Bismuthene Metallurgy: Transformation of Bismuth Particles to Ultrahigh-Aspect-Ratio 2D Microsheets
Status PubMed-not-MEDLINE Language English Country Germany Media print-electronic
Document type Journal Article
Grant support
19-26896X
Grant Agency of the Czech Republic
CZ.02.1.01/0.0/0.0/15_003/0000444
EFRR
LQ1601
Ministry of Education, Youth and Sports
- Keywords
- 2D materials, bismuthene, high-resolution transmission electron microscopy, sensors, ultrasonication,
- Publication type
- Journal Article MeSH
Ultrathin bismuth exhibits promising performance for topological insulators due to its narrow band gap and intrinsic strong spin-orbit coupling, as well as for energy-related applications because of its electronic and mechanical properties. However, large-scale production of 2D sheets via liquid-phase exfoliation as an established large-scale method is restricted by the strong interaction between bismuth layers. Here, a sonication method is utilized to produce ultrahigh-aspect-ratio bismuthene microsheets. The studies on the mechanism excludes the exfoliation of the layered bulk bismuth and formation of the microsheets is attributed to the melting of spherical particles (r = 1.5 µm) at a high temperature-generated under the ultrasonic tip-followed by a recrystallization step producing uniformly-shaped ultrathin microsheets (A = 0.5-2 µm2 , t: ≈2 nm). Notably, although the preparation is performed in oxygenated aqueous solution, the sheets are not oxidized, and they are stable under ambient conditions for at least 1 month. The microsheets are used to construct a vapor sensor using electrochemical impedance spectroscopy as detection technique. The device is highly selective, and it shows long-term stability. Overall, this project exhibits a reproducible method for large-scale preparation of ultrathin bismuthene microsheets in a benign environment, demonstrating opportunities to realize devices based on bismuthene.
See more in PubMed
a) O. Prakash, A. Kumar, A. Thamizhavel, S. Ramakrishnan, Science 2017, 355, 52;
b) V. S. Édel'man, Adv. Phys. 1976, 25, 555;
c) A. V. Ettingshausen, W. Nernst, Ann. Phys. Chem. 1886, 265, 343;
d) Y. Fuseya, M. Ogata, H. Fukuyama, J. Phys. Soc. Jpn. 2015, 84, 012001.
L. A. Fal'kovskiĭ, Phys. Usp. 1968, 11, 1.
a) L. Li, J. G. Checkelsky, Y. S. Hor, C. Uher, A. F. Hebard, R. J. Cava, N. P. Ong, Science 2008, 321, 547.
b) E. Aktürk, O. Üzengi Aktürk, S. Ciraci, Phys. Rev. B 2016, 94, 014115.
a) P. Hofmann, Prog. Surf. Sci. 2006, 81, 191;
b) Y. Guo, Y.-F. Zhang, X.-Y. Bao, T.-Z. Han, Z. Tang, L.-X. Zhang, W.-G. Zhu, E. G. Wang, Q. Niu, Z. Q. Qiu, J.-F. Jia, Z.-X. Zhao, Q.-K. Xue, Science 2004, 306, 1915;
c) J. W. Wells, K. Handrup, J. F. Kallehauge, L. Gammelgaard, P. Bøggild, M. B. Balslev, J. E. Hansen, P. R. E. Petersen, P. Hofmann, J. Appl. Phys. 2008, 104, 053717.
a) M. Tian, J. Wang, N. Kumar, T. Han, Y. Kobayashi, Y. Liu, T. E. Mallouk, M. H. W. Chan, Nano Lett. 2006, 6, 2773;
b) T. Hamada, K. Yamakawa, F. E. Fujita, J. Phys. F: Metal Phys. 1981, 11, 657;
c) M. Tian, J. Wang, Q. Zhang, N. Kumar, T. E. Mallouk, M. H. W. Chan, Nano Lett. 2009, 9, 3196;
d) P. J. Hakonen, G. Nunes, J. Phys.: Condens. Mat. 1991, 3, 7153.
L. Cheng, H. Liu, X. Tan, J. Zhang, J. Wei, H. Lv, J. Shi, X. Tang, J. Phys. Chem. C 2014, 118, 904.
a) J. Huang, X. Lin, H. Tan, B. Zhang, Adv. Energy Mater. 2018, 8, 1703496;
b) D. Su, S. Dou, G. Wang, Nano Energy 2015, 12, 88;
c) Y. Zhao, A. Manthiram, Chem. Mater. 2015, 27, 3096;
d) H. Gao, J. Niu, C. Zhang, Z. Peng, Z. Zhang, ACS Nano 2018, 12, 3568;
e) P. Xiong, P. Bai, A. Li, B. Li, M. Cheng, Y. Chen, S. Huang, Q. Jiang, X.-H. Bu, Y. Xu, Adv. Mater. 2019, 31, 1904771.
F. Xu, B. Ge, J. Chen, A. Nathan, L. L. Xin, H. Ma, H. Min, C. Zhu, W. Xia, Z. Li, S. Li, K. Yu, L. Wu, Y. Cui, L. Sun, Y. Zhu, 2D Mater. 2016, 3, 025005.
a) J. Sun, H.-W. Lee, M. Pasta, H. Yuan, G. Zheng, Y. Sun, Y. Li, Y. Cui, Nat. Nanotechnol. 2015, 10, 980;
b) S. M. Beladi-Mousavi, M. Pumera, Chem. Soc. Rev. 2018, 47, 6964.
a) Y.-C. Hao, Y. Guo, L.-W. Chen, M. Shu, X.-Y. Wang, T.-A. Bu, W.-Y. Gao, N. Zhang, X. Su, X. Feng, J.-W. Zhou, B. Wang, C.-W. Hu, A.-X. Yin, R. Si, Y.-W. Zhang, C.-H. Yan, Nat. Catal. 2019, 2, 448;
b) Y. Wang, M.-m. Shi, D. Bao, F.-l. Meng, Q. Zhang, Y.-t. Zhou, K.-h. Liu, Y. Zhang, J.-z. Wang, Z.-w. Chen, D.-p. Liu, Z. Jiang, M. Luo, L. Gu, Q.-h. Zhang, X.-z. Cao, Y. Yao, M.-h. Shao, Y. Zhang, X.-B. Zhang, J. G. Chen, J.-m. Yan, Q. Jiang, Angew. Chem., Int. Ed. 2019, 58, 9464;
c) F. Wang, X. Lv, X. Zhu, J. Du, S. Lu, A. A. Alshehri, K. A. Alzahrani, B. Zheng, X. Sun, Chem. Commun. 2020, 56, 2107.
a) K. Fan, Y. Jia, Y. Ji, P. Kuang, B. Zhu, X. Liu, J. Yu, ACS Catal. 2020, 10, 358;
b) N. Han, Y. Wang, H. Yang, J. Deng, J. Wu, Y. Li, Y. Li, Nat. Commun. 2018, 9, 1320.
a) J. R. Schaibley, H. Yu, G. Clark, P. Rivera, J. S. Ross, K. L. Seyler, W. Yao, X. Xu, Nat. Rev. Mater. 2016, 1, 16055;
b) Z. Sun, A. Martinez, F. Wang, Nat. Photonics 2016, 10, 227;
c) S. M. Beladi-Mousavi, B. Khezri, L. Krejčová, Z. Heger, Z. Sofer, A. C. Fisher, M. Pumera, ACS Appl. Mater. Interfaces 2019, 11, 13359;
d) B. Khezri, S. M. Beladi Mousavi, Z. Sofer, M. Pumera, Nanoscale 2019, 11, 8825;
e) S. M. Beladi-Mousavi, B. Khezri, S. Matějková, Z. Sofer, M. Pumera, Angew. Chem. 2019, 131, 13474.
f) B. Guo, S.-H. Wang, Z.-X. Wu, Z.-X. Wang, D.-H. Wang, H. Huang, F. Zhang, Y.-Q. Ge, H. Zhang, Opt. Express 2018, 26, 22750;
g) C. Xing, W. Huang, Z. Xie, J. Zhao, D. Ma, T. Fan, W. Liang, Y. Ge, B. Dong, J. Li, H. Zhang, ACS Photonics 2018, 5, 621;
h) X. Ren, J. Zhou, X. Qi, Y. Liu, Z. Huang, Z. Li, Y. Ge, S. C. Dhanabalan, J. S. Ponraj, S. Wang, J. Zhong, H. Zhang, Adv. Energy Mater. 2017, 7, 1700396;
i) Y. Zhou, M. Zhang, Z. Guo, L. Miao, S.-T. Han, Z. Wang, X. Zhang, H. Zhang, Z. Peng, Mater. Horiz. 2017, 4, 997.
S. M. Beladi-Mousavi, A. M. Pourrahimi, Z. Sofer, M. Pumera, Adv. Funct. Mater. 2019, 29, 1807004.
a) L. Lu, Z. Liang, L. Wu, Y. Chen, Y. Song, S. C. Dhanabalan, J. S. Ponraj, B. Dong, Y. Xiang, F. Xing, D. Fan, H. Zhang, Laser Photonics Rev. 2018, 12, 1700221;
b) Y. Huang, C. Zhu, S. Zhang, X. Hu, K. Zhang, W. Zhou, S. Guo, F. Xu, H. Zeng, Nano Lett. 2019, 19, 1118;
c) K. Yamada, S. Souma, K. Yamauchi, N. Shimamura, K. Sugawara, C. X. Trang, T. Oguchi, K. Ueno, T. Takahashi, T. Sato, Nano Lett. 2018, 18, 3235;
d) Y. Hu, Z.-H. Qi, J. Lu, R. Chen, M. Zou, T. C. W. Zhang, Y. Wang, X. Xue, J. Ma, Z. Jin, Chem. Mater. 2019, 31, 4524;
e) Z.-H. Qi, Y. Hu, Z. Jin, J. Ma, Phys. Chem. Chem. Phys. 2019, 21, 12087;
f) X. Wang, Y. Hu, J. Mo, J. Zhang, Z. Wang, W. Wei, H. Li, Y. Xu, J. Ma, J. Zhao, Z. Jin, Z. Guo, Angew. Chem., Int. Ed. 2020, 59, 5151.
X. Liu, S. Zhang, S. Guo, B. Cai, S. A. Yang, F. Shan, M. Pumera, H. Zeng, Chem. Soc. Rev. 2020, 49, 263.
E. Aktürk, O. Ü. Aktürk, S. Ciraci, Phys. Rev. B 2016, 94, 014115.
a) Q.-Q. Yang, R.-T. Liu, C. Huang, Y.-F. Huang, L.-F. Gao, B. Sun, Z.-P. Huang, L. Zhang, C.-X. Hu, Z.-Q. Zhang, C.-L. Sun, Q. Wang, Y.-L. Tang, H.-L. Zhang, Nanoscale 2018, 10, 21106;
b) W. Zhang, Y. Hu, L. Ma, G. Zhu, P. Zhao, X. Xue, R. Chen, S. Yang, J. Ma, J. Liu, Z. Jin, Nano Energy 2018, 53, 808;
c) R. Gusmão, Z. Sofer, D. Bouša, M. Pumera, Angew. Chem., Int. Ed. 2017, 56, 14417.
M. Pumera, Z. Sofer, Adv. Mater. 2017, 29, 1605299.
F. Song, X. Hu, Nat. Commun. 2014, 5, 4477.
a) E. S. Walker, S. R. Na, D. Jung, S. D. March, J.-S. Kim, T. Trivedi, W. Li, L. Tao, M. L. Lee, K. M. Liechti, D. Akinwande, S. R. Bank, Nano Lett. 2016, 16, 6931;
b) K. Trentelman, J. Raman Spectrosc. 2009, 40, 585;
c) A. J. Salazar-Pérez, M. A. Camacho-López, R. A. Morales-Luckie, V. Sánchez-Mendieta, F. Ureña-Ñúñez, J. Arenas-Alatorre, Superficies Vacío 2005, 18, 4.
a) A. R. Patel, G. K. Shivakumar, Thin Solid Films 1976, 33, 13;
b) M. Kammler, M. Horn-von Hoegen, Surf. Sci. 2005, 576, 56;
c) S. Yaginuma, T. Nagao, J. T. Sadowski, M. Saito, K. Nagaoka, Y. Fujikawa, T. Sakurai, T. Nakayama, Surf. Sci. 2007, 601, 3593;
d) J. Li, J. Chen, H. Wang, N. Chen, Z. Wang, L. Guo, F. L. Deepak, Adv. Sci. 2018, 5, 1700992;
e) T. Nagao, J. T. Sadowski, M. Saito, S. Yaginuma, Y. Fujikawa, T. Kogure, T. Ohno, Y. Hasegawa, S. Hasegawa, T. Sakurai, Phys. Rev. Lett. 2004, 93, 105501;
f) E. E. Foos, R. M. Stroud, A. D. Berry, A. W. Snow, J. P. Armistead, J. Am. Chem. Soc. 2000, 122, 7114.
J. Kang, J. D. Wood, S. A. Wells, J.-H. Lee, X. Liu, K.-S. Chen, M. C. Hersam, ACS Nano 2015, 9, 3596.
V. S. Dharmadhikari, S. R. Sainkar, S. Badrinarayan, A. Goswami, J. Electron Spectrosc. Relat. Phenom. 1982, 25, 181.