Lipid Messenger Phosphatidylinositol-4,5-Bisphosphate Is Increased by Both PPARα Activators and Inhibitors: Relevance for Intestinal Cell Differentiation

. 2022 Jun 30 ; 11 (7) : . [epub] 20220630

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36101378

Grantová podpora
IGA_LF_2022_004 Palacký University, Olomouc

We investigated the effects of PPARα activators fenofibrate and WY-14643 as well as the PPARα inhibitor GW6471 on the PI3K/Akt/PTEN pathway of intestinal cell differentiation. Our previous study showed that all these compounds increased the expression of villin, a specific marker of intestinal cell differentiation in HT-29 and Caco2 cells. Our current results confirmed the central role of lipid messenger phosphatidylinositol-4,5-bisphosphate (PIP2), a known player in brush border formation, in mediating the effects of tested PPARα ligands. Although all tested compounds increased its levels, surprisingly, each of them affected different PIP2-metabolizing enzymes, especially the levels of PIP5K1C and PTEN. Moreover, we found a positive relationship between the expression of PPARα itself and PIP2 as well as PIP5K1C. By contrast, PPARα was negatively correlated with PTEN. However, the expression of antigens of interest was independent of PPARα subcellular localization, suggesting that it is not directly involved in their regulation. In colorectal carcinoma tissues we found a decrease in PTEN expression, which was accompanied by a change in its subcellular localization. This change was also observed for the regulatory subunit of PI3K. Taken together, our data revealed that fenofibrate, WY-14643, and GW6471 affected different members of the PI3K/Akt/PTEN pathway. However, these effects were PPARα-independent.

Zobrazit více v PubMed

Abbott B.D., Wood C.R., Watkins A.M., Das K.P., Lau C.S. Peroxisome Proliferator-Activated Receptors Alpha, Beta, and Gamma mRNA and Protein Expression in Human Fetal Tissues. PPAR Res. 2010;2010:690907. doi: 10.1155/2010/690907. PubMed DOI PMC

Pyper S.R., Viswakarma N., Yu S., Reddy J.K. PPARalpha: Energy combustion, hypolipidemia, inflammation and cancer. Nucl. Recept. Signal. 2010;8:e002. doi: 10.1621/nrs.08002. PubMed DOI PMC

Peters J.M., Shah Y.M., Gonzalez F.J. The role of peroxisome proliferator-activated receptors in carcinogenesis and chemoprevention. Nat. Rev. Cancer. 2012;12:181–195. doi: 10.1038/nrc3214. PubMed DOI PMC

Morinishi T., Tokuhara Y., Ohsaki H., Ibuki E., Kadota K., Hirakawa E. Activation and Expression of Peroxisome Proliferator-Activated Receptor Alpha Are Associated with Tumorigenesis in Colorectal Carcinoma. PPAR Res. 2019;2019:7486727. doi: 10.1155/2019/7486727. PubMed DOI PMC

Contreras A.V., Torres N., Tovar A.R. PPAR-α as a key nutritional and environmental sensor for metabolic adaptation. Adv. Nutr. 2013;4:439–452. doi: 10.3945/an.113.003798. PubMed DOI PMC

Umemoto T., Fujiki Y. Ligand-dependent nucleo-cytoplasmic shuttling of peroxisome proliferator-activated receptors, PPARalpha and PPARgamma. Genes Cells Devoted Mol. Cell. Mech. 2012;17:576–596. doi: 10.1111/j.1365-2443.2012.01607.x. PubMed DOI

Bougarne N., Weyers B., Desmet S.J., Deckers J., Ray D.W., Staels B., De Bosscher K. Molecular Actions of PPARα in Lipid Metabolism and Inflammation. Endocr. Rev. 2018;39:760–802. doi: 10.1210/er.2018-00064. PubMed DOI

Tokuno A., Hirano T., Hayashi T., Mori Y., Yamamoto T., Nagashima M., Shiraishi Y., Ito Y., Adachi M. The effects of statin and fibrate on lowering small dense LDL- cholesterol in hyperlipidemic patients with type 2 diabetes. J. Atheroscler. Thromb. 2007;14:128–132. doi: 10.5551/jat.14.128. PubMed DOI

Keech A., Simes R.J., Barter P., Best J., Scott R., Taskinen M.R., Forder P., Pillai A., Davis T., Glasziou P., et al. Effects of long-term fenofibrate therapy on cardiovascular events in 9795 people with type 2 diabetes mellitus (the FIELD study): Randomised controlled trial. Lancet. 2005;366:1849–1861. doi: 10.1016/S1567-5688(06)81349-8. PubMed DOI

Burns K.A., Vanden Heuvel J.P. Modulation of PPAR activity via phosphorylation. Biochim. Et Biophys. Acta. 2007;1771:952–960. doi: 10.1016/j.bbalip.2007.04.018. PubMed DOI PMC

Ding L., Liang X.G., Lou Y.J. Time-dependence of cardiomyocyte differentiation disturbed by peroxisome proliferator-activated receptor alpha inhibitor GW6471 in murine embryonic stem cells in vitro. Acta Pharmacol. Sin. 2007;28:634–642. doi: 10.1111/j.1745-7254.2007.00558.x. PubMed DOI

Goto T., Lee J.Y., Teraminami A., Kim Y.I., Hirai S., Uemura T., Inoue H., Takahashi N., Kawada T. Activation of peroxisome proliferator-activated receptor-alpha stimulates both differentiation and fatty acid oxidation in adipocytes. J. Lipid Res. 2011;52:873–884. doi: 10.1194/jlr.M011320. PubMed DOI PMC

Benameur T., Tual-Chalot S., Andriantsitohaina R., Martínez M.C. PPARalpha is essential for microparticle-induced differentiation of mouse bone marrow-derived endothelial progenitor cells and angiogenesis. PLoS ONE. 2010;5:e12392. doi: 10.1371/journal.pone.0012392. PubMed DOI PMC

Sharifpanah F., Wartenberg M., Hannig M., Piper H.M., Sauer H. Peroxisome proliferator-activated receptor alpha agonists enhance cardiomyogenesis of mouse ES cells by utilization of a reactive oxygen species-dependent mechanism. Stem Cells. 2008;26:64–71. doi: 10.1634/stemcells.2007-0532. PubMed DOI

Vergori L., Lauret E., Gaceb A., Beauvillain C., Andriantsitohaina R., Martinez M.C. PPARα regulates endothelial progenitor cell maturation and myeloid lineage differentiation through a NADPH oxidase-dependent mechanism in mice. Stem Cells. 2015;33:1292–1303. doi: 10.1002/stem.1924. PubMed DOI

Gong K., Qu B., Wang C., Zhou J., Liao D., Zheng W., Pan X. Peroxisome Proliferator-Activated Receptor α Facilitates Osteogenic Differentiation in MC3T3-E1 Cells via the Sirtuin 1-Dependent Signaling Pathway. Mol. Cells. 2017;40:393–400. doi: 10.14348/molcells.2017.0018. PubMed DOI PMC

Kömüves L.G., Hanley K., Lefebvre A.M., Man M.Q., Ng D.C., Bikle D.D., Williams M.L., Elias P.M., Auwerx J., Feingold K.R. Stimulation of PPARalpha promotes epidermal keratinocyte differentiation in vivo. J. Investig. Dermatol. 2000;115:353–360. doi: 10.1046/j.1523-1747.2000.00073.x. PubMed DOI

Cizkova K., Foltynkova T., Hanyk J., Kamencak Z., Tauber Z. When Activator and Inhibitor of PPARα Do the Same: Consequence for Differentiation of Human Intestinal Cells. Biomedicines. 2021;9:1255. doi: 10.3390/biomedicines9091255. PubMed DOI PMC

Kumar N., Zhao P., Tomar A., Galea C.A., Khurana S. Association of villin with phosphatidylinositol 4,5-bisphosphate regulates the actin cytoskeleton. J. Biol. Chem. 2004;279:3096–3110. doi: 10.1074/jbc.M308878200. PubMed DOI

Khurana S., George S.P. Regulation of cell structure and function by actin-binding proteins: Villin’s perspective. FEBS Lett. 2008;582:2128–2139. doi: 10.1016/j.febslet.2008.02.040. PubMed DOI PMC

Wang Q., Zhou Y., Wang X., Chung D.H., Evers B.M. Regulation of PTEN expression in intestinal epithelial cells by c-Jun NH2-terminal kinase activation and nuclear factor-kappaB inhibition. Cancer Res. 2007;67:7773–7781. doi: 10.1158/0008-5472.CAN-07-0187. PubMed DOI PMC

Florio R., De Lellis L., di Giacomo V., Di Marcantonio M.C., Cristiano L., Basile M., Verginelli F., Verzilli D., Ammazzalorso A., Prasad S.C., et al. Effects of PPARα inhibition in head and neck paraganglioma cells. PLoS ONE. 2017;12:e0178995. doi: 10.1371/journal.pone.0178995. PubMed DOI PMC

Chen L., Peng J., Wang Y., Jiang H., Wang W., Dai J., Tang M., Wei Y., Kuang H., Xu G., et al. Fenofibrate-induced mitochondrial dysfunction and metabolic reprogramming reversal: The anti-tumor effects in gastric carcinoma cells mediated by the PPAR pathway. Am. J. Transl. Res. 2020;12:428–446. PubMed PMC

De Araújo W.M., Vidal F.C., de Souza W.F., de Freitas J.C., Jr., de Souza W., Morgado-Diaz J.A. PI3K/Akt and GSK-3β prevents in a differential fashion the malignant phenotype of colorectal cancer cells. J. Cancer Res. Clin. Oncol. 2010;136:1773–1782. doi: 10.1007/s00432-010-0836-5. PubMed DOI

Yamasaki D., Kawabe N., Nakamura H., Tachibana K., Ishimoto K., Tanaka T., Aburatani H., Sakai J., Hamakubo T., Kodama T., et al. Fenofibrate suppresses growth of the human hepatocellular carcinoma cell via PPARα-independent mechanisms. Eur. J. Cell Biol. 2011;90:657–664. doi: 10.1016/j.ejcb.2011.02.005. PubMed DOI

Majeed Y., Upadhyay R., Alhousseiny S., Taha T., Musthak A., Shaheen Y., Jameel M., Triggle C.R., Ding H. Potent and PPARα-independent anti-proliferative action of the hypolipidemic drug fenofibrate in VEGF-dependent angiosarcomas in vitro. Sci. Rep. 2019;9:6316. doi: 10.1038/s41598-019-42838-y. PubMed DOI PMC

Katan M., Cockcroft S. Phosphatidylinositol(4,5)bisphosphate: Diverse functions at the plasma membrane. Essays Biochem. 2020;64:513–531. doi: 10.1042/ebc20200041. PubMed DOI PMC

Maehama T., Dixon J.E. The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate. J. Biol. Chem. 1998;273:13375–13378. doi: 10.1074/jbc.273.22.13375. PubMed DOI

Sheng H., Shao J., Townsend C.M., Jr., Evers B.M. Phosphatidylinositol 3-kinase mediates proliferative signals in intestinal epithelial cells. Gut. 2003;52:1472–1478. doi: 10.1136/gut.52.10.1472. PubMed DOI PMC

Cizkova K., Birke P., Malohlava J., Tauber Z., Huskova Z., Ehrmann J. HT-29 and Caco2 Cell Lines Are Suitable Models for Studying the Role of Arachidonic Acid-Metabolizing Enzymes in Intestinal Cell Differentiation. Cells Tissues Organs. 2019;208:37–47. doi: 10.1159/000506735. PubMed DOI

Kamata S., Oyama T., Saito K., Honda A., Yamamoto Y., Suda K., Ishikawa R., Itoh T., Watanabe Y., Shibata T., et al. PPARα Ligand-Binding Domain Structures with Endogenous Fatty Acids and Fibrates. iScience. 2020;23:101727. doi: 10.1016/j.isci.2020.101727. PubMed DOI PMC

Bernardes A., Souza P.C.T., Muniz J.R.C., Ricci C.G., Ayers S.D., Parekh N.M., Godoy A.S., Trivella D.B.B., Reinach P., Webb P., et al. Molecular Mechanism of Peroxisome Proliferator-Activated Receptor α Activation by WY14643: A New Mode of Ligand Recognition and Receptor Stabilization. J. Mol. Biol. 2013;425:2878–2893. doi: 10.1016/j.jmb.2013.05.010. PubMed DOI

Willson T.M., Brown P.J., Sternbach D.D., Henke B.R. The PPARs:  From Orphan Receptors to Drug Discovery. J. Med. Chem. 2000;43:527–550. doi: 10.1021/jm990554g. PubMed DOI

Bourgine J., Billaut-Laden I., Happillon M., Lo-Guidice J.M., Maunoury V., Imbenotte M., Broly F. Gene expression profiling of systems involved in the metabolism and the disposition of xenobiotics: Comparison between human intestinal biopsy samples and colon cell lines. Drug Metab. Dispos. Biol. Fate Chem. 2012;40:694–705. doi: 10.1124/dmd.111.042465. PubMed DOI

Dai Y., Qiao L., Chan K.W., Zou B., Ma J., Lan H.Y., Gu Q., Li Z., Wang Y., Wong B.L., et al. Loss of XIAP sensitizes rosiglitazone-induced growth inhibition of colon cancer in vivo. Int. J. Cancer. 2008;122:2858–2863. doi: 10.1002/ijc.23443. PubMed DOI

Chen W.C., Lin M.S., Bai X. Induction of apoptosis in colorectal cancer cells by peroxisome proliferators-activated receptor gamma activation up-regulating PTEN and inhibiting PI3K activity. Chin. Med. J. 2005;118:1477–1481. PubMed

Marin H.E., Peraza M.A., Billin A.N., Willson T.M., Ward J.M., Kennett M.J., Gonzalez F.J., Peters J.M. Ligand Activation of Peroxisome Proliferator–Activated Receptor β Inhibits Colon Carcinogenesis. Cancer Res. 2006;66:4394–4401. doi: 10.1158/0008-5472.CAN-05-4277. PubMed DOI

Laprise P., Chailler P., Houde M., Beaulieu J.F., Boucher M.J., Rivard N. Phosphatidylinositol 3-kinase controls human intestinal epithelial cell differentiation by promoting adherens junction assembly and p38 MAPK activation. J. Biol. Chem. 2002;277:8226–8234. doi: 10.1074/jbc.M110235200. PubMed DOI

Wang Q., Wang X., Hernandez A., Kim S., Evers B.M. Inhibition of the phosphatidylinositol 3-kinase pathway contributes to HT29 and Caco-2 intestinal cell differentiation. Gastroenterology. 2001;120:1381–1392. doi: 10.1053/gast.2001.24044. PubMed DOI

Kim S., Domon-Dell C., Wang Q., Chung D.H., Di Cristofano A., Pandolfi P.P., Freund J.N., Evers B.M. PTEN and TNF-alpha regulation of the intestinal-specific Cdx-2 homeobox gene through a PI3K, PKB/Akt, and NF-kappaB-dependent pathway. Gastroenterology. 2002;123:1163–1178. doi: 10.1053/gast.2002.36043. PubMed DOI

Waniczek D., Śnietura M., Lorenc Z., Nowakowska-Zajdel E., Muc-Wierzgoń M. Assessment of PI3K/AKT/PTEN signaling pathway activity in colorectal cancer using quantum dot-conjugated antibodies. Oncol. Lett. 2018;15:1236–1240. doi: 10.3892/ol.2017.7392. PubMed DOI PMC

Salvatore L., Calegari M.A., Loupakis F., Fassan M., Di Stefano B., Bensi M., Bria E., Tortora G. PTEN in Colorectal Cancer: Shedding Light on Its Role as Predictor and Target. Cancers. 2019;11:1765. doi: 10.3390/cancers11111765. PubMed DOI PMC

Peng W., Huang W., Ge X., Xue L., Zhao W., Xue J. Type Iγ phosphatidylinositol phosphate kinase promotes tumor growth by facilitating Warburg effect in colorectal cancer. EBioMedicine. 2019;44:375–386. doi: 10.1016/j.ebiom.2019.05.015. PubMed DOI PMC

Bader A.G., Kang S., Zhao L., Vogt P.K. Oncogenic PI3K deregulates transcription and translation. Nat. Rev. Cancer. 2005;5:921–929. doi: 10.1038/nrc1753. PubMed DOI

Chen H., Gao J., Du Z., Zhang X., Yang F., Gao W. Expression of factors and key components associated with the PI3K signaling pathway in colon cancer. Oncol. Lett. 2018;15:5465–5472. doi: 10.3892/ol.2018.8044. PubMed DOI PMC

Rychahou P.G., Jackson L.N., Silva S.R., Rajaraman S., Evers B.M. Targeted molecular therapy of the PI3K pathway: Therapeutic significance of PI3K subunit targeting in colorectal carcinoma. Ann. Surg. 2006;243:833–842. doi: 10.1097/01.sla.0000220040.66012.a9. PubMed DOI PMC

Ikenoue T., Kanai F., Hikiba Y., Obata T., Tanaka Y., Imamura J., Ohta M., Jazag A., Guleng B., Tateishi K., et al. Functional analysis of PIK3CA gene mutations in human colorectal cancer. Cancer Res. 2005;65:4562–4567. doi: 10.1158/0008-5472.CAN-04-4114. PubMed DOI

Jang K.S., Song Y.S., Jang S.H., Min K.W., Na W., Jang S.M., Jun Y.J., Lee K.H., Choi D., Paik S.S. Clinicopathological significance of nuclear PTEN expression in colorectal adenocarcinoma. Histopathology. 2010;56:229–239. doi: 10.1111/j.1365-2559.2009.03468.x. PubMed DOI

Taniguchi C.M., Winnay J., Kondo T., Bronson R.T., Guimaraes A.R., Alemán J.O., Luo J., Stephanopoulos G., Weissleder R., Cantley L.C., et al. The phosphoinositide 3-kinase regulatory subunit p85alpha can exert tumor suppressor properties through negative regulation of growth factor signaling. Cancer Res. 2010;70:5305–5315. doi: 10.1158/0008-5472.CAN-09-3399. PubMed DOI PMC

Thorpe L.M., Spangle J.M., Ohlson C.E., Cheng H., Roberts T.M., Cantley L.C., Zhao J.J. PI3K-p110α mediates the oncogenic activity induced by loss of the novel tumor suppressor PI3K-p85α. Proc. Natl. Acad. Sci. USA. 2017;114:7095–7100. doi: 10.1073/pnas.1704706114. PubMed DOI PMC

Chagpar R.B., Links P.H., Pastor M.C., Furber L.A., Hawrysh A.D., Chamberlain M.D., Anderson D.H. Direct positive regulation of PTEN by the p85 subunit of phosphatidylinositol 3-kinase. Proc. Natl. Acad. Sci. USA. 2010;107:5471–5476. doi: 10.1073/pnas.0908899107. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...