Fibrates Affect Levels of Phosphorylated p38 in Intestinal Cells in a Differentiation-Dependent Manner
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
IGA_LF_2023_040
Palacký University, Olomouc
PubMed
37175404
PubMed Central
PMC10178720
DOI
10.3390/ijms24097695
PII: ijms24097695
Knihovny.cz E-zdroje
- Klíčová slova
- colorectal carcinoma, epoxyeicosatrienoic acids, fibrates, p38 MAPK, peroxisome proliferator-activated receptor α,
- MeSH
- buněčná diferenciace MeSH
- Caco-2 buňky MeSH
- deriváty kyseliny fibrové farmakologie MeSH
- hypolipidemika * farmakologie MeSH
- lidé MeSH
- PPAR alfa * metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- deriváty kyseliny fibrové MeSH
- hypolipidemika * MeSH
- PPAR alfa * MeSH
Fibrates are widely used hypolipidaemic agents that act as ligands of the peroxisome proliferator-activated receptor α (PPARα). p38 is a protein kinase that is mainly activated by environmental and genotoxic stress. We investigated the effect of the PPARα activators fenofibrate and WY-14643 and the PPARα inhibitor GW6471 on the levels of activated p38 (p-p38) in the colorectal cancer cell lines HT-29 and Caco2 in relation to their differentiation status. Fibrates increased p-p38 in undifferentiated HT-29 cells, whereas in other cases p-p38 expression was decreased. HT-29 cells showed p-p38 predominantly in the cytoplasm, whereas Caco2 cells showed higher nuclear positivity. The effect of fibrates may depend on the differentiation status of the cell, as differentiated HT-29 and undifferentiated Caco2 cells share similar characteristics in terms of villin, CYP2J2, and soluble epoxide hydrolase (sEH) expression. In human colorectal carcinoma, higher levels of p-p38 were detected in the cytoplasm, whereas in normal colonic surface epithelium, p-p38 showed nuclear positivity. The decrease in p-p38 positivity was associated with a decrease in sEH, consistent with in vitro results. In conclusion, fibrates affect the level of p-p38, but its exact role in the process of carcinogenesis remains unclear and further research is needed in this area.
Zobrazit více v PubMed
Bougarne N., Weyers B., Desmet S.J., Deckers J., Ray D.W., Staels B., De Bosscher K. Molecular Actions of PPARα in Lipid Metabolism and Inflammation. Endocr. Rev. 2018;39:760–802. doi: 10.1210/er.2018-00064. PubMed DOI
Tokuno A., Hirano T., Hayashi T., Mori Y., Yamamoto T., Nagashima M., Shiraishi Y., Ito Y., Adachi M. The effects of statin and fibrate on lowering small dense LDL- cholesterol in hyperlipidemic patients with type 2 diabetes. J. Atheroscler. Thromb. 2007;14:128–132. doi: 10.5551/jat.14.128. PubMed DOI
Keech A., Simes R.J., Barter P., Best J., Scott R., Taskinen M.R., Forder P., Pillai A., Davis T., Glasziou P., et al. Effects of long-term fenofibrate therapy on cardiovascular events in 9795 people with type 2 diabetes mellitus (the FIELD study): Randomised controlled trial. Lancet. 2005;366:1849–1861. doi: 10.1016/S1567-5688(06)81349-8. PubMed DOI
Peters J.M., Shah Y.M., Gonzalez F.J. The role of peroxisome proliferator-activated receptors in carcinogenesis and chemoprevention. Nat. Rev. Cancer. 2012;12:181–195. doi: 10.1038/nrc3214. PubMed DOI PMC
Abbott B.D., Wood C.R., Watkins A.M., Das K.P., Lau C.S. Peroxisome Proliferator-Activated Receptors Alpha, Beta, and Gamma mRNA and Protein Expression in Human Fetal Tissues. PPAR Res. 2010;2010:690907. PubMed PMC
Pyper S.R., Viswakarma N., Yu S., Reddy J.K. PPARalpha: Energy combustion, hypolipidemia, inflammation and cancer. Nucl. Recept. Signal. 2010;8:e002. doi: 10.1621/nrs.08002. PubMed DOI PMC
Morinishi T., Tokuhara Y., Ohsaki H., Ibuki E., Kadota K., Hirakawa E. Activation and Expression of Peroxisome Proliferator-Activated Receptor Alpha Are Associated with Tumorigenesis in Colorectal Carcinoma. PPAR Res. 2019;2019:7486727. doi: 10.1155/2019/7486727. PubMed DOI PMC
Contreras A.V., Torres N., Tovar A.R. PPAR-α as a key nutritional and environmental sensor for metabolic adaptation. Adv. Nutr. 2013;4:439–452. doi: 10.3945/an.113.003798. PubMed DOI PMC
Vanden Heuvel J.P., Peters J.M. 2.09—Peroxisome Proliferator-Activated Receptors. In: McQueen C.A., editor. Comprehensive Toxicology. 2nd ed. Elsevier; Oxford, UK: 2010. pp. 145–167.
Fang X., Hu S., Xu B., Snyder G.D., Harmon S., Yao J., Liu Y., Sangras B., Falck J.R., Weintraub N.L., et al. 14,15-Dihydroxyeicosatrienoic acid activates peroxisome proliferator-activated receptor-α. Am. J. Physiol. Heart Circ. Physiol. 2006;290:H55–H63. doi: 10.1152/ajpheart.00427.2005. PubMed DOI
Ng V.Y., Huang Y., Reddy L.M., Falck J.R., Lin E.T., Kroetz D.L. Cytochrome P450 eicosanoids are activators of peroxisome proliferator-activated receptor alpha. Drug Metab. Dispos. Biol. Fate Chem. 2007;35:1126–1134. doi: 10.1124/dmd.106.013839. PubMed DOI
Jiang J.G., Chen C.L., Card J.W., Yang S., Chen J.X., Fu X.N., Ning Y.G., Xiao X., Zeldin D.C., Wang D.W. Cytochrome P450 2J2 promotes the neoplastic phenotype of carcinoma cells and is up-regulated in human tumors. Cancer Res. 2005;65:4707–4715. doi: 10.1158/0008-5472.CAN-04-4173. PubMed DOI
Shen G.F., Jiang J.G., Fu X.N., Wang D.W. Promotive effects of epoxyeicosatrienoic acids (EETs) on proliferation of tumor cells. Ai Zheng Aizheng Chin. J. Cancer. 2008;27:1130–1136. PubMed
Spector A.A., Fang X., Snyder G.D., Weintraub N.L. Epoxyeicosatrienoic acids (EETs): Metabolism and biochemical function. Prog. Lipid Res. 2004;43:55–90. doi: 10.1016/S0163-7827(03)00049-3. PubMed DOI
Cizkova K. Expression of cytochrome P450 epoxygenases and soluble epoxide hydrolase is regulated by hypolipidemic drugs in dose-dependent manner. Toxicol. Appl. Pharmacol. 2018;355:156–163. doi: 10.1016/j.taap.2018.06.025. PubMed DOI
Wray J.A., Sugden M.C., Zeldin D.C., Greenwood G.K., Samsuddin S., Miller-Degraff L., Bradbury J.A., Holness M.J., Warner T.D., Bishop-Bailey D. The epoxygenases CYP2J2 activates the nuclear receptor PPARalpha in vitro and in vivo. PLoS ONE. 2009;4:e7421. doi: 10.1371/journal.pone.0007421. PubMed DOI PMC
Burns K.A., Vanden Heuvel J.P. Modulation of PPAR activity via phosphorylation. Biochim. Biophys. Acta. 2007;1771:952–960. doi: 10.1016/j.bbalip.2007.04.018. PubMed DOI PMC
Barker N. Adult intestinal stem cells: Critical drivers of epithelial homeostasis and regeneration. Nat. Rev. Mol. Cell Biol. 2014;15:19–33. doi: 10.1038/nrm3721. PubMed DOI
Sung H., Ferlay J., Siegel R.L., Laversanne M., Soerjomataram I., Jemal A., Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2021;71:209–249. doi: 10.3322/caac.21660. PubMed DOI
Luo Y., Xie C., Brocker C.N., Fan J., Wu X., Feng L., Wang Q., Zhao J., Lu D., Tandon M., et al. Intestinal PPARα Protects Against Colon Carcinogenesis via Regulation of Methyltransferases DNMT1 and PRMT6. Gastroenterology. 2019;157:744–759.e744. doi: 10.1053/j.gastro.2019.05.057. PubMed DOI PMC
Kong R., Wang N., Han W., Bao W., Lu J. Fenofibrate Exerts Antitumor Effects in Colon Cancer via Regulation of DNMT1 and CDKN2A. PPAR Res. 2021;2021:6663782. doi: 10.1155/2021/6663782. PubMed DOI PMC
Bonovas S., Nikolopoulos G.K., Bagos P.G. Use of fibrates and cancer risk: A systematic review and meta-analysis of 17 long-term randomized placebo-controlled trials. PLoS ONE. 2012;7:e45259. doi: 10.1371/journal.pone.0045259. PubMed DOI PMC
Halámková J., Bohovicová L., Pehalová L., Goněc R., Staněk T., Kazda T., Mouková L., Krákorová D.A., Kozáková Š., Svoboda M., et al. Use of Hypolipidemic Drugs and the Risk of Second Primary Malignancy in Colorectal Cancer Patients. Cancers. 2022;14:1699. doi: 10.3390/cancers14071699. PubMed DOI PMC
Martínez-Limón A., Joaquin M., Caballero M., Posas F., de Nadal E. The p38 Pathway: From Biology to Cancer Therapy. Int. J. Mol. Sci. 2020;21:1913. doi: 10.3390/ijms21061913. PubMed DOI PMC
Haq R., Brenton J.D., Takahashi M., Finan D., Rottapel R., Zanke B. Constitutive p38HOG Mitogen-activated Protein Kinase Activation Induces Permanent Cell Cycle Arrest and Senescence1. Cancer Res. 2002;62:5076–5082. PubMed
Puri P.L., Wu Z., Zhang P., Wood L.D., Bhakta K.S., Han J., Feramisco J.R., Karin M., Wang J.Y. Induction of terminal differentiation by constitutive activation of p38 MAP kinase in human rhabdomyosarcoma cells. Genes Dev. 2000;14:574–584. doi: 10.1101/gad.14.5.574. PubMed DOI PMC
Houde M., Laprise P., Jean D., Blais M., Asselin C., Rivard N. Intestinal epithelial cell differentiation involves activation of p38 mitogen-activated protein kinase that regulates the homeobox transcription factor CDX2. J. Biol. Chem. 2001;276:21885–21894. doi: 10.1074/jbc.M100236200. PubMed DOI
Pranteda A., Piastra V., Stramucci L., Fratantonio D., Bossi G. The p38 MAPK Signaling Activation in Colorectal Cancer upon Therapeutic Treatments. Int. J. Mol. Sci. 2020;21:2773. doi: 10.3390/ijms21082773. PubMed DOI PMC
Huang Y.C., Liu K.C., Chiou Y.L., Yang C.H., Chen T.H., Li T.T., Liu L.L. Fenofibrate suppresses melanogenesis in B16-F10 melanoma cells via activation of the p38 mitogen-activated protein kinase pathway. Chem. Biol. Interact. 2013;205:157–164. doi: 10.1016/j.cbi.2013.07.008. PubMed DOI
Neuhaus W., Krämer T., Neuhoff A., Gölz C., Thal S.C., Förster C.Y. Multifaceted Mechanisms of WY-14643 to Stabilize the Blood-Brain Barrier in a Model of Traumatic Brain Injury. Front. Mol. Neurosci. 2017;10:149. doi: 10.3389/fnmol.2017.00149. PubMed DOI PMC
Thongnuanjan P., Soodvilai S., Chatsudthipong V., Soodvilai S. Fenofibrate reduces cisplatin-induced apoptosis of renal proximal tubular cells via inhibition of JNK and p38 pathways. J. Toxicol. Sci. 2016;41:339–349. doi: 10.2131/jts.41.339. PubMed DOI
Potente M., Michaelis U.R., Fisslthaler B., Busse R., Fleming I. Cytochrome P450 2C9-induced endothelial cell proliferation involves induction of mitogen-activated protein (MAP) kinase phosphatase-1, inhibition of the c-Jun N-terminal kinase, and up-regulation of cyclin D1. J. Biol. Chem. 2002;277:15671–15676. doi: 10.1074/jbc.M110806200. PubMed DOI
Dong X.-W., Jia Y.-L., Ge L.-T., Jiang B., Jiang J.-X., Shen J., Jin Y.-C., Guan Y., Sun Y., Xie Q.-M. Soluble epoxide hydrolase inhibitor AUDA decreases bleomycin-induced pulmonary toxicity in mice by inhibiting the p38/Smad3 pathways. Toxicology. 2017;389:31–41. doi: 10.1016/j.tox.2017.07.002. PubMed DOI
Ma W.J., Sun Y.H., Jiang J.X., Dong X.W., Zhou J.Y., Xie Q.M. Epoxyeicosatrienoic acids attenuate cigarette smoke extract-induced interleukin-8 production in bronchial epithelial cells. Prostagland. Leukot Essent Fat. Acids. 2015;94:13–19. doi: 10.1016/j.plefa.2014.10.006. PubMed DOI
Liu Y., Dang H., Li D., Pang W., Hammock B.D., Zhu Y. Inhibition of soluble epoxide hydrolase attenuates high-fat-diet-induced hepatic steatosis by reduced systemic inflammatory status in mice. PLoS ONE. 2012;7:e39165. doi: 10.1371/journal.pone.0039165. PubMed DOI PMC
Liu Y., Lu X., Nguyen S., Olson J.L., Webb H.K., Kroetz D.L. Epoxyeicosatrienoic acids prevent cisplatin-induced renal apoptosis through a p38 mitogen-activated protein kinase-regulated mitochondrial pathway. Mol. Pharmacol. 2013;84:925–934. doi: 10.1124/mol.113.088302. PubMed DOI PMC
Feng Y.J., Li Y.Y. The role of p38 mitogen-activated protein kinase in the pathogenesis of inflammatory bowel disease. J. Dig. Dis. 2011;12:327–332. doi: 10.1111/j.1751-2980.2011.00525.x. PubMed DOI
Mazzon E., Cuzzocrea S. Absence of functional peroxisome proliferator-activated receptor-alpha enhanced ileum permeability during experimental colitis. Shock. 2007;28:192–201. doi: 10.1097/SHK.0b013e318033eb29. PubMed DOI
Lee J.W., Bajwa P.J., Carson M.J., Jeske D.R., Cong Y., Elson C.O., Lytle C., Straus D.S. Fenofibrate represses interleukin-17 and interferon-gamma expression and improves colitis in interleukin-10-deficient mice. Gastroenterology. 2007;133:108–123. doi: 10.1053/j.gastro.2007.03.113. PubMed DOI
Osaki L.H., Gama P. MAPKs and signal transduction in the control of gastrointestinal epithelial cell proliferation and differentiation. Int. J. Mol. Sci. 2013;14:10143–10161. doi: 10.3390/ijms140510143. PubMed DOI PMC
De Bosscher K., Hill C.S., Nicolás F.J. Molecular and functional consequences of Smad4 C-terminal missense mutations in colorectal tumour cells. Biochem. J. 2004;379:209–216. doi: 10.1042/bj20031886. PubMed DOI PMC
Forbes S.A., Bindal N., Bamford S., Cole C., Kok C.Y., Beare D., Jia M., Shepherd R., Leung K., Menzies A., et al. COSMIC: Mining complete cancer genomes in the Catalogue of Somatic Mutations in Cancer. Nucleic Acids Res. 2011;39:D945–D950. doi: 10.1093/nar/gkq929. PubMed DOI PMC
Ahmed D., Eide P.W., Eilertsen I.A., Danielsen S.A., Eknæs M., Hektoen M., Lind G.E., Lothe R.A. Epigenetic and genetic features of 24 colon cancer cell lines. Oncogenesis. 2013;2:e71. doi: 10.1038/oncsis.2013.35. PubMed DOI PMC
Pereira J.F., Awatade N.T., Loureiro C.A., Matos P., Amaral M.D., Jordan P. The third dimension: New developments in cell culture models for colorectal research. Cell. Mol. Life Sci. 2016;73:3971–3989. doi: 10.1007/s00018-016-2258-2. PubMed DOI PMC
Igea A., Nebreda A.R. The Stress Kinase p38α as a Target for Cancer Therapy. Cancer Res. 2015;75:3997–4002. doi: 10.1158/0008-5472.CAN-15-0173. PubMed DOI
Gupta J., del Barco Barrantes I., Igea A., Sakellariou S., Pateras I.S., Gorgoulis V.G., Nebreda A.R. Dual function of p38α MAPK in colon cancer: Suppression of colitis-associated tumor initiation but requirement for cancer cell survival. Cancer Cell. 2014;25:484–500. doi: 10.1016/j.ccr.2014.02.019. PubMed DOI
Wakeman D., Schneider J.E., Liu J., Wandu W.S., Erwin C.R., Guo J., Stappenbeck T.S., Warner B.W. Deletion of p38-alpha mitogen-activated protein kinase within the intestinal epithelium promotes colon tumorigenesis. Surgery. 2012;152:286–293. doi: 10.1016/j.surg.2012.05.009. PubMed DOI PMC
Gulmann C., Sheehan K.M., Conroy R.M., Wulfkuhle J.D., Espina V., Mullarkey M.J., Kay E.W., Liotta L.A., Petricoin E.F., 3rd Quantitative cell signalling analysis reveals down-regulation of MAPK pathway activation in colorectal cancer. J. Pathol. 2009;218:514–519. doi: 10.1002/path.2561. PubMed DOI
Fan X.J., Wan X.B., Fu X.H., Wu P.H., Chen D.K., Wang P.N., Jiang L., Wang D.H., Chen Z.T., Huang Y., et al. Phosphorylated p38, a negative prognostic biomarker, complements TNM staging prognostication in colorectal cancer. Tumour. Biol. 2014;35:10487–10495. doi: 10.1007/s13277-014-2320-3. PubMed DOI
Maik-Rachline G., Zehorai E., Hanoch T., Blenis J., Seger R. The nuclear translocation of the kinases p38 and JNK promotes inflammation-induced cancer. Sci. Signal. 2018;11:eaao3428. doi: 10.1126/scisignal.aao3428. PubMed DOI
Cizkova K., Foltynkova T., Hanyk J., Kamencak Z., Tauber Z. When Activator and Inhibitor of PPARα Do the Same: Consequence for Differentiation of Human Intestinal Cells. Biomedicines. 2021;9:1255. doi: 10.3390/biomedicines9091255. PubMed DOI PMC
Cizkova K., Koubova K., Tauber Z. Lipid Messenger Phosphatidylinositol-4,5-Bisphosphate Is Increased by Both PPARα Activators and Inhibitors: Relevance for Intestinal Cell Differentiation. Biology. 2022;11:997. doi: 10.3390/biology11070997. PubMed DOI PMC
Cizkova K., Birke P., Malohlava J., Tauber Z., Huskova Z., Ehrmann J. HT-29 and Caco2 Cell Lines Are Suitable Models for Studying the Role of Arachidonic Acid-Metabolizing Enzymes in Intestinal Cell Differentiation. Cells Tissues Organs. 2019;208:37–47. doi: 10.1159/000506735. PubMed DOI