When Activator and Inhibitor of PPARα Do the Same: Consequence for Differentiation of Human Intestinal Cells

. 2021 Sep 17 ; 9 (9) : . [epub] 20210917

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34572440

Grantová podpora
IGA_LF_2021_005 Univerzita Palackého v Olomouci

Odkazy

PubMed 34572440
PubMed Central PMC8472525
DOI 10.3390/biomedicines9091255
PII: biomedicines9091255
Knihovny.cz E-zdroje

Peroxisome proliferator-activated receptor α (PPARα) is a ligand-dependent transcription factor that plays a role in various processes including differentiation of several cell types. We investigated the role of PPARα in the differentiation of intestinal cells using HT-29 and Caco2 cell lines as a model as well as human normal colon and colorectal carcinoma tissues. We detected a significant increase in PPARα expression in differentiated HT-29 cells as well as in normal surface colon epithelium where differentiated cells are localised. Thus, it seems that PPARα may play a role in differentiation of intestinal cells. Interestingly, we found that both PPARα activators (fenofibrate and WY-14643) as well as its inhibitor (GW6471) regulated proliferation and differentiation of HT-29 cells in vitro in the same way. Both compounds led to a decrease in proliferation accompanied by a significant increase in expression of villin, intestinal alkaline phosphatase (differentiation markers). Moreover, the same trend in villin expression was observed in Caco2 cells. Furthermore, villin expression was independent of subcellular localisation of PPARα. In addition, we found similar levels of PPARα expression in colorectal carcinomas in comparison to adjacent normal epithelium. All these findings support the hypothesis that differentiation of intestinal epithelium is PPARα-independent.

Zobrazit více v PubMed

Abbott B.D., Wood C.R., Watkins A.M., Das K.P., Lau C.S. Peroxisome Proliferator-Activated Receptors Alpha, Beta, and Gamma mRNA and Protein Expression in Human Fetal Tissues. PPAR Res. 2010;2010:1–19. doi: 10.1155/2010/690907. PubMed DOI PMC

Pyper S.R., Viswakarma N., Yu S., Reddy J.K. PPARα: Energy Combustion, Hypolipidemia, Inflammation and Cancer. Nucl. Recept. Signal. 2010;8:e002. doi: 10.1621/nrs.08002. PubMed DOI PMC

Peters J.M., Shah Y.M., Gonzalez F.J. The role of peroxisome proliferator-activated receptors in carcinogenesis and chemoprevention. Nat. Rev. Cancer. 2012;12:181–195. doi: 10.1038/nrc3214. PubMed DOI PMC

Morinishi T., Tokuhara Y., Ohsaki H., Ibuki E., Kadota K., Hirakawa E. Activation and Expression of Peroxisome Proliferator-Activated Receptor Alpha Are Associated with Tumorigenesis in Colorectal Carcinoma. PPAR Res. 2019;2019:1–9. doi: 10.1155/2019/7486727. PubMed DOI PMC

Contreras A.V., Torres N., Tovar A.R. PPAR-α as a Key Nutritional and Environmental Sensor for Metabolic Adaptation. Adv. Nutr. 2013;4:439–452. doi: 10.3945/an.113.003798. PubMed DOI PMC

Bougarne N., Weyers B., Desmet S.J., Deckers J., Ray D.W., Staels B., De Bosscher K. Molecular Actions of PPARα in Lipid Metabolism and Inflammation. Endocr. Rev. 2018;39:760–802. doi: 10.1210/er.2018-00064. PubMed DOI

Tokuno A., Hirano T., Hayashi T., Mori Y., Yamamoto T., Nagashima M., Shiraishi Y., Ito Y., Adachi M. The effects of statin and fibrate on lowering small dense LDL- cholesterol in hyperlipidemic patients with type 2 diabetes. J. Atheroscler. Thromb. 2007;14:128–132. doi: 10.5551/jat.14.128. PubMed DOI

Keech A.C., Simes R.J., Barter P.J., Best J., Scott R.A.P., Taskinen M.-R., Forder P.M., Pillai A., Davis T.M., Glasziou P., et al. Effects of long-term fenofibrate therapy on cardiovascular events in 9795 people with type 2 diabetes mellitus (the FIELD study): Randomised controlled trial. Lancet. 2005;366:1849–1861. doi: 10.1016/s0140-673667667-2. PubMed DOI

Mazzon E., Cuzzocrea S. Absence of Functional Peroxisome Proliferator-Activated Receptor-A Enhanced Ileum Permeability During Experimental Colitis. Shock. 2007;28:192–201. doi: 10.1097/shk.0b013e318033eb29. PubMed DOI

Lee J.W., Bajwa P.J., Carson M.J., Jeske D.R., Cong Y., Elson C.O., Lytle C., Straus D.S. Fenofibrate Represses Interleukin-17 and Interferon-γ Expression and Improves Colitis in Interleukin-10–Deficient Mice. Gastroenterology. 2007;133:108–123. doi: 10.1053/j.gastro.2007.03.113. PubMed DOI

Grabacka M., Płonka P.M., Urbanska K., Reiss K. Peroxisome Proliferator–Activated Receptor α Activation Decreases Metastatic Potential of Melanoma Cells In vitro via Down-Regulation of Akt. Clin. Cancer Res. 2006;12:3028–3036. doi: 10.1158/1078-0432.CCR-05-2556. PubMed DOI

Panigrahy D., Kaipainen A., Huang S., Butterfield C.E., Barnés C.M., Fannon M., Laforme A.M., Chaponis D.M., Folkman J., Kieran M.W. PPAR agonist fenofibrate suppresses tumor growth through direct and indirect angiogenesis inhibition. Proc. Natl. Acad. Sci. USA. 2008;105:985–990. doi: 10.1073/pnas.0711281105. PubMed DOI PMC

Li T., Zhang Q., Zhang J., Yang G., Shao Z., Luo J., Fan M., Ni C., Wu Z., Hu X. Fenofibrate induces apoptosis of triple-negative breast cancer cells via activation of NF-κB pathway. BMC Cancer. 2014;14:96. doi: 10.1186/1471-2407-14-96. PubMed DOI PMC

Hu D., Su C., Jiang M., Shen Y., Shi A., Zhao F., Chen R., Shen Z., Bao J., Tang W. Fenofibrate inhibited pancreatic cancer cells proliferation via activation of p53 mediated by upregulation of LncRNA MEG3. Biochem. Biophys. Res. Commun. 2016;471:290–295. doi: 10.1016/j.bbrc.2016.01.169. PubMed DOI

Su C., Shi A., Cao G., Tao T., Chen R., Hu Z., Shen Z., Tao H., Cao B., Hu D., et al. Fenofibrate suppressed proliferation and migration of human neuroblastoma cells via oxidative stress dependent of TXNIP upregulation. Biochem. Biophys. Res. Commun. 2015;460:983–988. doi: 10.1016/j.bbrc.2015.03.138. PubMed DOI

Saidi S.A., Holland C.M., Charnock-Jones D.S., Smith S.K. In vitro and in vivo effects of the PPAR-alpha agonists fenofibrate and retinoic acid in endometrial cancer. Mol. Cancer. 2006;5:13. doi: 10.1186/1476-4598-5-13. PubMed DOI PMC

Suchanek K.M., May F.J., Robinson J.A., Lee W.J., Holman N.A., Monteith G.R., Roberts-Thomson S.J. Peroxisome proliferator-activated receptor α in the human breast cancer cell lines MCF-7 and MDA-MB-231. Mol. Carcinog. 2002;34:165–171. doi: 10.1002/mc.10061. PubMed DOI

Cizkova K., Steigerova J., Gursky J., Ehrmann J. Stimulating effect of normal-dosing of fibrates on cell proliferation: Word of warning. Lipids Health Dis. 2016;15:164. doi: 10.1186/s12944-016-0335-z. PubMed DOI PMC

Tauber Z., Koleckova M., Cizkova K. Peroxisome proliferator-activated receptor ɑ (PPARɑ)–cytochrome P450 epoxygenases-soluble epoxide hydrolase axis in ER + PR + HER2− breast cancer. Med. Mol. Morphol. 2020;53:141–148. doi: 10.1007/s00795-019-00240-7. PubMed DOI

Ding L., Liang X.-G., Lou Y.-J. Time-dependence of cardiomyocyte differentiation disturbed by peroxisome proliferator-activated receptor α inhibitor GW6471 in murine embryonic stem cells in vitro. Acta Pharmacol. Sin. 2007;28:634–642. doi: 10.1111/j.1745-7254.2007.00558.x. PubMed DOI

Goto T., Lee J.-Y., Teraminami A., Kim Y.-I., Hirai S., Uemura T., Inoue H., Takahashi N., Kawada T. Activation of peroxisome proliferator-activated receptor-alpha stimulates both differentiation and fatty acid oxidation in adipocytes. J. Lipid Res. 2011;52:873–884. doi: 10.1194/jlr.M011320. PubMed DOI PMC

Benameur T., Tual-Chalot S., Andriantsitohaina R., Martínez M.C. PPARα Is Essential for Microparticle-Induced Differentiation of Mouse Bone Marrow-Derived Endothelial Progenitor Cells and Angiogenesis. PLoS ONE. 2010;5:e12392. doi: 10.1371/journal.pone.0012392. PubMed DOI PMC

Sharifpanah F., Wartenberg M., Hannig M., Piper H.-M., Sauer H. Peroxisome Proliferator-Activated Receptor α Agonists Enhance Cardiomyogenesis of Mouse ES Cells by Utilization of a Reactive Oxygen Species-Dependent Mechanism. Stem Cells. 2008;26:64–71. doi: 10.1634/stemcells.2007-0532. PubMed DOI

Vergori L., Lauret E., Gaceb A., Beauvillain C., Andriantsitohaina R., Martinez M.C. PPARα Regulates Endothelial Progenitor Cell Maturation and Myeloid Lineage Differentiation Through a NADPH Oxidase-Dependent Mechanism in Mice. Stem Cells. 2015;33:1292–1303. doi: 10.1002/stem.1924. PubMed DOI

Gong K., Qu B., Wang C., Zhou J., Liao D., Zheng W., Pan X. Peroxisome Proliferator-Activated Receptor α Facilitates Osteogenic Differentiation in MC3T3-E1 Cells via the Sirtuin 1-Dependent Signaling Pathway. Mol. Cells. 2017;40:393–400. doi: 10.14348/molcells.2017.0018. PubMed DOI PMC

Kömüves L.G., Hanley K., Lefebvre A.-M., Man M.-Q., Ng D.C., Bikle D.D., Williams M.L., Elias P.M., Auwerx J., Feingold K.R. Stimulation of PPARα Promotes Epidermal Keratinocyte Differentiation In Vivo. J. Investig. Dermatol. 2000;115:353–360. doi: 10.1046/j.1523-1747.2000.00073.x. PubMed DOI

Barker N. Adult intestinal stem cells: Critical drivers of epithelial homeostasis and regeneration. Nat. Rev. Mol. Cell Biol. 2014;15:19–33. doi: 10.1038/nrm3721. PubMed DOI

Huin C., Corriveau L., Bianchi A., Keller J.M., Collet P., Krémarik-Bouillaud P., Domenjoud L., Bécuwe P., Schohn H., Ménard D., et al. Differential Expression of Peroxisome Proliferator-activated Receptors (PPARs) in the Developing Human Fetal Digestive Tract. J. Histochem. Cytochem. 2000;48:603–611. doi: 10.1177/002215540004800504. PubMed DOI

Cizkova K., Rajdova A., Ehrmann J. Spatio-Temporal Expression of Peroxisome Proliferator-Activated Receptor α During Human Prenatal Development. Basic Clin. Pharmacol. Toxicol. 2015;116:361–366. doi: 10.1111/bcpt.12326. PubMed DOI

Bünger M., Bosch H.M., Van Der Meijde J., Kersten S., Hooiveld G.J., Muller M. Genome-wide analysis of PPARα activation in murine small intestine. Physiol. Genom. 2007;30:192–204. doi: 10.1152/physiolgenomics.00198.2006. PubMed DOI

Yaghoubizadeh M., Pishkar L., Basati G. Aberrant Expression of Peroxisome Proliferator-Activated Receptors in Colorectal Cancer and Their Association with Cancer Progression and Prognosis. Gastrointest. Tumors. 2020;7:11–20. doi: 10.1159/000503995. PubMed DOI PMC

Huin C., Schohn H., Hatier R., Bentejac M., Antunes L., Plénat F., Bugaut M., Dauça M. Expression of peroxisome proliferator-activated receptors alpha and gamma in differentiating human colon carcinoma Caco-2 cells. Biol. Cell. 2002;94:15–27. doi: 10.1016/S0248-4900(01)01178-9. PubMed DOI

Bourgine J., Billaut-Laden I., Happillon M., Lo-Guidice J.-M., Maunoury V., Imbenotte M., Broly F. Gene Expression Profiling of Systems Involved in the Metabolism and the Disposition of Xenobiotics: Comparison between Human Intestinal Biopsy Samples and Colon Cell Lines. Drug Metab. Dispos. 2012;40:694–705. doi: 10.1124/dmd.111.042465. PubMed DOI

Cizkova K., Birke P., Malohlava J., Tauber Z., Huskova Z., Ehrmann J. HT-29 and Caco2 Cell Lines Are Suitable Models for Studying the Role of Arachidonic Acid-Metabolizing Enzymes in Intestinal Cell Differentiation. Cells Tissues Organs. 2019;208:37–47. doi: 10.1159/000506735. PubMed DOI

Umemoto T., Fujiki Y. Ligand-dependent nucleo-cytoplasmic shuttling of peroxisome proliferator-activated receptors, PPARα and PPARγ. Genes Cells. 2012;17:576–596. doi: 10.1111/j.1365-2443.2012.01607.x. PubMed DOI

Yamasaki D., Kawabe N., Nakamura H., Tachibana K., Ishimoto K., Tanaka T., Aburatani H., Sakai J., Hamakubo T., Kodama T., et al. Fenofibrate suppresses growth of the human hepatocellular carcinoma cell via PPARα-independent mechanisms. Eur. J. Cell Biol. 2011;90:657–664. doi: 10.1016/j.ejcb.2011.02.005. PubMed DOI

Chen L., Peng J., Wang Y., Jiang H., Wang W., Dai J., Tang M., Wei Y., Kuang H., Xu G., et al. Fenofibrate-induced mitochondrial dysfunction and metabolic reprogramming reversal: The anti-tumor effects in gastric carcinoma cells mediated by the PPAR pathway. Am. J. Transl. Res. 2020;12:428–446. PubMed PMC

Majeed Y., Upadhyay R., Alhousseiny S., Taha T., Musthak A., Shaheen Y., Jameel M., Triggle C.R., Ding H. Potent and PPARα-independent anti-proliferative action of the hypolipidemic drug fenofibrate in VEGF-dependent angiosarcomas in vitro. Sci. Rep. 2019;9:6316. doi: 10.1038/s41598-019-42838-y. PubMed DOI PMC

Jan C.-I., Tsai M.-H., Chiu C.-F., Huang Y.-P., Liu C.J., Chang N.W. Fenofibrate Suppresses Oral Tumorigenesis via Reprogramming Metabolic Processes: Potential Drug Repurposing for Oral Cancer. Int. J. Biol. Sci. 2016;12:786–798. doi: 10.7150/ijbs.13851. PubMed DOI PMC

Binello E., Mormone E., Emdad L., Kothari H., Germano I.M. Characterization of fenofibrate-mediated anti-proliferative pro-apoptotic effects on high-grade gliomas and anti-invasive effects on glioma stem cells. J. Neuro-Oncol. 2014;117:225–234. doi: 10.1007/s11060-014-1385-6. PubMed DOI

Jiao H. Cytotoxic Effect of Peroxisome Proliferator Fenofibrate on Human HepG2 Hepatoma Cell Line and Relevant Mechanisms. Toxicol. Appl. Pharmacol. 2002;185:172–179. doi: 10.1006/taap.2002.9538. PubMed DOI

Holland C.M., Saidi S.A., Evans A.L., Sharkey A.M., Latimer J.A., Crawford R.A., Charnock-Jones D.S., Print C.G., Smith S.K. Transcriptome analysis of endometrial cancer identifies peroxisome proliferator-activated receptors as potential thera-peutic targets. Mol. Cancer Ther. 2004;3:993–1001. PubMed

Schmeel L.C., Schmeel F.C., Schmidt-Wolf I.G.H. In Vitro Apoptosis Induction by Fenofibrate in Lymphoma and Multiple Myeloma. Anticancer. Res. 2017;37:3513–3520. doi: 10.21873/anticanres.11566. PubMed DOI

Hwang Y.P., Won S.S., Jin S.W., Lee G.H., Pham T.H., Choi J.H., Kang K.W., Jeong H.G. WY-14643 Regulates CYP1B1 Expression through Peroxisome Proliferator-Activated Receptor α-Mediated Signaling in Human Breast Cancer Cells. Int. J. Mol. Sci. 2019;20:5928. doi: 10.3390/ijms20235928. PubMed DOI PMC

Hashimoto F., Morita M., Iwasaki K., Takeda S., Hayashi H. Effects of WY-14643 on peroxisomal enzyme activity and hormone secretion in immortalized human trophoblast cells. Biol. Pharm. Bull. 2009;32:1278–1282. doi: 10.1248/bpb.32.1278. PubMed DOI

Florio R., De Lellis L., DI Giacomo V., di Marcantonio M.C., Cristiano L., Basile M., Verginelli F., Verzilli D., Ammazzalorso A., Prasad S.C., et al. Effects of PPARα inhibition in head and neck paraganglioma cells. PLoS ONE. 2017;12:e0178995. doi: 10.1371/journal.pone.0178995. PubMed DOI PMC

Abu Aboud O., Wettersten H.I., Weiss R.H. Inhibition of PPARα Induces Cell Cycle Arrest and Apoptosis, and Synergizes with Glycolysis Inhibition in Kidney Cancer Cells. PLoS ONE. 2013;8:e71115. doi: 10.1371/journal.pone.0071115. PubMed DOI PMC

Castelli V., Catanesi M., Alfonsetti M., Laezza C., Lombardi F., Cinque B., Cifone M.G., Ippoliti R., Benedetti E., Cimini A., et al. PPARα-Selective Antagonist GW6471 Inhibits Cell Growth in Breast Cancer Stem Cells Inducing Energy Imbalance and Metabolic Stress. Biomedicines. 2021;9:127. doi: 10.3390/biomedicines9020127. PubMed DOI PMC

Kumar N., Zhao P., Tomar A., Galea C.A., Khurana S. Association of Villin with Phosphatidylinositol 4,5-Bisphosphate Regulates the Actin Cytoskeleton. J. Biol. Chem. 2004;279:3096–3110. doi: 10.1074/jbc.M308878200. PubMed DOI

Khurana S., George S.P. Regulation of cell structure and function by actin-binding proteins: Villin’s perspective. FEBS Lett. 2008;582:2128–2139. doi: 10.1016/j.febslet.2008.02.040. PubMed DOI PMC

Wang Q., Zhou Y., Wang X., Chung D.H., Evers B.M. Regulation of PTEN Expression in Intestinal Epithelial Cells by c-Jun NH2-Terminal Kinase Activation and Nuclear Factor-κB Inhibition. Cancer Res. 2007;67:7773–7781. doi: 10.1158/0008-5472.CAN-07-0187. PubMed DOI PMC

De Araujo W., Vidal F.C.B., Souza W., Junior J.C.D.F., De Souza W., Morgado-Diaz J.A. PI3K/Akt and GSK-3β prevents in a differential fashion the malignant phenotype of colorectal cancer cells. J. Cancer Res. Clin. Oncol. 2010;136:1773–1782. doi: 10.1007/s00432-010-0836-5. PubMed DOI

Laprise P., Chailler P., Houde M., Beaulieu J.-F., Boucher M.-J., Rivard N. Phosphatidylinositol 3-Kinase Controls Human Intestinal Epithelial Cell Differentiation by Promoting Adherens Junction Assembly and p38 MAPK Activation. J. Biol. Chem. 2001;277:8226–8234. doi: 10.1074/jbc.M110235200. PubMed DOI

Houde M., Laprise P., Jean D., Blais M., Asselin C., Rivard N. Intestinal Epithelial Cell Differentiation Involves Activation of p38 Mitogen-activated Protein Kinase That Regulates the Homeobox Transcription Factor CDX2. J. Biol. Chem. 2001;276:21885–21894. doi: 10.1074/jbc.M100236200. PubMed DOI

Banfi C., Auwerx J., Poma F., Tremoli E., Mussoni L. Induction of plasminogen activator inhibitor 1 by the PPARα ligand, Wy-14,643, is dependent on ERK1/2 signaling pathway. Thromb. Haemost. 2003;90:611–619. doi: 10.1160/TH03-01-0059. PubMed DOI

Pauley C.J., Ledwith B.J., Kaplanski C. Peroxisome proliferators activate growth regulatory pathways largely via peroxisome proliferator-activated receptor α-independent mechanisms. Cell. Signal. 2002;14:351–358. doi: 10.1016/S0898-6568(01)00260-1. PubMed DOI

Neuhaus W., Krämer T., Neuhoff A., Gölz C., Thal S.C., Förster C.Y. Multifaceted Mechanisms of WY-14643 to Stabilize the Blood-Brain Barrier in a Model of Traumatic Brain Injury. Front. Mol. Neurosci. 2017;10:149. doi: 10.3389/fnmol.2017.00149. PubMed DOI PMC

Leschelle X., Delpal S., Goubern M., Blottière H.M., Blachier F. Butyrate metabolism upstream and downstream acetyl-CoA synthesis and growth control of human colon carcinoma cells. JBIC J. Biol. Inorg. Chem. 2000;267:6435–6442. doi: 10.1046/j.1432-1327.2000.01731.x. PubMed DOI

Tylichová Z., Slavík J., Ciganek M., Ovesná P., Krčmář P., Strakova N., Machala M., Kozubík A., Hofmanová J., Vondráček J. Butyrate and docosahexaenoic acid interact in alterations of specific lipid classes in differentiating colon cancer cells. J. Cell. Biochem. 2018;119:4664–4679. doi: 10.1002/jcb.26641. PubMed DOI

Yue S., Li J., Lee S.-Y., Lee H.J., Shao T., Song B., Cheng L., Masterson T.A., Liu X., Ratliff T.L., et al. Cholesteryl Ester Accumulation Induced by PTEN Loss and PI3K/AKT Activation Underlies Human Prostate Cancer Aggressiveness. Cell Metab. 2014;19:393–406. doi: 10.1016/j.cmet.2014.01.019. PubMed DOI PMC

De Gonzalo-Calvo D., López-Vilaró L., Nasarre L., Perez-Olabarria M., Vázquez T., Escuin D., Badimon L., Barnadas A., Lerma E., Llorente-Cortés V. Intratumor cholesteryl ester accumulation is associated with human breast cancer proliferation and aggressive potential: A molecular and clinicopathological study. BMC Cancer. 2015;15:460. doi: 10.1186/s12885-015-1469-5. PubMed DOI PMC

Abramczyk H., Surmacki J., Kopeć M., Olejnik A.K., Lubecka K., Fabianowska-Majewska K. The role of lipid droplets and adipocytes in cancer. Raman imaging of cell cultures: MCF10A, MCF7, and MDA-MB-231 compared to adipocytes in cancerous human breast tissue. Analyst. 2015;140:2224–2235. doi: 10.1039/C4AN01875C. PubMed DOI

Cotte A.K., Aires V., Fredon M., Limagne E., Derangère V., Thibaudin M., Humblin E., Scagliarini A., De Barros J.P., Hillon P., et al. Lysophosphatidylcholine acyltransferase 2-mediated lipid droplet production supports colorectal cancer chemoresistance. Nat. Commun. 2018;9:322. doi: 10.1038/s41467-017-02732-5. PubMed DOI PMC

Cruz A.L.S., Barreto E.D.A., Fazolini N.P.B., Viola J.P.B., Bozza P.T. Lipid droplets: Platforms with multiple functions in cancer hallmarks. Cell Death Dis. 2020;11:1–16. doi: 10.1038/s41419-020-2297-3. PubMed DOI PMC

Qi W., Fitchev P.S., Cornwell M.L., Greenberg J., Cabe M., Weber C.R., Roy H.K., Crawford S.E., Savkovic S.D. FOXO3 Growth Inhibition of Colonic Cells Is Dependent on Intraepithelial Lipid Droplet Density. J. Biol. Chem. 2013;288:16274–16281. doi: 10.1074/jbc.M113.470617. PubMed DOI PMC

Chen W.-L., Chen Y.-L., Chiang Y.-M., Wang S.-G., Lee H.-M. Fenofibrate lowers lipid accumulation in myotubes by modulating the PPARα/AMPK/FoxO1/ATGL pathway. Biochem. Pharmacol. 2012;84:522–531. doi: 10.1016/j.bcp.2012.05.022. PubMed DOI

Yan F., Wang Q., Xu C., Cao M., Zhou X., Wang T., Yu C., Jing F., Chen W., Gao L., et al. Peroxisome Proliferator-Activated Receptor α Activation Induces Hepatic Steatosis, Suggesting an Adverse Effect. PLoS ONE. 2014;9:e99245. doi: 10.1371/journal.pone.0099245. PubMed DOI PMC

Chang N.-W., Wu C.-T., Chen D.-R., Yeh C.-Y., Lin C. High levels of arachidonic acid and peroxisome proliferator-activated receptor-alpha in breast cancer tissues are associated with promoting cancer cell proliferation. J. Nutr. Biochem. 2013;24:274–281. doi: 10.1016/j.jnutbio.2012.06.005. PubMed DOI

Zuo N., Zheng X., Liu H., Ma X. Fenofibrate, a PPARα agonist, protect proximal tubular cells from albumin-bound fatty acids induced apoptosis via the activation of NF-kB. Int. J. Clin. Exp. Pathol. 2015;8:10653–10661. PubMed PMC

Sung H., Ferlay J., Siegel R.L., Laversanne M., Soerjomataram I., Jemal A., Bray F. Global Cancer Statistics 2020: Globocan Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries. CA A Cancer J. Clin. 2021;71:209–249. doi: 10.3322/caac.21660. PubMed DOI

Luo Y., Xie C., Brocker C.N., Fan J., Wu X., Feng L., Wang Q., Zhao J., Lu D., Tandon M., et al. Intestinal PPARα Protects Against Colon Carcinogenesis via Regulation of Methyltransferases DNMT1 and PRMT6. Gastroenterology. 2019;157:744–759.e4. doi: 10.1053/j.gastro.2019.05.057. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...