Light sheet fluorescence microscopy of optically cleared brains for studying the glymphatic system
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
32525440
PubMed Central
PMC7786847
DOI
10.1177/0271678x20924954
Knihovny.cz E-zdroje
- Klíčová slova
- Glymphatic system, anaesthesia, cerebrospinal fluid, light sheet microscopy, optical tissue clearing,
- MeSH
- anestezie MeSH
- arteria cerebri media fyziologie MeSH
- arterioly fyziologie MeSH
- fluorescenční mikroskopie metody MeSH
- glymfatický systém fyziologie MeSH
- mozek ultrastruktura MeSH
- mozkomíšní mok metabolismus MeSH
- mozkový krevní oběh fyziologie MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- neurozobrazování metody MeSH
- spánek fyziologie MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Fluid transport in the perivascular space by the glia-lymphatic (glymphatic) system is important for the removal of solutes from the brain parenchyma, including peptides such as amyloid-beta which are implicated in the pathogenesis of Alzheimer's disease. The glymphatic system is highly active in the sleep state and under the influence of certain of anaesthetics, while it is suppressed in the awake state and by other anaesthetics. Here we investigated whether light sheet fluorescence microscopy of whole optically cleared murine brains was capable of detecting glymphatic differences in sleep- and awake-mimicking anaesthesia, respectively. Using light-sheet imaging of whole brains, we found anaesthetic-dependent cerebrospinal fluid (CSF) influx differences, including reduced tracer influx along tertiary branches of the middle cerebral artery and reduced influx along dorsal and anterior penetrating arterioles, in the awake-mimicking anaesthesia. This study establishes that light sheet microscopy of optically cleared brains is feasible for quantitative analyses and can provide images of the entire glymphatic system in whole brains.
Department of Experimental Medical Science Lund University Lund Sweden
Department of Neurology University Hospital Brno Brno Czech Republic
Wallenberg Centre for Molecular Medicine Lund University Lund Sweden
Zobrazit více v PubMed
Palop JJ, Mucke L.Amyloid-Β-induced neuronal dysfunction in Alzheimer’s disease: from synapses toward neural networks. Nat Neurosci 2010; 13: 812–818. PubMed PMC
Ballatore C, Lee VMY, Trojanowski JQ.Tau-mediated neurodegeneration in Alzheimer’s disease and related disorders. Nat Rev Neurosci 2007; 8: 663–672. PubMed
Goedert M.Alpha-synuclein and neurodegenerative diseases. Nat Rev Neurosci 2001; 2: 492–501. PubMed
Ibanez P, Bonnet A, Débarges B, et al.. Causal relation between alpha-synuclein gene duplication and familial Parkinson’s disease. Lancet 2004; 364: 1169–1171. PubMed
Hardy J, Selkoe D.The amyloid hypothesis of Alzheimer’s disease: progress and problems on the road to therapeutics. Science 2002; 297: 353–356. PubMed
Mawuenyega KG, Sigurdson W, Ovod V, et al.. Decreased clearance of CNS β-amyloid in Alzheimer’s disease. Science 2010; 330: 1774. PubMed PMC
Tarasoff-Conway JM, Carare RO, Osorio RS, et al.. Clearance systems in the brain – implications for Alzheimer disease. Nat Rev Neurol 2015; 11: 457–470. PubMed PMC
Bateman RJ, Munsell LY, Morris JC, et al.. Human amyloid-β synthesis and clearance rates as measured in cerebrospinal fluid in vivo. Nat Med 2006; 12: 856–861. PubMed PMC
Kang J-E, Lim MM, Bateman RJ, et al.. Orexin and the sleep-wake cycle. Science 2009; 326: 1005–1008. PubMed PMC
Roberts KF, Elbert DL, Kasten TP, et al.. Amyloid-β efflux from the central nervous system into the plasma. Ann Neurol 2014; 76: 837–844. PubMed PMC
Pitschke M, Prior R, Haupt M, et al.. Detection of single amyloid β-protein aggregates in the cerebrospinal fluid of Alzheirner’s patients by fluorescence correlation spectroscopy. Nat Med 1998; 4: 832–834. PubMed
Palmqvist S, Zetterberg H, Mattsson N, et al.. Detailed comparison of amyloid PET and CSF biomarkers for identifying early Alzheimer disease. Neurology 2015; 85: 1240–1249. PubMed PMC
Portelius E, Zetterberg H, Andreasson U, et al.. An Alzheimer’s disease-specific β-amyloid fragment signature in cerebrospinal fluid. Neurosci Lett 2006; 409: 215–219. PubMed
Nedergaard M.Garbage truck of the brain. Science 2013; 340: 1529–1530. PubMed PMC
Lundgaard I, Lu ML, Yang E, et al.. Glymphatic clearance controls state-dependent changes in brain lactate concentration. J Cereb Blood Flow Metab 2017; 37: 2112–2124. PubMed PMC
Iliff JJ, Wang M, Liao Y, et al.. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci Transl Med 2012; 4: 147ra111. PubMed PMC
Kress BT, Iliff JJ, Xia M, et al.. Impairment of paravascular clearance pathways in the aging brain. Ann Neurol 2014; 76: 845–861. PubMed PMC
Nakada T, Kwee IL, Igarashi H, et al.. Aquaporin-4 functionality and Virchow-Robin space water dynamics: physiological model for neurovascular coupling and glymphatic flow. Int J Mol Sci 2017; 18: 1798. PubMed PMC
Mestre H, Hablitz LM, Xavier ALR, et al.. Aquaporin-4-dependent glymphatic solute transport in the rodent brain. Elife 2018; 7: 1–31. PubMed PMC
Munk AS, Wang W, Bèchet NB, et al.. PDGF-B is required for development of the glymphatic system. Cell Rep 2019; 26: 2955–2969.e3. PubMed PMC
Lindblom P, Gerhardt H, Liebner S, et al.. Endothelial PDGF-B retention is required for proper investment of pericytes in the microvessel wall. Genes Dev 2003; 17: 1835–1840. PubMed PMC
Abramsson A, Lindblom P, Betsholtz C.Endothelial and nonendothelial sources of PDGF-B regulate pericyte recruitment and influence vascular pattern formation in tumors. J Clin Invest 2003; 112: 1142–1151. PubMed PMC
Mestre H, Tithof J, Du T, et al.. Flow of cerebrospinal fluid is driven by arterial pulsations and is reduced in hypertension. Nat Commun 2018; 9: 4878. PubMed PMC
Hablitz LM, Vinitsky HS, Sun Q, et al.. Increased glymphatic influx is correlated with high EEG delta power and low heart rate in mice under anesthesia. Sci Adv 2019; 5: eaav5447. PubMed PMC
Xie L, Kang H.Xu Q, et al.. Sleep drives metabolite clearance from the adult brain. Science 2013; 342: 373–378. PubMed PMC
Ding F, O’donnell J, Xu Q, et al.. Changes in the composition of brain interstitial ions control the sleep-wake cycle. Science 2016; 352: 550–555. PubMed PMC
Holstein-rathlou S Von, Caesar N, Nedergaard M.Neuroscience Letters Voluntary running enhances glymphatic in flux in awake behaving, young mice. Neurosci Lett 2018; 662: 253–258. PubMed PMC
He XF, Liu DX, Zhang Q, et al.. Voluntary exercise promotes glymphatic clearance of amyloid beta and reduces the activation of astrocytes and microglia in aged mice. Front Mol Neurosci 2017; 10: 1–14. PubMed PMC
Benveniste H, Lee H, Ding F, et al.. Anesthesia with dexmedetomidine and low-dose isoflurane increases solute transport via the glymphatic pathway in rat brain when compared with high-dose isoflurane. Anesthesiology 2017; 127: 976–988. PubMed PMC
Ma Q, Decker Y, Müller A, et al.. Clearance of cerebrospinal fluid from the sacral spine through lymphatic vessels. J Exp Med 2019; 216: 2492–2502. PubMed PMC
Eide PK, Ringstad G.MRI with intrathecal MRI gadolinium contrast medium administration: a possible method to assess glymphatic function in human brain. Acta Radiol Open 2015; 4: 2058460115609635. PubMed PMC
Eide K, Are S, Vatnehol S, et al.. Magnetic resonance imaging provides evidence of glymphatic drainage from human brain to cervical lymph nodes. Sci Rep 2018; 8: 1–10. PubMed PMC
Ringstad G, Valnes LM, Dale AM, et al.. Brain-wide glymphatic enhancement and clearance in humans assessed with MRI. JCI Insight 2018; 3: e121537. PubMed PMC
Iliff JJ, Lee H, Yu M, et al.. Brain-wide pathway for waste clearance captured by contrast-enhanced MRI. J Clin Invest 2013; 123: 1299–1309. PubMed PMC
Plog BA, Mestre H, Olveda GE, et al.. Transcranial optical imaging reveals a pathway for optimizing the delivery of immunotherapeutics to the brain. JCI Insight 2018; 3: 1–15. PubMed PMC
Lundgaard I, Wang W, Eberhardt A, et al.. Beneficial effects of low alcohol exposure, but adverse effects of high alcohol intake on glymphatic function. Sci Rep 2018; 8: 1–16. PubMed PMC
Xavier ALR, Hauglund NL, von Holstein-Rathlou S, et al.. Cannula implantation into the cisterna magna of rodents. J Vis Exp 2018; e57378. PubMed PMC
Ertürk A, Bradke F.High-resolution imaging of entire organs by 3-dimensional imaging of solvent cleared organs (3DISCO). Exp Neurol 2013; 242: 57–64. PubMed
Renier N, Adams EL, Kirst C, et al.. Mapping of brain activity by automated volume analysis of immediate early genes. Cell 2016; 165: 1789–1802. PubMed PMC
Pan C, Cai R, Quacquarelli FP, et al.. Shrinkage-mediated imaging of entire organs and organisms using uDISCO. Nat Methods 2016; 13: 859–867. PubMed
Cai R, Pan C, Ghasemigharagoz A, et al.. Panoptic imaging of transparent mice reveals whole-body neuronal projections and skull–meninges connections. Nat Neurosci 2019; 22: 317–327. PubMed PMC
Schindelin J, Arganda-Carreras I, Frise E, et al.. Fiji: an open-source platform for biological-image analysis. Nat Methods 2012; 9: 676–682. PubMed PMC
Jiang Q, Zhang L, Ding G, et al.. Impairment of the glymphatic system after diabetes. J Cereb Blood Flow Metab 2017; 37: 1326–1337. PubMed PMC