Zhao, X. Xue, R. Chen, S. Yang, J. Ma, J. Liu, Z. Jin, Nano Energy 2018, 53, 808;

c) R. Gusmão, Z. Sofer, D. Bouša, M. Pumera, Angew. Chem., Int. Ed. 2017, 56, 14417.

M. Pumera, Z. Sofer, Adv. Mater. 2017, 29, 1605299.

F. Song, X. Hu, Nat. Commun. 2014, 5, 4477.

a) E. S. Walker, S. R. Na, D. Jung, S. D. March, J.-S. Kim, T. Trivedi, W. Li, L. Tao, M. L. Lee, K. M. Liechti, D. Akinwande, S. R. Bank, Nano Lett. 2016, 16, 6931;

b) K. Trentelman, J. Raman Spectrosc. 2009, 40, 585;

c) A. J. Salazar-Pérez, M. A. Camacho-López, R. A. Morales-Luckie, V. Sánchez-Mendieta, F. Ureña-Ñúñez, J. Arenas-Alatorre, Superficies Vacío 2005, 18, 4.

a) A. R. Patel, G. K. Shivakumar, Thin Solid Films 1976, 33, 13;

b) M. Kammler, M. Horn-von Hoegen, Surf. Sci. 2005, 576, 56;

c) S. Yaginuma, T. Nagao, J. T. Sadowski, M. Saito, K. Nagaoka, Y. Fujikawa, T. Sakurai, T. Nakayama, Surf. Sci. 2007, 601, 3593;

d) J. Li, J. Chen, H. Wang, N. Chen, Z. Wang, L. Guo, F. L. Deepak, Adv. Sci. 2018, 5, 1700992;

e) T. Nagao, J. T. Sadowski, M. Saito, S. Yaginuma, Y. Fujikawa, T. Kogure, T. Ohno, Y. Hasegawa, S. Hasegawa, T. Sakurai, Phys. Rev. Lett. 2004, 93, 105501;

f) E. E. Foos, R. M. Stroud, A. D. Berry, A. W. Snow, J. P. Armistead, J. Am. Chem. Soc. 2000, 122, 7114.

J. Kang, J. D. Wood, S. A. Wells, J.-H. Lee, X. Liu, K.-S. Chen, M. C. Hersam, ACS Nano 2015, 9, 3596.

V. S. Dharmadhikari, S. R. Sainkar, S. Badrinarayan, A. Goswami, J. Electron Spectrosc. Relat. Phenom. 1982, 25, 181.

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...