Lipid Messenger Phosphatidylinositol-4,5-Bisphosphate Is Increased by Both PPARα Activators and Inhibitors: Relevance for Intestinal Cell Differentiation
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
IGA_LF_2022_004
Palacký University, Olomouc
PubMed
36101378
PubMed Central
PMC9312331
DOI
10.3390/biology11070997
PII: biology11070997
Knihovny.cz E-resources
- Keywords
- carcinogenesis, fibrates, intestinal cell differentiation, phosphatidylinositol-4,5-bisphosphate,
- Publication type
- Journal Article MeSH
We investigated the effects of PPARα activators fenofibrate and WY-14643 as well as the PPARα inhibitor GW6471 on the PI3K/Akt/PTEN pathway of intestinal cell differentiation. Our previous study showed that all these compounds increased the expression of villin, a specific marker of intestinal cell differentiation in HT-29 and Caco2 cells. Our current results confirmed the central role of lipid messenger phosphatidylinositol-4,5-bisphosphate (PIP2), a known player in brush border formation, in mediating the effects of tested PPARα ligands. Although all tested compounds increased its levels, surprisingly, each of them affected different PIP2-metabolizing enzymes, especially the levels of PIP5K1C and PTEN. Moreover, we found a positive relationship between the expression of PPARα itself and PIP2 as well as PIP5K1C. By contrast, PPARα was negatively correlated with PTEN. However, the expression of antigens of interest was independent of PPARα subcellular localization, suggesting that it is not directly involved in their regulation. In colorectal carcinoma tissues we found a decrease in PTEN expression, which was accompanied by a change in its subcellular localization. This change was also observed for the regulatory subunit of PI3K. Taken together, our data revealed that fenofibrate, WY-14643, and GW6471 affected different members of the PI3K/Akt/PTEN pathway. However, these effects were PPARα-independent.
See more in PubMed
Abbott B.D., Wood C.R., Watkins A.M., Das K.P., Lau C.S. Peroxisome Proliferator-Activated Receptors Alpha, Beta, and Gamma mRNA and Protein Expression in Human Fetal Tissues. PPAR Res. 2010;2010:690907. doi: 10.1155/2010/690907. PubMed DOI PMC
Pyper S.R., Viswakarma N., Yu S., Reddy J.K. PPARalpha: Energy combustion, hypolipidemia, inflammation and cancer. Nucl. Recept. Signal. 2010;8:e002. doi: 10.1621/nrs.08002. PubMed DOI PMC
Peters J.M., Shah Y.M., Gonzalez F.J. The role of peroxisome proliferator-activated receptors in carcinogenesis and chemoprevention. Nat. Rev. Cancer. 2012;12:181–195. doi: 10.1038/nrc3214. PubMed DOI PMC
Morinishi T., Tokuhara Y., Ohsaki H., Ibuki E., Kadota K., Hirakawa E. Activation and Expression of Peroxisome Proliferator-Activated Receptor Alpha Are Associated with Tumorigenesis in Colorectal Carcinoma. PPAR Res. 2019;2019:7486727. doi: 10.1155/2019/7486727. PubMed DOI PMC
Contreras A.V., Torres N., Tovar A.R. PPAR-α as a key nutritional and environmental sensor for metabolic adaptation. Adv. Nutr. 2013;4:439–452. doi: 10.3945/an.113.003798. PubMed DOI PMC
Umemoto T., Fujiki Y. Ligand-dependent nucleo-cytoplasmic shuttling of peroxisome proliferator-activated receptors, PPARalpha and PPARgamma. Genes Cells Devoted Mol. Cell. Mech. 2012;17:576–596. doi: 10.1111/j.1365-2443.2012.01607.x. PubMed DOI
Bougarne N., Weyers B., Desmet S.J., Deckers J., Ray D.W., Staels B., De Bosscher K. Molecular Actions of PPARα in Lipid Metabolism and Inflammation. Endocr. Rev. 2018;39:760–802. doi: 10.1210/er.2018-00064. PubMed DOI
Tokuno A., Hirano T., Hayashi T., Mori Y., Yamamoto T., Nagashima M., Shiraishi Y., Ito Y., Adachi M. The effects of statin and fibrate on lowering small dense LDL- cholesterol in hyperlipidemic patients with type 2 diabetes. J. Atheroscler. Thromb. 2007;14:128–132. doi: 10.5551/jat.14.128. PubMed DOI
Keech A., Simes R.J., Barter P., Best J., Scott R., Taskinen M.R., Forder P., Pillai A., Davis T., Glasziou P., et al. Effects of long-term fenofibrate therapy on cardiovascular events in 9795 people with type 2 diabetes mellitus (the FIELD study): Randomised controlled trial. Lancet. 2005;366:1849–1861. doi: 10.1016/S1567-5688(06)81349-8. PubMed DOI
Burns K.A., Vanden Heuvel J.P. Modulation of PPAR activity via phosphorylation. Biochim. Et Biophys. Acta. 2007;1771:952–960. doi: 10.1016/j.bbalip.2007.04.018. PubMed DOI PMC
Ding L., Liang X.G., Lou Y.J. Time-dependence of cardiomyocyte differentiation disturbed by peroxisome proliferator-activated receptor alpha inhibitor GW6471 in murine embryonic stem cells in vitro. Acta Pharmacol. Sin. 2007;28:634–642. doi: 10.1111/j.1745-7254.2007.00558.x. PubMed DOI
Goto T., Lee J.Y., Teraminami A., Kim Y.I., Hirai S., Uemura T., Inoue H., Takahashi N., Kawada T. Activation of peroxisome proliferator-activated receptor-alpha stimulates both differentiation and fatty acid oxidation in adipocytes. J. Lipid Res. 2011;52:873–884. doi: 10.1194/jlr.M011320. PubMed DOI PMC
Benameur T., Tual-Chalot S., Andriantsitohaina R., Martínez M.C. PPARalpha is essential for microparticle-induced differentiation of mouse bone marrow-derived endothelial progenitor cells and angiogenesis. PLoS ONE. 2010;5:e12392. doi: 10.1371/journal.pone.0012392. PubMed DOI PMC
Sharifpanah F., Wartenberg M., Hannig M., Piper H.M., Sauer H. Peroxisome proliferator-activated receptor alpha agonists enhance cardiomyogenesis of mouse ES cells by utilization of a reactive oxygen species-dependent mechanism. Stem Cells. 2008;26:64–71. doi: 10.1634/stemcells.2007-0532. PubMed DOI
Vergori L., Lauret E., Gaceb A., Beauvillain C., Andriantsitohaina R., Martinez M.C. PPARα regulates endothelial progenitor cell maturation and myeloid lineage differentiation through a NADPH oxidase-dependent mechanism in mice. Stem Cells. 2015;33:1292–1303. doi: 10.1002/stem.1924. PubMed DOI
Gong K., Qu B., Wang C., Zhou J., Liao D., Zheng W., Pan X. Peroxisome Proliferator-Activated Receptor α Facilitates Osteogenic Differentiation in MC3T3-E1 Cells via the Sirtuin 1-Dependent Signaling Pathway. Mol. Cells. 2017;40:393–400. doi: 10.14348/molcells.2017.0018. PubMed DOI PMC
Kömüves L.G., Hanley K., Lefebvre A.M., Man M.Q., Ng D.C., Bikle D.D., Williams M.L., Elias P.M., Auwerx J., Feingold K.R. Stimulation of PPARalpha promotes epidermal keratinocyte differentiation in vivo. J. Investig. Dermatol. 2000;115:353–360. doi: 10.1046/j.1523-1747.2000.00073.x. PubMed DOI
Cizkova K., Foltynkova T., Hanyk J., Kamencak Z., Tauber Z. When Activator and Inhibitor of PPARα Do the Same: Consequence for Differentiation of Human Intestinal Cells. Biomedicines. 2021;9:1255. doi: 10.3390/biomedicines9091255. PubMed DOI PMC
Kumar N., Zhao P., Tomar A., Galea C.A., Khurana S. Association of villin with phosphatidylinositol 4,5-bisphosphate regulates the actin cytoskeleton. J. Biol. Chem. 2004;279:3096–3110. doi: 10.1074/jbc.M308878200. PubMed DOI
Khurana S., George S.P. Regulation of cell structure and function by actin-binding proteins: Villin’s perspective. FEBS Lett. 2008;582:2128–2139. doi: 10.1016/j.febslet.2008.02.040. PubMed DOI PMC
Wang Q., Zhou Y., Wang X., Chung D.H., Evers B.M. Regulation of PTEN expression in intestinal epithelial cells by c-Jun NH2-terminal kinase activation and nuclear factor-kappaB inhibition. Cancer Res. 2007;67:7773–7781. doi: 10.1158/0008-5472.CAN-07-0187. PubMed DOI PMC
Florio R., De Lellis L., di Giacomo V., Di Marcantonio M.C., Cristiano L., Basile M., Verginelli F., Verzilli D., Ammazzalorso A., Prasad S.C., et al. Effects of PPARα inhibition in head and neck paraganglioma cells. PLoS ONE. 2017;12:e0178995. doi: 10.1371/journal.pone.0178995. PubMed DOI PMC
Chen L., Peng J., Wang Y., Jiang H., Wang W., Dai J., Tang M., Wei Y., Kuang H., Xu G., et al. Fenofibrate-induced mitochondrial dysfunction and metabolic reprogramming reversal: The anti-tumor effects in gastric carcinoma cells mediated by the PPAR pathway. Am. J. Transl. Res. 2020;12:428–446. PubMed PMC
De Araújo W.M., Vidal F.C., de Souza W.F., de Freitas J.C., Jr., de Souza W., Morgado-Diaz J.A. PI3K/Akt and GSK-3β prevents in a differential fashion the malignant phenotype of colorectal cancer cells. J. Cancer Res. Clin. Oncol. 2010;136:1773–1782. doi: 10.1007/s00432-010-0836-5. PubMed DOI PMC
Yamasaki D., Kawabe N., Nakamura H., Tachibana K., Ishimoto K., Tanaka T., Aburatani H., Sakai J., Hamakubo T., Kodama T., et al. Fenofibrate suppresses growth of the human hepatocellular carcinoma cell via PPARα-independent mechanisms. Eur. J. Cell Biol. 2011;90:657–664. doi: 10.1016/j.ejcb.2011.02.005. PubMed DOI
Majeed Y., Upadhyay R., Alhousseiny S., Taha T., Musthak A., Shaheen Y., Jameel M., Triggle C.R., Ding H. Potent and PPARα-independent anti-proliferative action of the hypolipidemic drug fenofibrate in VEGF-dependent angiosarcomas in vitro. Sci. Rep. 2019;9:6316. doi: 10.1038/s41598-019-42838-y. PubMed DOI PMC
Katan M., Cockcroft S. Phosphatidylinositol(4,5)bisphosphate: Diverse functions at the plasma membrane. Essays Biochem. 2020;64:513–531. doi: 10.1042/ebc20200041. PubMed DOI PMC
Maehama T., Dixon J.E. The tumor suppressor, PTEN/MMAC1, dephosphorylates the lipid second messenger, phosphatidylinositol 3,4,5-trisphosphate. J. Biol. Chem. 1998;273:13375–13378. doi: 10.1074/jbc.273.22.13375. PubMed DOI
Sheng H., Shao J., Townsend C.M., Jr., Evers B.M. Phosphatidylinositol 3-kinase mediates proliferative signals in intestinal epithelial cells. Gut. 2003;52:1472–1478. doi: 10.1136/gut.52.10.1472. PubMed DOI PMC
Cizkova K., Birke P., Malohlava J., Tauber Z., Huskova Z., Ehrmann J. HT-29 and Caco2 Cell Lines Are Suitable Models for Studying the Role of Arachidonic Acid-Metabolizing Enzymes in Intestinal Cell Differentiation. Cells Tissues Organs. 2019;208:37–47. doi: 10.1159/000506735. PubMed DOI
Kamata S., Oyama T., Saito K., Honda A., Yamamoto Y., Suda K., Ishikawa R., Itoh T., Watanabe Y., Shibata T., et al. PPARα Ligand-Binding Domain Structures with Endogenous Fatty Acids and Fibrates. iScience. 2020;23:101727. doi: 10.1016/j.isci.2020.101727. PubMed DOI PMC
Bernardes A., Souza P.C.T., Muniz J.R.C., Ricci C.G., Ayers S.D., Parekh N.M., Godoy A.S., Trivella D.B.B., Reinach P., Webb P., et al. Molecular Mechanism of Peroxisome Proliferator-Activated Receptor α Activation by WY14643: A New Mode of Ligand Recognition and Receptor Stabilization. J. Mol. Biol. 2013;425:2878–2893. doi: 10.1016/j.jmb.2013.05.010. PubMed DOI
Willson T.M., Brown P.J., Sternbach D.D., Henke B.R. The PPARs: From Orphan Receptors to Drug Discovery. J. Med. Chem. 2000;43:527–550. doi: 10.1021/jm990554g. PubMed DOI
Bourgine J., Billaut-Laden I., Happillon M., Lo-Guidice J.M., Maunoury V., Imbenotte M., Broly F. Gene expression profiling of systems involved in the metabolism and the disposition of xenobiotics: Comparison between human intestinal biopsy samples and colon cell lines. Drug Metab. Dispos. Biol. Fate Chem. 2012;40:694–705. doi: 10.1124/dmd.111.042465. PubMed DOI
Dai Y., Qiao L., Chan K.W., Zou B., Ma J., Lan H.Y., Gu Q., Li Z., Wang Y., Wong B.L., et al. Loss of XIAP sensitizes rosiglitazone-induced growth inhibition of colon cancer in vivo. Int. J. Cancer. 2008;122:2858–2863. doi: 10.1002/ijc.23443. PubMed DOI
Chen W.C., Lin M.S., Bai X. Induction of apoptosis in colorectal cancer cells by peroxisome proliferators-activated receptor gamma activation up-regulating PTEN and inhibiting PI3K activity. Chin. Med. J. 2005;118:1477–1481. PubMed
Marin H.E., Peraza M.A., Billin A.N., Willson T.M., Ward J.M., Kennett M.J., Gonzalez F.J., Peters J.M. Ligand Activation of Peroxisome Proliferator–Activated Receptor β Inhibits Colon Carcinogenesis. Cancer Res. 2006;66:4394–4401. doi: 10.1158/0008-5472.CAN-05-4277. PubMed DOI
Laprise P., Chailler P., Houde M., Beaulieu J.F., Boucher M.J., Rivard N. Phosphatidylinositol 3-kinase controls human intestinal epithelial cell differentiation by promoting adherens junction assembly and p38 MAPK activation. J. Biol. Chem. 2002;277:8226–8234. doi: 10.1074/jbc.M110235200. PubMed DOI
Wang Q., Wang X., Hernandez A., Kim S., Evers B.M. Inhibition of the phosphatidylinositol 3-kinase pathway contributes to HT29 and Caco-2 intestinal cell differentiation. Gastroenterology. 2001;120:1381–1392. doi: 10.1053/gast.2001.24044. PubMed DOI
Kim S., Domon-Dell C., Wang Q., Chung D.H., Di Cristofano A., Pandolfi P.P., Freund J.N., Evers B.M. PTEN and TNF-alpha regulation of the intestinal-specific Cdx-2 homeobox gene through a PI3K, PKB/Akt, and NF-kappaB-dependent pathway. Gastroenterology. 2002;123:1163–1178. doi: 10.1053/gast.2002.36043. PubMed DOI
Waniczek D., Śnietura M., Lorenc Z., Nowakowska-Zajdel E., Muc-Wierzgoń M. Assessment of PI3K/AKT/PTEN signaling pathway activity in colorectal cancer using quantum dot-conjugated antibodies. Oncol. Lett. 2018;15:1236–1240. doi: 10.3892/ol.2017.7392. PubMed DOI PMC
Salvatore L., Calegari M.A., Loupakis F., Fassan M., Di Stefano B., Bensi M., Bria E., Tortora G. PTEN in Colorectal Cancer: Shedding Light on Its Role as Predictor and Target. Cancers. 2019;11:1765. doi: 10.3390/cancers11111765. PubMed DOI PMC
Peng W., Huang W., Ge X., Xue L., Zhao W., Xue J. Type Iγ phosphatidylinositol phosphate kinase promotes tumor growth by facilitating Warburg effect in colorectal cancer. EBioMedicine. 2019;44:375–386. doi: 10.1016/j.ebiom.2019.05.015. PubMed DOI PMC
Bader A.G., Kang S., Zhao L., Vogt P.K. Oncogenic PI3K deregulates transcription and translation. Nat. Rev. Cancer. 2005;5:921–929. doi: 10.1038/nrc1753. PubMed DOI
Chen H., Gao J., Du Z., Zhang X., Yang F., Gao W. Expression of factors and key components associated with the PI3K signaling pathway in colon cancer. Oncol. Lett. 2018;15:5465–5472. doi: 10.3892/ol.2018.8044. PubMed DOI PMC
Rychahou P.G., Jackson L.N., Silva S.R., Rajaraman S., Evers B.M. Targeted molecular therapy of the PI3K pathway: Therapeutic significance of PI3K subunit targeting in colorectal carcinoma. Ann. Surg. 2006;243:833–842. doi: 10.1097/01.sla.0000220040.66012.a9. PubMed DOI PMC
Ikenoue T., Kanai F., Hikiba Y., Obata T., Tanaka Y., Imamura J., Ohta M., Jazag A., Guleng B., Tateishi K., et al. Functional analysis of PIK3CA gene mutations in human colorectal cancer. Cancer Res. 2005;65:4562–4567. doi: 10.1158/0008-5472.CAN-04-4114. PubMed DOI
Jang K.S., Song Y.S., Jang S.H., Min K.W., Na W., Jang S.M., Jun Y.J., Lee K.H., Choi D., Paik S.S. Clinicopathological significance of nuclear PTEN expression in colorectal adenocarcinoma. Histopathology. 2010;56:229–239. doi: 10.1111/j.1365-2559.2009.03468.x. PubMed DOI
Taniguchi C.M., Winnay J., Kondo T., Bronson R.T., Guimaraes A.R., Alemán J.O., Luo J., Stephanopoulos G., Weissleder R., Cantley L.C., et al. The phosphoinositide 3-kinase regulatory subunit p85alpha can exert tumor suppressor properties through negative regulation of growth factor signaling. Cancer Res. 2010;70:5305–5315. doi: 10.1158/0008-5472.CAN-09-3399. PubMed DOI PMC
Thorpe L.M., Spangle J.M., Ohlson C.E., Cheng H., Roberts T.M., Cantley L.C., Zhao J.J. PI3K-p110α mediates the oncogenic activity induced by loss of the novel tumor suppressor PI3K-p85α. Proc. Natl. Acad. Sci. USA. 2017;114:7095–7100. doi: 10.1073/pnas.1704706114. PubMed DOI PMC
Chagpar R.B., Links P.H., Pastor M.C., Furber L.A., Hawrysh A.D., Chamberlain M.D., Anderson D.H. Direct positive regulation of PTEN by the p85 subunit of phosphatidylinositol 3-kinase. Proc. Natl. Acad. Sci. USA. 2010;107:5471–5476. doi: 10.1073/pnas.0908899107. PubMed DOI PMC