Vehicle-Assisted Techniques for Health Monitoring of Bridges

. 2020 Jun 19 ; 20 (12) : . [epub] 20200619

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid32575359

Grantová podpora
4F800 Ministry of Higher Education, Malaysia, and Universiti Teknologi Malaysia (UTM) for their financial support through the Fundamental Research Grant Scheme
4J224 Higher Institution Centre of Excellent grant
Reg. No. CZ.02.1.01/0.0/0.0/16_025/0007293. Ministry of Education, Youth, and Sports of the Czech Republic and the European Union (European Structural and Investment Funds Operational Program Research, Development, and Education) in the framework of the project "Modular platform for autonomous chas

Bridges are designed to withstand different types of loads, including dead, live, environmental, and occasional loads during their service period. Moving vehicles are the main source of the applied live load on bridges. The applied load to highway bridges depends on several traffic parameters such as weight of vehicles, axle load, configuration of axles, position of vehicles on the bridge, number of vehicles, direction, and vehicle's speed. The estimation of traffic loadings on bridges are generally notional and, consequently, can be excessively conservative. Hence, accurate prediction of the in-service performance of a bridge structure is very desirable and great savings can be achieved through the accurate assessment of the applied traffic load in existing bridges. In this paper, a review is conducted on conventional vehicle-based health monitoring methods used for bridges. Vision-based, weigh in motion (WIM), bridge weigh in motion (BWIM), drive-by and vehicle bridge interaction (VBI)-based models are the methods that are generally used in the structural health monitoring (SHM) of bridges. The performance of vehicle-assisted methods is studied and suggestions for future work in this area are addressed, including alleviating the downsides of each approach to disentangle the complexities, and adopting intelligent and autonomous vehicle-assisted methods for health monitoring of bridges.

Zobrazit více v PubMed

Sun S., Sun L., Chen L. Damage detection based on structural responses induced by traffic load: Methodology and application. Int. J. Struct. Stab. Dyn. 2016;16:1640026. doi: 10.1142/S0219455416400265. DOI

Chae M.J., Yoo H.S., Kim J.Y., Cho M.Y. Development of a wireless sensor network system for suspension bridge health monitoring. Autom. Constr. 2012;21:237–252. doi: 10.1016/j.autcon.2011.06.008. DOI

Mufti A.A., Bakht B., Tadros G., Horosko A.T., Sparks G. Sensing Issues in Civil Structural Health Monitoring. Springer; Dordrecht, The Netherlands: 2005. Are Civil Structural Engineers “Risk Averse”? Can Civionics Help? pp. 3–12.

Farrar C.R., Worden K. An introduction to structural health monitoring. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2007;365:303–315. doi: 10.1098/rsta.2006.1928. PubMed DOI

Shokravi H., Shokravi H., Bakhary N., Koloor S.S.R., Petru M. A Comparative Study of the Data-driven Stochastic Subspace Methods for Health Monitoring of Structures: A Bridge Case Study. Appl. Sci. 2020;10:3132. doi: 10.3390/app10093132. DOI

Shokravi H., Bakhary N.H. Comparative analysis of different weight matrices in subspace system identification for structural health monitoring. IOP Conf. Ser. Mater. Sci. Eng. 2017;271:12092. doi: 10.1088/1757-899X/271/1/012092. DOI

Shokravi H., Shokravi H., Bakhary N., Koloor S.S.R., Petrů M. Application of the Subspace-based Methods in Health Monitoring of the Civil Structures: A Systematic Review and Meta-analysis. Appl. Sci. 2020;10:3607. doi: 10.3390/app10103607. DOI

Nowak A.S., Hong Y.-K. Bridge live-load models. J. Struct. Eng. 1991;117:2757–2767. doi: 10.1061/(ASCE)0733-9445(1991)117:9(2757). DOI

Shokravi H., Shokravi H., Bakhary N., Koloor S.S.R., Petrů M. Health Monitoring of Civil Infrastructures by Subspace System Identification Method: An Overview. Appl. Sci. 2020;10:2786. doi: 10.3390/app10082786. DOI

O’Connor C., Chan T.H.T. Dynamic wheel loads from bridge strains. J. Struct. Eng. 1988;114:1703–1723. doi: 10.1061/(ASCE)0733-9445(1988)114:8(1703). DOI

Chan T.H.T., Law S.S., Yung T.H., Yuan X.R. An interpretive method for moving force identification. J. Sound Vib. 1999;219:503–524. doi: 10.1006/jsvi.1998.1904. DOI

Law S.S., Chan T.H.T., Zhu Q.X., Zeng Q.H. Regularization in moving force identification. J. Eng. Mech. 2001;127:136–148. doi: 10.1061/(ASCE)0733-9399(2001)127:2(136). DOI

Shokravi H., Shokravi H., Bakhary N., Heidarrezaei M., Koloor Rahimian S.S., Petrů M. A Review on Vehicle Classification and Potential Use of Smart Vehicle-Assisted Techniques. Sensors. 2020;20:3274 PubMed PMC

Heywood R.J. Influence of truck suspensions on the dynamic response of a short span bridge over Cameron’s Creek. Int. J. Heavy Veh. Syst. 1996;3:222–239.

Henchi K., Fafard M., Talbot M., Dhatt G. An efficient algorithm for dynamic analysis of bridges under moving vehicles using a coupled modal and physical components approach. J. Sound Vib. 1998;212:663–683. doi: 10.1006/jsvi.1997.1459. DOI

Peters R.J. Culway, an Unmanned and Undetectable Highway Speed Vehicle Weighing System; Proceedings of the 13th ARRB/Fifth REAAA Conference; Adelaide, Australia. 25–29 August 1986; pp. 70–83.

Deng L., Cai C.S. Identification of dynamic vehicular axle loads: Theory and simulations. J. Vib. Control. 2010;16:2167–2194. doi: 10.1177/1077546309351221. DOI

Deng L., Cai C.S. Identification of dynamic vehicular axle loads: Demonstration by a field study. J. Vib. Control. 2010;17:183–195. doi: 10.1177/1077546309351222. DOI

Kim J., Lynch J.P. Experimental analysis of vehicle–bridge interaction using a wireless monitoring system and a two-stage system identification technique. Mech. Syst. Signal Process. 2012;28:3–19. doi: 10.1016/j.ymssp.2011.12.008. DOI

Malekjafarian A., McGetrick P.J., OBrien E.J. A review of indirect bridge monitoring using passing vehicles. Shock Vib. 2015;2015:286139. doi: 10.1155/2015/286139. DOI

Sony S., Laventure S., Sadhu A. A literature review of next-generation smart sensing technology in structural health monitoring. Struct. Control Health Monit. 2019;26:e2321. doi: 10.1002/stc.2321. DOI

Zhu X.Q., Law S.S. Structural health monitoring based on vehicle-bridge interaction: Accomplishments and challenges. Adv. Struct. Eng. 2015;18:1999–2015. doi: 10.1260/1369-4332.18.12.1999. DOI

Tan C., Uddin N., Obrien E.J., McGetrick P.J., Kim C.-W. Extraction of Bridge Modal Parameters Using Passing Vehicle Response. J. Bridge Eng. 2019:24. doi: 10.1061/(ASCE)BE.1943-5592.0001477. DOI

Kim C.-W., Chang K.-C., McGetrick P.J., Inoue S., Hasegawa S. Utilizing moving vehicles as sensors for bridge condition screening-A laboratory verification. Sens. Mater. 2017;29:153–163. doi: 10.18494/SAM.2017.1433. DOI

Cantero D., OBrien E.J. The non-stationarity of apparent bridge natural frequencies during vehicle crossing events. FME Trans. 2013;41:279–284.

González A. Training in Reducing Uncertainty in Structural Safety (TRUSS) Workshop. TRUSS Work; Dublin, Ireland: 2018.

Yang Y.B., Lin C.W. Vehicle–bridge interaction dynamics and potential applications. J. Sound Vib. 2005;284:205–226. doi: 10.1016/j.jsv.2004.06.032. DOI

Zhang N., Xia H. Dynamic analysis of coupled vehicle–bridge system based on inter-system iteration method. Comput. Struct. 2013;114:26–34. doi: 10.1016/j.compstruc.2012.10.007. DOI

Liu K., Zhang N., Xia H. De Roeck, G. A comparison of different solution algorithms for the numerical analysis of vehicle–bridge interaction. Int. J. Struct. Stab. Dyn. 2014;14:1350065. doi: 10.1142/S021945541350065X. DOI

Yang Y.-B., Yau J.-D. Vehicle-bridge interaction element for dynamic analysis. J. Struct. Eng. 1997;123:1512–1518. doi: 10.1061/(ASCE)0733-9445(1997)123:11(1512). DOI

Andreaus U., Casini P. Identification of multiple open and fatigue cracks in beam-like structures using wavelets on deflection signals. Contin. Mech. Thermodyn. 2016;28:361–378. doi: 10.1007/s00161-015-0435-4. DOI

Yang Y.-B., Lin C.W., Yau J.D. Extracting bridge frequencies from the dynamic response of a passing vehicle. J. Sound Vib. 2004;272:471–493. doi: 10.1016/S0022-460X(03)00378-X. DOI

Yang Y.B., Li Y.C., Chang K.C. Constructing the mode shapes of a bridge from a passing vehicle: A theoretical study. Smart Struct. Syst. 2014;13:797–819. doi: 10.12989/sss.2014.13.5.797. DOI

McGetrick P.J., Kim C.W. An indirect bridge inspection method incorporating a wavelet-based damage indicator and pattern recognition; Proceedings of the 9th International Conference on Structural Dynamics; Porto, Portugal. 30 June–2 July 2014; pp. 2605–2612.

Tan C., Elhattab A., Uddin N. “Drive-by’’ bridge frequency-based monitoring utilizing wavelet transform. J. Civ. Struct. Health Monit. 2017;7:615–625. doi: 10.1007/s13349-017-0246-3. DOI

McGetrick P.J., Kim C.W. A parametric study of a drive by bridge inspection system based on the Morlet wavelet. Key Eng. Mater. 2013;569:262–269. doi: 10.4028/www.scientific.net/KEM.569-570.262. DOI

Chang K.C., Kim C.W., Borjigin S. Variability in bridge frequency induced by a parked vehicle; Proceedings of the 4th KKCNN Symposium on Civil Engineering; Jeju, Korea. 4–5 October 2014; pp. 75–79.

Oshima Y., Yamaguchi T., Kobayashi Y., Sugiura K. Eigenfrequency estimation for bridges using the response of a passing vehicle with excitation system; Proceedings of the Fourth International Conference on Bridge Maintenance, Safety and Management; Seoul, Korea. 13–17 July 2008; pp. 3030–3037.

Rytter A. Ph.D Thesis. Aalborg University; Aalborg, Denmark: 1993. Vibration Based Inspection of Civil Engineering Structures.

Doebling S.W., Farrar C.R., Prime M.B. A summary review of vibration-based damage identification methods. Shock Vib. Dig. 1998;30:91–105. doi: 10.1177/058310249803000201. DOI

Alamdari M.M., Li J., Samali B. FRF-based damage localization method with noise suppression approach. J. Sound Vib. 2014;333:3305–3320. doi: 10.1016/j.jsv.2014.02.035. DOI

Yang Y.-B., Yang J.P., Wu Y., Zhang B. Vehicle Scanning Method for Bridges. Wiley Online Library; Beijing, China: 2019.

Yang Y.B., Yang J.P. State-of-the-art review on modal identification and damage detection of bridges by moving test vehicles. Int. J. Struct. Stab. Dyn. 2018;18:1850025. doi: 10.1142/S0219455418500256. DOI

Sohn H., Farrar C.R., Hemez F.M., Czarnecki J.J., Farrar FCzarnecki J.C.R.H. A Review of Structural Health Monitoring Literature: 1996–2001. Los Alamos National Laboratory; Los Alamos, NM, USA: 2002.

Lin C.W., Yang Y.B. Use of a passing vehicle to scan the fundamental bridge frequencies: An experimental verification. Eng. Struct. 2005;27:1865–1878. doi: 10.1016/j.engstruct.2005.06.016. DOI

Sitton J.D., Zeinali Y., Rajan D., Story B.A. Frequency Estimation on Two-Span Continuous Bridges Using Dynamic Responses of Passing Vehicles. J. Eng. Mech. 2020;146:4019115. doi: 10.1061/(ASCE)EM.1943-7889.0001698. DOI

Obrien E., Keenahan J. Using instrumented quarter-cars for “drive by” bridge inspection; Proceedings of the 2013 International Association for Bridge and Structural Engineering Conference (IABSE 2013); Rotterdam, The Netherlands. 6–8 May 2013.

OBrien E.J., Keenahan J. Topics in Dynamics of Bridges. Springer; New York, NY, USA: 2013. Using an instrumented tractor-trailer to detect damage in bridges; pp. 93–99. DOI

Keenahan J., OBrien E.J., McGetrick P.J., Gonzalez A. The use of a dynamic truck-trailer drive-by system to monitor bridge damping. Struct. Health Monit. 2014;13:143–157. doi: 10.1177/1475921713513974. DOI

Oshima Y., Yamamoto K., Sugiura K. Damage assessment of a bridge based on mode shapes estimated by responses of passing vehicles. Smart Struct. Syst. 2014;13:731–753. doi: 10.12989/sss.2014.13.5.731. DOI

Liu J., Chen S., Bergés M., Bielak J., Garrett J.H., Kovačević J., Noh H.Y. Diagnosis algorithms for indirect structural health monitoring of a bridge model via dimensionality reduction. Mech. Syst. Signal Process. 2020;136:106454. doi: 10.1016/j.ymssp.2019.106454. DOI

Cantero D., McGetrick P., Kim C.-W., OBrien E. Experimental monitoring of bridge frequency evolution during the passage of vehicles with different suspension properties. Eng. Struct. 2019;187:209–219. doi: 10.1016/j.engstruct.2019.02.065. DOI

Wang H., Nagayama T., Nakasuka J., Zhao B., Su D. Extraction of bridge fundamental frequency from estimated vehicle excitation through a particle filter approach. J. Sound Vib. 2018;428:44–58. doi: 10.1016/j.jsv.2018.04.030. DOI

Elhattab A., Uddin N., OBrien E. Drive-by bridge frequency identification under operational roadway speeds employing frequency independent underdamped pinning stochastic resonance (fi-upsr) Sensors. 2018;18:4207. doi: 10.3390/s18124207. PubMed DOI PMC

Zhu X.Q., Law S.S. Wavelet-based crack identification of bridge beam from operational deflection time history. Int. J. Solids Struct. 2006;43:2299–2317. doi: 10.1016/j.ijsolstr.2005.07.024. DOI

Lederman G., Wang Z., Bielak J., Noh H., Garrett J.H., Chen S., Kovacevic J., Cerda F., Rizzo P. Damage quantification and localization algorithms for indirect SHM of bridges; Proceedings of the International Conference on Bridge Maintenance, Safety and Management; Shanghai, China. 4–5 November 2014.

OBrien E.J., Malekjafarian A. A mode shape-based damage detection approach using laser measurement from a vehicle crossing a simply supported bridge. Struct Control Health Monit. 2016;23:1273–1286. doi: 10.1002/stc.1841. DOI

Zhang Y., Wang L., Xiang Z. Damage detection by mode shape squares extracted from a passing vehicle. J. Sound Vib. 2012;331:291–307. doi: 10.1016/j.jsv.2011.09.004. DOI

Khorram A., Bakhtiari-Nejad F., Rezaeian M. Comparison studies between two wavelet based crack detection methods of a beam subjected to a moving load. Int. J. Eng. Sci. 2012;51:204–215. doi: 10.1016/j.ijengsci.2011.10.001. DOI

Nguyen K.V., Tran H.T. Multi-cracks detection of a beam-like structure based on the on-vehicle vibration signal and wavelet analysis. J. Sound Vib. 2010;329:4455–4465. doi: 10.1016/j.jsv.2010.05.005. DOI

Mei Q., Gül M., Boay M. Indirect health monitoring of bridges using Mel-frequency cepstral coefficients and principal component analysis. Mech. Syst. Signal Process. 2019;119:523–546. doi: 10.1016/j.ymssp.2018.10.006. DOI

Eshkevari S.S., Pakzad S.N. Topics in Modal Analysis & Testing. Springer; Cham, Switzerland: 2020. Signal reconstruction from mobile sensors network using matrix completion approach.

Liu J., Wei Y., Bergés M., Bielak J., Garrett J.H., Jr., Noh H. Detecting anomalies in longitudinal elevation of track geometry using train dynamic responses via a variational autoencoder; Proceedings of the Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2019; Denver, CO, USA. 3–7 March 2019.

Chen S., Cerda F., Rizzo P., Bielak J., Garrett J.H., Kovačević J. Semi-supervised multiresolution classification using adaptive graph filtering with application to indirect bridge structural health monitoring. IEEE Trans. Signal Process. 2014;62:2879–2893. doi: 10.1109/TSP.2014.2313528. DOI

Cerda F., Chen S., Bielak J., Garrett J.H., Rizzo P., Kovacevic J. Indirect structural health monitoring of a simplified laboratory-scale bridge model. Smart Struct. Syst. 2014;13:849–868. doi: 10.12989/sss.2014.13.5.849. DOI

Nakajima S., Kim C.W., Chang K.C., Hasegawa S. Experimental studies on the Feasibility of Drive-by Bridge Inspection Method Using an Appropriate Vehicle Model; Proceedings of the Sixth International Symposium on Life Cycle Civil Engineering (IALCCE 2018); Ghent, Belgium. 28–31 October 2018.

Yin S.-H., Tang C.-Y. Identifying cable tension loss and deck damage in a cable-stayed bridge using a moving vehicle. J. Vib. Acoust. 2011:133. doi: 10.1115/1.4002128. DOI

Li J., Zhu X. Drive-by bridge parameter identification: An overview; Proceedings of the 16th East Asia-Pacific Conference on Structural Engineering & Construction; Brisbane, Australia. 3–6 December 2019.

Yang Y.-B., Chen W.-F., Yu H.-W., Chan C.S. Experimental study of a hand-drawn cart for measuring the bridge frequencies. Eng. Struct. 2013;57:222–231. doi: 10.1016/j.engstruct.2013.09.007. DOI

Kim C.-W., Kawatani M. Pseudo-static approach for damage identification of bridges based on coupling vibration with a moving vehicle. Struct. Infrastruct. Eng. 2008;4:371–379. doi: 10.1080/15732470701270082. DOI

Chang K.C., Wu F.B., Yang Y.B. Disk model for wheels moving over highway bridges with rough surfaces. J. Sound Vib. 2011;330:4930–4944. doi: 10.1016/j.jsv.2011.05.002. DOI

Xia H., Zhang N. Dynamic analysis of railway bridge under high-speed trains. Comput. Struct. 2005;83:1891–1901. doi: 10.1016/j.compstruc.2005.02.014. DOI

Au F.T.K., Wang J.J., Cheung Y.K. Impact study of cable-stayed bridge under railway traffic using various models. J. Sound Vib. 2001;240:447–465. doi: 10.1006/jsvi.2000.3236. DOI

Moghimi H., Ronagh H.R. Development of a numerical model for bridge–vehicle interaction and human response to traffic-induced vibration. Eng. Struct. 2008;30:3808–3819. doi: 10.1016/j.engstruct.2008.06.015. DOI

Deng L., Cai C.S. Identification of parameters of vehicles moving on bridges. Eng. Struct. 2009;31:2474–2485. doi: 10.1016/j.engstruct.2009.06.005. DOI

Zhang N., Xia H., Guo W.W., De Roeck G. A vehicle–bridge linear interaction model and its validation. Int. J. Struct. Stab. Dyn. 2010;10:335–361. doi: 10.1142/S0219455410003464. DOI

Li J., Zhu X., Law S., Samali B. Indirect bridge modal parameters identification with one stationary and one moving sensors and stochastic subspace identification. J. Sound Vib. 2019;446:1–21. doi: 10.1016/j.jsv.2019.01.024. DOI

Fitzgerald P.C., Malekjafarian A., Cantero D., OBrien E.J., Prendergast L.J. Drive-by scour monitoring of railway bridges using a wavelet-based approach. Eng. Struct. 2019;191:1–11. doi: 10.1016/j.engstruct.2019.04.046. DOI

Bao C., Hao H., Li Z.-X. Multi-stage identification scheme for detecting damage in structures under ambient excitations. Smart Mater. Struct. 2013;22:45006. doi: 10.1088/0964-1726/22/4/045006. DOI

Li X.Y., Law S.S. Identification of structural damping in time domain. J. Sound Vib. 2009;328:71–84. doi: 10.1016/j.jsv.2009.07.033. DOI

Green M.F., Cebon D. Dynamic Response of Highway Bridges to Heavy Vehicle Loads: Theory and Experimental Validation. J Sound Vib. 1994;170:51–78. doi: 10.1006/jsvi.1994.1046. DOI

Cantero D., O’Brien E.J., González A. Modelling the vehicle in vehicle—infrastructure dynamic interaction studies. Proc. Inst. Mech. Eng. Part K J. Multi-Body Dyn. 2010;224:243–248. doi: 10.1243/14644193JMBD228. DOI

González A., Covián E., Madera J. Determination of bridge natural frequencies using a moving vehicle instrumented with accelerometers and GPS; Proceedings of the Ninth International Conference on Computational Structures Technology, CST2008; Athens, Greece. 2–5 September 2008.

Harris N.K., OBrien E.J., González A. Reduction of bridge dynamic amplification through adjustment of vehicle suspension damping. J. Sound Vib. 2007;302:471–485. doi: 10.1016/j.jsv.2006.11.020. DOI

Kim C.W., Kawatani M., Kim K.B. Three-dimensional dynamic analysis for bridge–vehicle interaction with roadway roughness. Comput. Struct. 2005;83:1627–1645. doi: 10.1016/j.compstruc.2004.12.004. DOI

Liu J., Bergés M., Bielak J., Garrett J.H., Kovačević J., Noh H.Y. AIP Conference Proceedings. American Institute of Physics Inc.; Pittsburgh, PA, USA: 2019. A damage localization and quantification algorithm for indirect structural health monitoring of bridges using multi-task learning. DOI

Wang H., Mao J.-X., Spencer Jr B.F. A monitoring-based approach for evaluating dynamic responses of riding vehicle on long-span bridge under strong winds. Eng. Struct. 2019;189:35–47. doi: 10.1016/j.engstruct.2019.03.075. DOI

Pakrashi V., O’Connor A., Basu B. A bridge-vehicle interaction based experimental investigation of damage evolution. Struct. Health Monit. 2010;9:285–296. doi: 10.1177/1475921709352147. DOI

Yang J.P., Cao C.-Y. Wheel size embedded two-mass vehicle model for scanning bridge frequencies. Acta Mech. 2020;231:1461–1475. doi: 10.1007/s00707-019-02595-5. DOI

Bu J.Q., Law S.S., Zhu X.Q. Innovative bridge condition assessment from dynamic response of a passing vehicle. J. Eng. Mech. 2006;132:1372–1379. doi: 10.1061/(ASCE)0733-9399(2006)132:12(1372). DOI

Fries R.H., Coffey B.M. A state-space approach to the synthesis of random vertical and crosslevel rail irregularities. J. Dyn. Syst. Meas. Control. 1990;112:83–87. doi: 10.1115/1.2894143. DOI

Wu Y.-S., Yang Y.-B., Yau J.-D. Three-dimensional analysis of train-rail-bridge interaction problems. Veh. Syst. Dyn. 2001;36:1–35. doi: 10.1076/vesd.36.1.1.3567. DOI

Yang Y.B., Chang K.C. Extracting the bridge frequencies indirectly from a passing vehicle: Parametric study. Eng. Struct. 2009;31:2448–2459. doi: 10.1016/j.engstruct.2009.06.001. DOI

Znidaric A., Pakrashi V., O’Brien E.J. A review of road structure data in six European countries. Proc. Inst. Civ. Eng. J. Urban. Des. Plan. 2011;164:225–232.

Fujino Y., Siringoringo D.M. Bridge monitoring in Japan: The needs and strategies. Struct. Infrastruct. Eng. 2011;7:597–611. doi: 10.1080/15732479.2010.498282. DOI

Carden E.P., Fanning P. Vibration based condition monitoring: A review. Struct. Health Monit. 2004;3:355–377. doi: 10.1177/1475921704047500. DOI

Yang Y.B., Cheng M.C., Chang K.C. Frequency variation in vehicle–bridge interaction systems. Int. J. Struct. Stab. Dyn. 2013;13:1350019. doi: 10.1142/S0219455413500193. DOI

Magalhães F., Cunha Á., Caetano E., Brincker R. Damping estimation using free decays and ambient vibration tests. Mech. Syst. Signal Process. 2010;24:1274–1290. doi: 10.1016/j.ymssp.2009.02.011. DOI

McGetrick P.J., Gonzlez A., OBrien E.J. Theoretical investigation of the use of a moving vehicle to identify bridge dynamic parameters. Insight-Non-Destr. Test. Cond. Monit. 2009;51:433–438. doi: 10.1784/insi.2009.51.8.433. DOI

González A., OBrien E.J., McGetrick P.J. Identification of damping in a bridge using a moving instrumented vehicle. J. Sound Vib. 2012;331:4115–4131. doi: 10.1016/j.jsv.2012.04.019. DOI

Williams C., Salawu O.S. Damping as a damage indication parameter. Int. Modal Analysis Conf. 1997;3089:1531–1536.

Pandey A.K., Biswas M., Samman M.M. Damage detection from changes in curvature mode shapes. J. Sound Vib. 1991;145:321–332. doi: 10.1016/0022-460X(91)90595-B. DOI

Malekjafarian A., Brien E.J., OBrien E.J. Identification of bridge mode shapes using short time frequency domain decomposition of the responses measured in a passing vehicle. Eng. Struct. 2014;81:386–397. doi: 10.1016/j.engstruct.2014.10.007. DOI

Kim C.W., Kawatani M. Challenge for a drive-by bridge inspection; Proceedings of the 10th International Conference on Structural Safety and Reliability, 2019; Osaka, Japan. 3–5 May 2009.

McGetrick P.J. Ph.D. Thesis. University College Dublin; Dublin, Ireland: 2012. The Use of an Instrumented Vehicle to Monitor Transport Infrastructure.

Zhang Y., Lie S.T., Xiang Z. Damage detection method based on operating deflection shape curvature extracted from dynamic response of a passing vehicle. Mech. Syst. Signal Process. 2013;35:238–254. doi: 10.1016/j.ymssp.2012.10.002. DOI

Matarazzo T.J., Santi P., Pakzad S.N., Carter K., Ratti C., Moaveni B., Osgood C., Jacob N. Crowdsensing Framework for Monitoring Bridge. Vibrations Using Moving Smartphones. Proc. IEEE. 2018;106:577–593. doi: 10.1109/JPROC.2018.2808759. DOI

Mei Q., Gül M. A crowdsourcing-based methodology using smartphones for bridge health monitoring. Struct. Health Monit. 2018 doi: 10.1177/1475921718815457. DOI

McGetrick P.J., Hester D., Taylor S.E. Implementation of a drive-by monitoring system for transport infrastructure utilising smartphone technology and GNSS. J. Civ. Struct. Health Monit. 2017;7:175–189. doi: 10.1007/s13349-017-0218-7. DOI

Deng Y., Phares B.M. Automated bridge load rating determination utilizing strain response due to ambient traffic trucks. Eng. Struct. 2016;117:101–117. doi: 10.1016/j.engstruct.2016.03.004. DOI

Martínez D., Obrien E.J., Sevillano E. Damage detection by drive-by monitoring using the vertical displacements of a bridge; Proceedings of the Sixth International Conference on Structural Engineering, Mechanics and Computation (SEMC 2016); Cape Town, South Africa. 5–7 September 2016; pp. 1915–1918.

Yang H., Yan W., He H. Parameters identification of moving load using ANN and dynamic strain. Shock Vib. 2016;2016 doi: 10.1155/2016/8249851. DOI

Bowe C., Quirke P., Cantero D., Obrien E.J. Drive-by structural health monitoring of railway bridges using train-mounted accelerometers; Proceedings of the 5th ECCOMAS Thematic Conference on Computational Methods in Structural Dynamics and Earthquake Engineering; Crete Island, Greece. 25–27 May 2015; pp. 1652–1663.

Niu L. Identification of damage in a truss bridge using a moving instrumented vehicle from limited measurements. Appl. Mech. Mater. 2013;368–370:1370–1373. doi: 10.4028/www.scientific.net/AMM.368-370.1370. DOI

Cerda F., Garrett J., Bielak J., Rizzo P., Barrera J.A., Zhang Z., Chen S., McCann M.T., Kovacevic J. Bridge Maintenance, Safety, Management, Resilience and Sustainability: Proceedings of the Sixth International IABMAS Conference, Stresa, Lake Maggiore, Italy, 8–12 July 2012. Carnegie Mellon University; Pittsburgh, PA, USA: 2012. Indirect structural health monitoring in bridges: Scale experiments; pp. 346–353.

Kim C.W., Isemoto R., Toshinami T., Kawatani M., McGetrick P.J., O’Brien E.J. Experimental investigation of drive-by bridge inspection; Proceedings of the 5th International Conference on Structural Health Monitoring of Intelligent Infrastructure (SHMII-5); Cancun, Mexico. 11–15 December 2011; Kyoto, Japan: Kyoto University; 2011.

Kim J., Lynch J.P., Lee J.-J., Lee C.-G. Truck-based mobile wireless sensor networks for the experimental observation of vehicle-bridge interaction. Smart Mater. Struct. 2011;20 doi: 10.1088/0964-1726/20/6/065009. DOI

Sotheany N., Nuthong C. Vehicle classification using neural network; Proceedings of the 2017 14th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON); Phuket, Thailand. 27–30 June 2017; pp. 443–446.

Siddiqui A.J., Mammeri A., Boukerche A. Real-Time Vehicle Make and Model Recognition Based on a Bag of SURF Features. IEEE Trans. Intell. Transp. Syst. 2016;17:3205–3219. doi: 10.1109/TITS.2016.2545640. DOI

Yan L., Fraser M., Elgamal A., Fountain T., Oliver K. Neural networks and principal components analysis for strain-based vehicle classification. J. Comput. Civ. Eng. 2008;22:123–132. doi: 10.1061/(ASCE)0887-3801(2008)22:2(123). DOI

Velazquez-Pupo R., Sierra-Romero A., Torres-Roman D., Shkvarko Y.V., Santiago-Paz J., Gómez-Gutiérrez D., Robles-Valdez D., Hermosillo-Reynoso F., Romero-Delgado M. Vehicle detection with occlusion handling, tracking, and OC-SVM classification: A high performance vision-based system. Sensors. 2018;18:374. doi: 10.3390/s18020374. PubMed DOI PMC

Lamas-Seco J.J., Castro P.M., Dapena A., Vazquez-Araujo F.J., Garcia-Zapirain B. Influence of vehicle characteristics on an inductive sensor model for traffic applications. Int. J. Simul. Syst. Sci. Technol. 2016;17:4.1–4.6. doi: 10.5013/IJSSST.a.17.33.04. DOI

Haider S.W., Buch N., Chatti K., Brown J. Development of traffic inputs for Mechanistic-Empirical Pavement Design Guide in Michigan. Transp. Res. Rec. 2011:179–190. doi: 10.3141/2256-21. DOI

Sun Z., Ban X. Vehicle classification using GPS data. Transp Res. Part. C Emerg. Technol. 2013;37:102–117. doi: 10.1016/j.trc.2013.09.015. DOI

Boukerche A., Siddiqui A.J., Mammeri A. Automated vehicle detection and classification: Models, methods, and techniques. ACM Comput. Surv. 2017;50:62. doi: 10.1145/3107614. DOI

Biglari M., Soleimani A., Hassanpour H. A Cascaded Part-Based System for Fine-Grained Vehicle Classification. IEEE Trans. Intell. Transp. Syst. 2018;19:273–283. doi: 10.1109/TITS.2017.2749961. DOI

Deng L., He W., Yu Y., Cai C.S. Equivalent shear force method for detecting the speed and axles of moving vehicles on bridges. J. Bridge Eng. 2018;23 doi: 10.1061/(ASCE)BE.1943-5592.0001278. DOI

Lydon M., Taylor S.E., Doherty C., Robinson D., O’Brien E.J., Žnidarič A. Bridge weigh-in-motion using fibre optic sensors. Proc. Inst. Civ. Eng. Bridge Eng. 2017;170:219–231. doi: 10.1680/jbren.15.00033. DOI

Lydon M., Robinson D., Taylor S.E., Amato G., Brien E.J.O., Uddin N. Improved axle detection for bridge weigh-in-motion systems using fiber optic sensors. J. Civ. Struct. Health Monit. 2017;7:325–332. doi: 10.1007/s13349-017-0229-4. DOI

Hou R., Jeong S., Wang Y., Law K.H., Lynch J.P. Camera-based triggering of bridge structural health monitoring systems using a cyber-physical system framework. Struct. Health Monit. 2017;2:3139–3146.

Suzuki K., Kawai K., Fukada S. Development of bridge weigh-in-motion using acceleration response of concrete deck slab; Proceedings of the 8th International Conference on Structural Health Monitoring of Intelligent Infrastructure (SHMII 2017); Brisbane, Australia. 5–8 December 2017; pp. 299–306.

Wang H., Nagayama T., Su D. Vehicle Parameter Identification through Particle Filter using Bridge Responses and Estimated Profile. Procedia Eng. 2017;188:64–71. doi: 10.1016/j.proeng.2017.04.458. DOI

Dieng L., Girardeau C., Gaillet L., Falaise Y., Žnidarič A., Ralbovsky M. Bridge assessment using Weigh-In-Motion and acoustic emission methods. Conf. Proc. Soc. Exp. Mech. Ser. 2016;2:205–215. doi: 10.1007/978-3-319-29751-4_21. DOI

Cantero D., González A. Bridge damage detection using weigh-in-motion technology. J. Bridge Eng. 2015;20 doi: 10.1061/(ASCE)BE.1943-5592.0000674. DOI

Zhang P., Chen X., Ruan Y., Chen Q. A vehicle classification technique based on sparse coding. Hsi-An. Chiao Tung Ta Hsueh/Journal Xi’an Jiaotong Univ. 2015;49:137–143. doi: 10.7652/xjtuxb201512022. DOI

Lydon M., Taylor S.E., Robinson D., Callender P., Doherty C., Grattan S.K., OBrien E.J. Development of a bridge weigh-in-motion sensor: Performance comparison using fiber optic and electric resistance strain sensor systems. IEEE Sens. J. 2014;14:4284–4296. doi: 10.1109/JSEN.2014.2332874. DOI

Ellis R.M., Thompson P.D. Bridge Maintenance, Safety, Management and Life-Cycle Optimization, Proceedings of the Fifth International IABMAS Conference, Philadelphia, PA, USA, 11–15 July 2010. CRC Press; Boca Raton, FL, USA: 2010. The potential link between bridge management systems, structural health monitoring and bridge weigh-in-motion—Progress and challenges.

Cardini A.J., Dewolf J.T. Implementation of a long-term bridge weigh-in-motion system for a steel girder bridge in the interstate highway system. J. Bridge Eng. 2009;14:418–423. doi: 10.1061/(ASCE)1084-0702(2009)14:6(418). DOI

Cantero D., Karoumi R., González A. The Virtual Axle concept for detection of localised damage using Bridge Weigh-in-Motion data. Eng. Struct. 2015;89:26–36. doi: 10.1016/j.engstruct.2015.02.001. DOI

Gonzalez I., Karoumi R. BWIM aided damage detection in bridges using machine learning. J. Civ. Struct. Health Monit. 2015;5:715–725. doi: 10.1007/s13349-015-0137-4. DOI

Kalyankar R., Uddin N. Axle detection on prestressed concrete bridge using bridge weigh-in-motion system. J. Civ. Struct. Health Monit. 2017;7:191–205. doi: 10.1007/s13349-017-0210-2. DOI

Kawakatsu T., Aihara K., Takasu A., Adachi J. Deep Sensing Approach to Single-Sensor Vehicle Weighing System on Bridges. IEEE Sens. J. 2019;19:253–256. doi: 10.1109/JSEN.2018.2872839. DOI

Akbar M.A., Qidwai U., Jahanshahi M.R. An evaluation of image-based structural health monitoring using integrated unmanned aerial vehicle platform. Struct. Control Health Monit. 2018 doi: 10.1002/stc.2276. DOI

Shan B., Yan Y., Yang Y., Liu Y. Stereovision-based detection of surface flaws on piers of Yiqiao bridge at Hangzhou bay; Proceedings of the 7th International Conference on Structural Health Monitoring of Intelligent Infrastructure; Torino, Italy. 1–3 July 2015.

Chen S.E., Boyle C., Natarajan M., Hauser E. Eye in the sky: Sub-inch aerial imaging of bridge decks; Proceedings of the 5th International Conference on Structural Health Monitoring of Intelligent Infrastructure; Cancun, Mexico. 11–15 December 2011.

Liu W., Chen S., Hauser E. LiDAR-based bridge structure defect detection. Exp. Tech. 2011;35:27–34. doi: 10.1111/j.1747-1567.2010.00644.x. DOI

Bian H., Sumitro P., Chen S. LiDAR bridge inspection process analysis and recommendations for operation; Proceedings of the 8th International Conference on Structural Health Monitoring of Intelligent Infrastructure; Brisbane, Australia. 5–8 December 2017; pp. 1689–1698.

Martínez Otero A.D., Malekjafarian A., O’Brien E.J. Bridge condition evaluation using LVDs installed on a vehicle; Proceedings of the The Sixth International Symposium on Life-Cycle Civil Engineering (IALCCE 2018); Ghent, Belgium. 28–31 October 2018.

Khuc T., Catbas F.N. Structural Identification Using Computer Vision-Based Bridge Health Monitoring. J. Struct. Eng. 2018;144 doi: 10.1061/(ASCE)ST.1943-541X.0001925. DOI

Hou R., Jeong S., Law K.H., Lynch J.P. Sensors and Smart Structures Technologies for Civil, Mechanical, and Aerospace Systems 2019. International Society for Optics and Photonics; Ann Arbor, MI, USA: 2019. Reidentification of trucks in highway corridors using convolutional neural networks to link truck weights to bridge responses. DOI

Zhang B., Ding X., Werner C., Tan K., Zhang B., Jiang M., Zhao J., Xu Y. Dynamic displacement monitoring of long-span bridges with a microwave radar interferometer. ISPRS J. Photogramm. Remote Sens. 2018;138:252–264. doi: 10.1016/j.isprsjprs.2018.02.020. DOI

Sadeghi Eshkevari S., Pakzad S. Dynamics of Civil Structures. Springer; Cham, Switzerlan: 2019. Bridge structural identification using moving vehicle acceleration measurements; pp. 251–261. DOI

Liu H., Yu L. Sparse regularization for traffic load monitoring using bridge response measurements. Measurement. 2019;131:173–182. doi: 10.1016/j.measurement.2018.07.044. DOI

Kawakatsu T., Aihara K., Takasu A., Adachi J. Adversarial media-fusion approach to strain prediction for bridges; Proceedings of the ICPRAM 2019; Prague, Czech Republic. 19–21 February 2019.

Catbas N., Dong C.Z., Celik O., Khuc T. Maintenance, Safety, Risk, Management and Life-Cycle Performance of Bridges. Proceedings of the Ninth International Conference on Bridge Maintenance, Safety and Management (IABMAS 2018) CRC Press/Balkema; Melbourne, Australia: 2018. A vision for vision-based technologies for bridge health monitoring; pp. 54–62.

Wattana K., Nishio M. Traffic volume estimation in a cable-stayed bridge using dynamic responses acquired in the structural health monitoring. Struct. Control Health Monit. 2017;24 doi: 10.1002/stc.1890. DOI

Fischli F., De Bruin E., Van Bezooijen M., Iten M. Monitoring of innovative, temporary traffic bridge using surface mount fibre-optic strain gauges; Proceedings of the 8th International Conference on Structural Health Monitoring of Intelligent Infrastructure (SHMII 2017); Brisbane, Australia. 5–8 December 2017; pp. 855–864.

Zhang Y., O’Connor S.M., Lynch J.P. Automated data-driven load estimation of highway bridges using structural monitoring data; Proceedings of the 7th International Conference on Structural Health Monitoring of Intelligent Infrastructure; Torino, Italy. 1–3 July 2015.

Augustine P., Dhingra A.K., Gupta D.K. Dynamic moving load identification using optimal sensor placement; Proceedings of the ASME 2015 International Mechanical Engineering Congress and Exposition; Houston, TX, USA. 13–19 November 2015; DOI

Seo J., Hu J. Advanced Materials Research. Volume 1025–1026. Trans Tech Publications Ltd.; Bern, Switzerland: 2014. Weight-In-Motion-Based ambient truck characteristic identification in highway bridges; pp. 930–937. DOI

Zong Z.-H., Li F.-F., Xia Y.-F., Yuan W.-W. Study of vehicle load models for Xinyi River Bridge based on WIM data. Bridge Constr. 2013;43:29–36.

Chen Z., Xu Y., Wong K. Monitoring highway traffic of long-span bridges based on WIM data; Proceedings of the 12th International Symposium on Structural Engineering, ISSE 2012; Wuhan, China. 17–19 November 2012; pp. 1589–1595.

Xu Y.L., Chen Z.W., Wong K.Y. Bridge Maintenance, Safety, Management and Life-Cycle Optimization, Proceedings of the Fifth International IABMAS Conference, Philadelphia, PA, USA, 11–15 July 2010. CRC Press; Boca Raton, FL, USA: 2010. Vehicle Loading and Effect on the Tsing Ma Bridge Using WIM Data.

Chen W., Xie Z., Yan B. Research on the general method for extrapolating traffic load effects for highway bridges. Stahlbau. 2014;83:186–198. doi: 10.1002/stab.201410138. DOI

Stewart M.G., Val D.V. Role of Load History in Reliability-Based Decision Analysis of Aging Bridges. J Struct. Eng. 1999;125:776–783. doi: 10.1061/(ASCE)0733-9445(1999)125:7(776). DOI

Lantsoght E.O.L., van der Veen C., de Boer A., Hordijk D.A. State-of-the-art on load testing of concrete bridges. Eng. Struct. 2017;150:231–241. doi: 10.1016/j.engstruct.2017.07.050. DOI

Veneziano. D., Galeota D., Giammatteo M.M. Analysis of bridge proof-load data I: Model and statistical procedures. Struct. Saf. 1984;2:91–104. doi: 10.1016/0167-4730(84)90013-4. DOI

Moses F., Lebet J.P., Bez R. Applications of field testing to bridge evaluation. J. Struct. Eng. 1994;120:1745–1762. doi: 10.1061/(ASCE)0733-9445(1994)120:6(1745). DOI

Mola E., Paksoy M.A., Rebecchi G., Scaccabarozzi M., Berardengo M. Tuning of finite element models of multi-girder composite structures. Dyn. Civ. Struct. 2015;2:157–170.

Telford T. Guidelines for the supplementary load testing of bridges, Institution of Civil Engineers (Great Britain), Oxford, UK. [(accessed on 10 June 2020)];1998 Available online: https://www.icevirtuallibrary.com/isbn/9780727737885.

Nowak A.S., Tharmabala T. Bridge reliability evaluation using load tests. J. Struct. Eng. 1988;114:2268–2279. doi: 10.1061/(ASCE)0733-9445(1988)114:10(2268). DOI

Worden K., Farrar C.R., Manson G., Park G. The fundamental axioms of structural health monitoring. Proc. R. Soc. A Math. Phys. Eng. Sci. 2007;463:1639–1664. doi: 10.1098/rspa.2007.1834. DOI

Delatte N. Failure, Distress and Repair of Concrete Structures. Elsevier; Washington, DC, USA: 2009.

Tamakoshi T., Yoshida Y., Sakai Y., Fukunaga S. Analysis of Damage Occurring in Steel Plate Girder Bridges on National Roads in JAPAN; Proceedings of the 22th US–Japan Bridge Engineering Workshop; Seattle, WA, USA. 23–28 October 2006.

Peng D., Jones R., Cairns K., Baker J., McMillan A. Life cycle analysis of steel railway bridges. Theor. Appl. Fract. Mech. 2018;97:385–399. doi: 10.1016/j.tafmec.2017.06.023. DOI

Chang P.C., Liu S.C. Recent research in nondestructive evaluation of civil infrastructures. J. Mater. Civ. Eng. 2003;15:298. doi: 10.1061/(ASCE)0899-1561(2003)15:3(298). DOI

Chang P.C., Flatau A., Liu S.C. Review paper: Health monitoring of civil infrastructure. Struct. Health Monit. 2003;2:257–267. doi: 10.1177/1475921703036169. DOI

Friswell M.I., Penny J.E.T. Is damage location using vibration measurements practical?; Proceedings of the UROMECH 365 International Workshop: DAMAS 97, Structural Damage Assessment using Advanced Signal Processing Procedures; Sheffield, UK. 30 June–2 July 1997;

Kwofie S. An exponential stress function for predicting fatigue strength and life due to mean stresses. Int. J. Fatigue. 2001;23:829–836. doi: 10.1016/S0142-1123(01)00044-5. DOI

Wilkinson S., Duke S.M. Comparative Testing of Radiographic Testing, Ultrasonic Testing and Phased Array Advanced Ultrasonic Testing Non Destructive Testing Techniques in Accordance with the AWS D1. 5 Bridge Welding Code. Florida Department of Transportation; Tallahassee, FL, USA: 2014.

Babaei K., Fouladgar A.M. Solutions to concrete bridge deck cracking. Concr. Int. 1997;19:34–37.

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

A Review on Vehicle Classification and Potential Use of Smart Vehicle-Assisted Techniques

. 2020 Jun 08 ; 20 (11) : . [epub] 20200608

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...