A Review on Vehicle Classification and Potential Use of Smart Vehicle-Assisted Techniques

. 2020 Jun 08 ; 20 (11) : . [epub] 20200608

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid32521806

Grantová podpora
4F800 Fundamental Research Grant Scheme
4J224 Higher Institution Centre of Excellent grant of Malaysia
Reg. No. CZ.02.1.01/0.0/0.0/16_025/0007293 Ministry of Education, Youth, and Sports of the Czech Republic and the European Union (European Structural and Investment Funds Operational Program Research, Development, and Education) in the framework of the project "Modular platform for autonomous chas

Vehicle classification (VC) is an underlying approach in an intelligent transportation system and is widely used in various applications like the monitoring of traffic flow, automated parking systems, and security enforcement. The existing VC methods generally have a local nature and can classify the vehicles if the target vehicle passes through fixed sensors, passes through the short-range coverage monitoring area, or a hybrid of these methods. Using global positioning system (GPS) can provide reliable global information regarding kinematic characteristics; however, the methods lack information about the physical parameter of vehicles. Furthermore, in the available studies, smartphone or portable GPS apparatuses are used as the source of the extraction vehicle's kinematic characteristics, which are not dependable for the tracking and classification of vehicles in real time. To deal with the limitation of the available VC methods, potential global methods to identify physical and kinematic characteristics in real time states are investigated. Vehicular Ad Hoc Networks (VANETs) are networks of intelligent interconnected vehicles that can provide traffic parameters such as type, velocity, direction, and position of each vehicle in a real time manner. In this study, VANETs are introduced for VC and their capabilities, which can be used for the above purpose, are presented from the available literature. To the best of the authors' knowledge, this is the first study that introduces VANETs for VC purposes. Finally, a comparison is conducted that shows that VANETs outperform the conventional techniques.

Zobrazit více v PubMed

Sliwa B., Piatkowski N., Wietfeld C. The Channel as a Traffic Sensor: Vehicle Detection and Classification based on Radio Fingerprinting. IEEE Internet Things J. 2020 doi: 10.1109/JIOT.2020.2983207. DOI

Won M. Intelligent traffic monitoring systems for vehicle classification: A survey. IEEE Access. 2020;8:73340–73358. doi: 10.1109/ACCESS.2020.2987634. DOI

Jo S.Y., Ahn N., Lee Y., Kang S.-J. Transfer Learning-based Vehicle Classification; Proceedings of the 2018 International SoC Design Conference (ISOCC); Daegu, Korea. 12–15 November 2018; Piscataway, NJ, USA: IEEE; 2018. pp. 127–128.

Ke R., Zhuang Y., Pu Z., Wang Y. A Smart, Efficient, and Reliable Parking Surveillance System with Edge Artificial Intelligence on IoT Devices. arXiv. 2020200100269

Tamam M.T., Dwiono W., Safian R.J.P. Design a Prototype of The Application System of Classification and Calculating Motor Vehicles on Highway. MSE. 2020;771:12002.

Shokravi H., Bakhary N.H. Comparative analysis of different weight matrices in subspace system identification for structural health monitoring. IOP Conf. Ser. Mater. Sci. Eng. 2017;271:12092. doi: 10.1088/1757-899X/271/1/012092. DOI

Shokravi H., Shokravi H., Bakhary N., Koloor S.S.R., Petrů M. Health Monitoring of Civil Infrastructures by Subspace System Identification Method: An Overview. Appl. Sci. 2020;10:2786. doi: 10.3390/app10082786. DOI

Shokravi H., Shokravi H., Bakhary N., Koloor S.S.R., Petru M. A Comparative Study of the Data-driven Stochastic Subspace Methods for Health Monitoring of Structures: A Bridge Case Study. Appl. Sci. 2020;10:3132. doi: 10.3390/app10093132. DOI

Shokravi H., Shokravi H., Bakhary N., Heidarrezaei M., Koloor S.S.R., Petru M. Vehicle-assisted techniques for health monitoring of bridges. Sensors (Basel) 2020;20 (Under review) PubMed PMC

Shokravi H., Shokravi H., Bakhary N., Koloor S.S.R., Petru M. Application of the Subspace-based Methods in Health Monitoring of the Civil Structures: A Systematic Review and Meta-analysis. Appl. Sci. 2020;10:3607. doi: 10.3390/app10103607. DOI

Sotheany N., Nuthong C. Vehicle classification using neural network; Proceedings of the 2017 14th International Conference Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON); Phuket, Thailand. 27–30 June 2017; Piscataway, NJ, USA: IEEE; 2017. pp. 443–446.

Siddiqui N., Husain M.S. CTS: A credit based threshold system to minimize the dissemination of faulty data in vehicular adhoc networks. Int. J. Control. Theory Appl. 2016;9:8499–8508.

Kim C.-W., Chang K.-C., McGetrick P.J., Inoue S., Hasegawa S. Utilizing moving vehicles as sensors for bridge condition screening-A laboratory verification. Sens. Mater. 2017;29:153–163. doi: 10.18494/SAM.2017.1433. DOI

Velazquez-Pupo R., Sierra-Romero A., Torres-Roman D., Shkvarko Y.V., Santiago-Paz J., Gómez-Gutiérrez D., Robles-Valdez D., Hermosillo-Reynoso F., Romero-Delgado M. Vehicle detection with occlusion handling, tracking, and OC-SVM classification: A high performance vision-based system. Sensors (Switzerland) 2018;18:374. doi: 10.3390/s18020374. PubMed DOI PMC

Ji Q., Jin B., Cui Y., Zhang F. Using Mobile Signaling Data to Classify Vehicles on Highways in Real Time. State Key Laboratory of Computer Sciences, Institute of Software, Chinese Academy of Sciences; Beijing, China: University of Chinese Academy of Sciences; Beijing, China: Institute of Electrical and Electronics Engineers Inc.; Piscataway, NJ, USA: 2017. pp. 174–179. DOI

Simoncini M., Taccari L., Sambo F., Bravi L., Salti S., Lori A. Vehicle classification from low-frequency GPS data with recurrent neural networks. Transp. Res. Part C Emerg. Technol. 2018;91:176–191. doi: 10.1016/j.trc.2018.03.024. DOI

Yan L., Fraser M., Elgamal A., Fountain T., Oliver K. Neural networks and principal components analysis for strain-based vehicle classification. J. Comput. Civ. Eng. 2008;22:123–132. doi: 10.1061/(ASCE)0887-3801(2008)22:2(123). DOI

De S., Matos F.M., De Souza R.M.C.R. Vehicle image classification based on edge: Features and Distances Comparison; Proceedings of the International Conference on Neural Information Processing; Doha, Qatar. 12–15 November 2012; pp. 691–698. DOI

Rajab S., Al Kalaa M.O., Refai H. Classification and speed estimation of vehicles via tire detection using single-element piezoelectric sensor. J. Adv. Transp. 2016;50:1366–1385. doi: 10.1002/atr.1406. DOI

Lamas-Seco J.J., Castro P.M., Dapena A., Vazquez-Araujo F.J., Garcia-Zapirain B. Influence of vehicle characteristics on an inductive sensor model for traffic applications. Int. J. Simul. Syst. Sci. Technol. 2016;17:4.1–4.6. doi: 10.5013/IJSSST.a.17.33.04. DOI

Kwon J., Petty K. Vehicle Re-Identification Using Weigh-in-Motion Data for Truck Travel Time Measurement and Sensor Calibration. Berkeley Transportation Systems, Inc.; Berkeley, CA, USA: 2010. Intelligent Transport Systems (ITS)

Haider S.W., Buch N., Chatti K., Brown J. Development of traffic inputs for Mechanistic-Empirical Pavement Design Guide in Michigan. Transp. Res. Rec. 2011:179–190. doi: 10.3141/2256-21. DOI

Sun Z., Ban X. Vehicle classification using GPS data. Transp. Res. Part C Emerg. Technol. 2013;37:102–117. doi: 10.1016/j.trc.2013.09.015. DOI

Manzoor M.A., Morgan Y. Vehicle Make and Model Recognition Using Random Forest Classification for Intelligent Transportation Systems. Volume 2018. Institute of Electrical and Electronics Engineers Inc.; Piscataway, NJ, USA: 2018. pp. 148–154. DOI

Ghassemi S., Fiandrotti A., Caimotti E., Francini G., Magli E. Vehicle joint make and model recognition with multiscale attention windows. Signal Process. Image Commun. 2019;72:69–79. doi: 10.1016/j.image.2018.12.009. DOI

Boukerche A., Siddiqui A.J., Mammeri A. Automated vehicle detection and classification: Models, methods, and techniques. ACM Comput. Surv. 2017;50 doi: 10.1145/3107614. DOI

Mushiri T., Mbohwa C., Sarupinda S. Computer Vision: Concepts, Methodologies, Tools, and Applications. IGI Global; Hershey, PA, USA: 2018. Intelligent control of vehicles’ number plates on toll gates in developing nations; pp. 1023–1071. DOI

Biglari M., Soleimani A., Hassanpour H. A Cascaded Part-Based System for Fine-Grained Vehicle Classification. IEEE Trans. Intell. Transp. Syst. 2018;19:273–283. doi: 10.1109/TITS.2017.2749961. DOI

Sun C., Ritchie S.G. Heuristic vehicle classification using inductive signatures on freeways. Transp. Res. Rec. 2000;17:130–136. doi: 10.3141/1717-16. DOI

Sun C. An Investigation in the Use of Inductive Loop Signatures for Vehicle Classification. California Partners for Advanced Transportation Technology; Richmond, CA, USA: 2000.

Yao Y., Tian B., Wang F.Y. Coupled Multivehicle Detection and Classification with Prior Objectness Measure. IEEE Trans. Veh. Technol. 2017;66:1975–1984. doi: 10.1109/TVT.2016.2582926. DOI

Tripathi J., Chaudharya K., Joshia A., Jawaleb J.B. Automatic vehicle counting and classification. Int. J. Innov. Emerg. Res. Eng. 2015;2:32–36.

Uy A.C.P., Bedruz R.A.R., Quiros A.R.F., Jose J.A.C., Dadios E.P., Bandala A., Sybingco E., Sapang O. Automated vehicle class and color profiling system based on fuzzy logic; Proceedings of the 2017 5th International Conference Information and Communication Technology; Melaka, Malaysia. 17–19 May 2017; Piscataway, NJ, USA: IEEE; 2017. pp. 1–6.

Meng H., Deng C., Su Y., Wang P. Microwave radar and video sensor fusion for vehicle classification using a Bayesian network. J. Tsinghua Univ. 2011;51:135–140.

Lim C.W., Park J.-S., Lee C.-S., Kim N.C. Visual Communications and Image Processing. Volume 3653. International Society for Optics and Photonics; Bellingham, WA, USA: 1998. Vehicle detection and classification using robust shadow feature; pp. 1248–1257.

Otto C.W. Development of a Mobile Vehicle Classification System. University of Southern Queensland; Darling Heights, Australia: 2006.

Gupte S., Masoud O., Papanikolopoulos N.P. Vision-based vehicle classification. 2000 IEEE Intelligent Transportation Systems; Proceedings of the ITSC 2000; Oakland, CA, USA. 8–11 May 2000; pp. 46–51.

Mishra P.K., Athiq M., Nandoriya A., Chaudhuri S. Video-based vehicle detection and classification in heterogeneous traffic conditions using a novel kernel classifier. IETE J. Res. 2013;59:541–550. doi: 10.4103/0377-2063.123760. DOI

Zhang X., Wei Q. Vehicle Model Recognition System Based on Sparse Bayesian Classification. Mini-Micro Syst. 2005;26:31–34.

Ha D.M., Lee J.M., Kim Y.D. Neural-edge-based vehicle detection and traffic parameter extraction. Image Vis. Comput. 2004;22:899–907. doi: 10.1016/j.imavis.2004.05.006. DOI

Wu B.F., Juang J.H. Adaptive vehicle detector approach for complex environments. IEEE Trans. Intell. Transp. Syst. 2012;13:817–827. doi: 10.1109/TITS.2011.2181366. DOI

Unzueta L., Nieto M., Cortés A., Barandiaran J., Otaegui O., Sánchez P. Adaptive multicue background subtraction for robust vehicle counting and classification. IEEE Trans. Intell. Transp. Syst. 2012;13:527–540. doi: 10.1109/TITS.2011.2174358. DOI

Wang H., Cai Y. A Multistep Framework for Vision Based Vehicle Detection. J. Appl. Math. 2014;2014 doi: 10.1155/2014/876451. DOI

Murrugarra R., Wallace W., Wojtowicz J. Task 30: Data Fusion Methodology; Technical Report 10-06. Center for Infrastructure, Transportation and the Environment, Department of Civil and Environmental Engineering, Rensselaer Polytechnic Institute; Troy, NY, USA: 2010.

Mocholí-Salcedo A., Arroyo-Núñez J.H., Milián-Sánchez V.M., Palomo-Anaya M.J., Arroyo-Núñez A. Magnetic Field Generated by the Loops Used in Traffic Control Systems. IEEE Trans. Intell. Transp. Syst. 2017;18:2126–2136. doi: 10.1109/TITS.2016.2632972. DOI

Meta S., Cinsdikici M.G. Vehicle-classification algorithm based on component analysis for single-loop inductive detector. IEEE Trans. Veh. Technol. 2010;59:2795–2805. doi: 10.1109/TVT.2010.2049756. DOI

Wu L., Coifman B. Improved vehicle classification from dual-loop detectors in congested traffic. Transp. Res. Part C Emerg. Technol. 2014;46:222–234. doi: 10.1016/j.trc.2014.04.015. DOI

Gajda J., Mielczarek M. Automatic vehicle classification in systems with single inductive loop detector. Metrol. Meas. Syst. 2014;21:619–630. doi: 10.2478/mms-2014-0048. DOI

Ahn S., Kandala S., Uzan J., El-Basyouny M., Uzan J. Impact of traffic data on the pavement distress predictions using the mechanistic empirical pavement design guide. Road Mater. Pavement Des. 2011;12:195–216. doi: 10.1080/14680629.2011.9690359. DOI

Abdullah N.F., Rashid N.E.A., Othman K.A., Khan Z.I., Musirin I. Ground vehicles classification using multi perspective features in FSR micro-sensor network. J. Telecommun. Electron. Comput. Eng. 2017;9:49–52.

Urazghildiiev I., Ragnarsson R., Ridderström P., Rydberg A., Öjefors E., Wallin K., Enochsson P., Ericson M., Lofqvist G. Vehicle classification based on the radar measurement of height profiles. IEEE Trans. Intell. Transp. Syst. 2007;8:245–253. doi: 10.1109/TITS.2006.890071. DOI

Yang W.D., Gao Z.M., Wang K., Liu H.Y. A privacy-preserving data aggregation mechanism for VANETs. J. High Speed Netw. 2016;22:223–230. doi: 10.3233/JHS-160544. DOI

Khamayseh Y., Mardini W., Tbashate H. Leveraging The Data Gathering and Analysis Phases to Gain Situational Awareness. Intell. Autom. Soft Comput. 2015;21:523–542. doi: 10.1080/10798587.2014.979628. DOI

Mei X., Ling H. Robust visual tracking and vehicle classification via sparse representation. IEEE Trans. Pattern Anal. Mach. Intell. 2011;33:2259–2272. doi: 10.1109/TPAMI.2011.66. PubMed DOI

Alexandre E., Cuadra L., Salcedo-Sanz S., Pastor-Sánchez A., Casanova-Mateo C. Hybridizing Extreme Learning Machines and Genetic Algorithms to select acoustic features in vehicle classification applications. Neurocomputing. 2015;152:58–68. doi: 10.1016/j.neucom.2014.11.019. DOI

Peters R.J. Australian Road Research Board Proceedings. The National Academies of Sciences, Engineering and Medicine; Washington, DC, USA: 1986. Culway, an Unmanned and Undetectable Highway Speed Vehicle Weighing System.

Roh H.J., Sharma S., Sahu P.K. Modeling snow and cold effects for classified highway traffic volumes. KSCE J. Civ. Eng. 2016;20:1514–1525. doi: 10.1007/s12205-015-0236-0. DOI

Romanoschi S.A., Momin S., Bethu S., Bendana L. Development of traffic inputs for new Mechanistic-Empirical Pavement Design Guide. Transp. Res. Rec. 2011:142–150. doi: 10.3141/2256-17. DOI

Rožić P., Rožić P. Structuring of road traffic flows. Promet Traffic Transp. 2005;17:289–294.

Wu L., Coifman B. Vehicle length measurement and length-based vehicle classification in congested freeway traffic. Transp. Res. Rec. 2014;2443:1–11. doi: 10.3141/2443-01. DOI

Sen S., Charles M.B., Kortt M.A. Australian Passenger Vehicle Classification and Distance-Based Charging: Current Practices and the Way Forward. Econ. Pap. 2019;38:1–14. doi: 10.1111/1759-3441.12242. DOI

Hyun E., Jin Y.-S. Human-vehicle classification scheme using doppler spectrum distribution based on 2D range-doppler FMCW radar. J. Intell. Fuzzy Syst. 2018;35:6035–6045. doi: 10.3233/JIFS-169844. DOI

Buch N., Velastin S.A., Orwell J. A review of computer vision techniques for the analysis of urban traffic. IEEE Trans. Intell. Transp. Syst. 2011;12:920–939. doi: 10.1109/TITS.2011.2119372. DOI

Fu T., Stipancic J., Zangenehpour S., Miranda-Moreno L., Saunier N. Automatic traffic data collection under varying lighting and temperature conditions in multimodal environments: Thermal versus visible spectrum video-based systems. J. Adv. Transp. 2017;2017 doi: 10.1155/2017/5142732. DOI

Zambrano-Martinez J.L., Calafate C.T., Soler D., Lemus-Zúñiga L.-G., Cano J.-C., Manzoni P., Gayraud T. A Centralized Route-Management Solution for Autonomous Vehicles in Urban Areas. Electronics. 2019;8:722. doi: 10.3390/electronics8070722. DOI

Zhang Y., Chen H., Waslander S.L., Gong J., Xiong G., Yang T., Liu K. Hybrid trajectory planning for autonomous driving in highly constrained environments. IEEE Access. 2018;6:32800–32819. doi: 10.1109/ACCESS.2018.2845448. DOI

Moreno-Navarro F., Iglesias G.R., Rubio-Gámez M.C. Encoded asphalt materials for the guidance of autonomous vehicles. Autom. Constr. 2019;99:109–113. doi: 10.1016/j.autcon.2018.12.004. DOI

Leiva-Padilla P., Moreno-Navarro F., Iglesias G., Rubio-Gamez M. A Review of the Contribution of Mechanomutable Asphalt Materials Towards Addressing the Upcoming Challenges of Asphalt Pavements. Infrastructures. 2020;5:23. doi: 10.3390/infrastructures5030023. DOI

Baruah J.K., Kumar A., Bera R., Dhar S. Advances in Communication, Devices and Networking. Springer; Berlin/Heidelberg, Germany: 2019. Autonomous Vehicle—A Miniaturized Prototype Development; pp. 317–324.

Hermann D.S. Automotive Displays-Trends, Opportunities and Challenges; Proceedings of the 2018 25th International Workshop on Active-Matrix Flatpanel Displays and Devices; Kyoto, Japan. 3–6 July 2018; Piscataway, NJ, USA: IEEE; 2018. pp. 1–6.

Ingle S., Phute M. Tesla autopilot: Semi autonomous driving, an uptick for future autonomy. Int. Res. J. Eng. Technol. 2016;3:369–372.

Yerdon V.A., Marlowe T.A., Volante W.G., Li S., Hancock P.A. Advances in Cross-Cultural Decision Making. Springer; Cham, Swizerland: 2017. Investigating cross-cultural differences in trust levels of automotive automation; pp. 183–194.

Kim J., Rajkumar R.R., Jochim M. Towards dependable autonomous driving vehicles: A system-level approach. ACM SIGBED Rev. 2013;10:29–32. doi: 10.1145/2492385.2492390. DOI

Gerla M., Lee E.-K., Pau G., Lee U. Internet of vehicles: From intelligent grid to autonomous cars and vehicular clouds; Proceedings of the 2014 IEEE World Forum Internet Things; Seoul, Korea. 6–8 March 2014; Piscataway, NJ, USA: IEEE; 2014. pp. 241–246.

Zeadally S., Hunt R., Chen Y.S., Irwin A., Hassan A. Vehicular ad hoc networks (VANETS): Status, results, and challenges. Telecommun. Syst. 2012;50:217–241. doi: 10.1007/s11235-010-9400-5. DOI

Chaubey N.K. Security analysis of vehicular Ad hoc networks (VANETs): A comprehensive study. Int. J. Secur. Appl. 2016;10:261–274. doi: 10.14257/ijsia.2016.10.5.25. DOI

Yang Q., Wang L., Xia W., Wu Y., Shen L. Development of on-board unit in vehicular ad-hoc network for highways; Proceedings of the 2014 International Conference Connected Vehicles and Expo (ICCVE); Messe Wien, Vienna. 3–7 November 2014; Piscataway, NJ, USA: IEEE; 2014. pp. 457–462.

Wang Q., Fan P., Letaief K.B. On the joint V2I and V2V scheduling for cooperative VANETs with network coding. IEEE Trans. Veh. Technol. 2012;61:62–73. doi: 10.1109/TVT.2011.2167249. DOI

Chaurasia B.K., Verma S. Infrastructure based authentication in VANETs. Int. J. Multimed. Ubiquitous Eng. 2011;6:41–53.

ur Rehman S., Khan M.A., Zia T.A., Zheng L. Vehicular ad-hoc networks (VANETs)-an overview and challenges. J. Wirel. Netw. Commun. 2013;3:29–38.

Liang X., Li X., Luan T.H., Lu R., Lin X., Shen X. Morality-driven data forwarding with privacy preservation in mobile social networks. IEEE Trans. Veh. Technol. 2012;61:3209–3222. doi: 10.1109/TVT.2012.2202932. DOI

Vijayakumar P., Azees M., Chang V., Deborah J., Balusamy B. Computationally efficient privacy preserving authentication and key distribution techniques for vehicular ad hoc networks. Clust. Comput. 2017;20:2439–2450. doi: 10.1007/s10586-017-0848-x. DOI

Shukla A.P., Saini M. Moving object tracking of vehicle detection: A concise review. Int. J. Signal Process. Image Process. Pattern Recognit. 2015;8:169–176. doi: 10.14257/ijsip.2015.8.3.15. DOI

Yousaf K., Iftikhar A., Javed A. Comparative analysis of automatic vehicle classification techniques: A survey. Int. J. Image Graph. Signal Process. 2012;4:52. doi: 10.5815/ijigsp.2012.09.08. DOI

Jain N.K., Saini R.K., Mittal P. Soft Computing: Theories and Applications. Springer; Berlin/Heidelberg, Germany: 2019. A review on traffic monitoring system techniques; pp. 569–577.

Daigavane P.M., Bajaj P.R., Daigavane M.B. Vehicle detection and neural network application for vehicle classification; Proceedings of the 2011 International Conference Computational Intelligence and Communication Networks; Gwalior, India. 7–9 October 2011; Piscataway, NJ, USA: IEEE; 2011. pp. 758–762.

Abdulrahim K., Salam R.A. Traffic surveillance: A review of vision based vehicle detection, recognition and tracking. Int. J. Appl. Eng. Res. 2016;11:713–726.

Chandran R., Raman N. A review on video-based techniques for vehicle detection, tracking and behavior understanding. Int. J. Adv. Comput. Electron. Eng. 2017;2:7–13.

Hadi R.A., Sulong G., George L.E. Vehicle detection and tracking techniques: A concise review. arXiv. 2014 doi: 10.5121/sipij.2014.5101.14105894 DOI

Atiq H.M., Farooq U., Ibrahim R., Khalid O., Amar M. Vehicle detection and shape recognition using optical sensors: A review; Proceedings of the 2010 2nd International Conference Machine Learning and Computing; Bangalore, India. 12–13 February 2010; Piscataway, NJ, USA: IEEE; 2010. pp. 223–227.

Mokha B.S., Kumar S. A review of computer vision system for the vehicle identification and classification from online and offline videos. Int. J. Signal Image Process. 2015;6:63–76. doi: 10.5121/sipij.2015.6505. DOI

Narhe M.C., Nagmode M.S. Vehicle classification using SIFT. Int. J. Eng. Res. Technol. 2014;3:1735–1738.

Moussa G.S. Vehicle type classification with geometric and appearance attributes. Int. J. Civil. Archit. Sci. Eng. 2014;8:273–278.

Bhardwaj D., Mahajan S. Review paper on automated number plate recognition techniques. Int. J. Emerg. Res. Manag. Technol. 2015;4:319–324.

Misman N., Awang S. Camera-Based Vehicle Recognition Methods and Techniques: Systematic Literature Review. Adv. Sci. Lett. 2018;24:7623–7629. doi: 10.1166/asl.2018.12990. DOI

Ahmed W., Arafat S.Y., Gul N. A Systematic Review on Vehicle Identification and Classification Techniques; Proceedings of the 2018 IEEE 21st International Multi Topic Conference; Karachi, Pakistan. 1–2 November 2018; Piscataway, NJ, USA: IEEE; 2018. pp. 1–6.

Borkar P., Malik L.G. Review on vehicular speed, density estimation and classification using acoustic signal. Int. J. Traffic Transp. Eng. 2013;3 doi: 10.7708/ijtte.2013.3(3).08. DOI

Guerrero-Ibáñez J., Zeadally S., Contreras-Castillo J. Sensor technologies for intelligent transportation systems. Sensors. 2018;18:1212. doi: 10.3390/s18041212. PubMed DOI PMC

Idris M.Y.I., Leng Y.Y., Tamil E.M., Noor N.M., Razak Z. Car park system: A review of smart parking system and its technology. Inform. Technol. J. 2009;8:101–113. doi: 10.3923/itj.2009.101.113. DOI

Balid W., Tafish H., Refai H.H. Versatile real-time traffic monitoring system using wireless smart sensors networks; Proceedings of the 2016 IEEE Wireless Communications and Networking Technology; Doha, Qatar. 3–6 April 2016; Piscataway, NJ, USA: IEEE; 2016. pp. 1–6.

Balid W., Tafish H., Refai H.H. Intelligent vehicle counting and classification sensor for real-time traffic surveillance. IEEE Trans. Intell. Transp. Syst. 2017;19:1784–1794. doi: 10.1109/TITS.2017.2741507. DOI

Karaimer H.C., Baris I., Bastanlar Y. Detection and classification of vehicles from omnidirectional videos using multiple silhouettes. Pattern Anal. Appl. 2017;20:893–905. doi: 10.1007/s10044-017-0593-z. DOI

Audebert N., Le Saux B., Lefèvre S. Segment-before-detect: Vehicle detection and classification through semantic segmentation of aerial images. Remote Sens. 2017;9:368. doi: 10.3390/rs9040368. DOI

Li F., Li S., Zhu C., Lan X., Chang H. Cost-effective class-imbalance aware CNN for vehicle localization and categorization in high resolution aerial images. Remote Sens. 2017;9:494. doi: 10.3390/rs9050494. DOI

Chen Z., Pears N., Freeman M., Austin J. A Gaussian mixturemodel and support vector machine approach to vehicle type and colour classification. IET Intell. Transp. Syst. 2014;8:135–144. doi: 10.1049/iet-its.2012.0104. DOI

Chen Z., Ellis T. Semi-automatic annotation samples for vehicle type classification in urban environments. IET Intell. Transp. Syst. 2015;9:240–249. doi: 10.1049/iet-its.2013.0150. DOI

Lee J.J., Shinozuka M. A vision-based system for remote sensing of bridge displacement. NDT E Int. 2006;39:425–431. doi: 10.1016/j.ndteint.2005.12.003. DOI

Li C., Ikeuchi K., Sakauchi M. Acquisition of traffic information using a video camera with 2D Spatio-Temporal Image transformation technique; Proceedings of the IEEE Conference Intelligent Transportation Systems Proceedings, ITSC 1999; Tokyo, Japan. 5–8 October 1999; pp. 634–638.

Chen Y., Qin G. Video-based vehicle detection and classification in challange scenarios. Int. J. Smart Sens. Intell. Syst. 2014;7:1077–1094.

Singh A., Kumar A., Goudar R.H. Online traffic density estimation and vehicle classification management system. Indian J. Sci. Technol. 2014;7:508–516.

Abinaya P., Ravichandran K.S., Santhi B. Watershed segmentation for vehicle classification and counting. Int. J. Eng. Technol. 2013;5:770–775.

Zhang Z., Yu X., You F., Siedel G., He W., Yang L. A front vehicle detection algorithm for intelligent vehicle based on improved Gabor filter and, S.V.M. J. Food Sci. Technol. 2015;8:32–40.

Jehad A.E., Rahmat R.A.O.K. Developing and validating a real time video based traffic counting and classification. J. Eng. Sci. Technol. 2017;12:3215–3225.

Asaidi H., Aarab A., Bellouki M. Shadow elimination and vehicles classification approaches in traffic video surveillance context. J. Vis. Lang. Comput. 2014;25:333–345. doi: 10.1016/j.jvlc.2014.02.001. DOI

Yang M.T., Jhang R.K., Hou J.S. Traffic flow estimation and vehicle-type classification using vision-based spatial-temporal profile analysis. IET Comput. Vis. 2013;7:394–404. doi: 10.1049/iet-cvi.2012.0185. DOI

Yu Y., Yu M., Yan G., Zhai Y. Length-based vehicle classification in multi-lane traffic flow. Trans. Tianjin Univ. 2011;17:362–368. doi: 10.1007/s12209-011-1598-0. DOI

Meher S.K., Murty M.N. Efficient method of moving shadow detection and vehicle classification. AEU-Int. J. Electron. Commun. 2013;67:665–670. doi: 10.1016/j.aeue.2013.02.001. DOI

Moutakki Z., Ouloul I.M., Afdel K., Amghar A. Real-time video surveillance system for traffic management with background subtraction using codebook model and occlusion handling. Transp. Telecommun. 2017;18:297–306. doi: 10.1515/ttj-2017-0027. DOI

Wang Y., Luo X., Ding L., Wu J. Object tracking via dense SIFT features and low-rank representation. Soft Comput. 2019;23:10173–10186. doi: 10.1007/s00500-018-3571-5. DOI

Sun W., Zhang X., Shi S., He X. Vehicle classification approach based on the combined texture and shape features with a compressive, D.L. IET Intell. Transp. Syst. 2019;13:1069–1077. doi: 10.1049/iet-its.2018.5316. DOI

Yang B., Zhang S., Tian Y., Li B. Front-vehicle detection in video images based on temporal and spatial characteristics. Sensors. 2019;19:1728. doi: 10.3390/s19071728. PubMed DOI PMC

Liu K., Wang J. Fast dynamic vehicle detection in road scenarios based on pose estimation with Convex-Hull model. Sensors. 2019;19:3136. doi: 10.3390/s19143136. PubMed DOI PMC

Shih H.-C., Wang H.-Y. A robust object verification algorithm using aligned chamfer history image. Multimed. Tools Appl. 2019;78:29343–29355. doi: 10.1007/s11042-019-7396-8. DOI

Prasad S.A., Mary L. A Comparative Study of Different Features for Vehicle Classification; Proceedings of the 2019 International Conference Computational Intelligence in Data Scienc; Gurugram, Haryana. 6–7 September 2019; Piscataway, NJ, USA: IEEE; 2019. pp. 1–5.

Manzoor M.A., Morgan Y., Bais A. Real-Time Vehicle Make and Model Recognition System. Mach. Learn. Knowl. Extr. 2019;1:611–629. doi: 10.3390/make1020036. DOI

Jayadurga R., Gunasundari R. Hybrid of statistical and spectral texture features for vehicle object classification system. Indian J. Sci. Technol. 2016;9 doi: 10.17485/ijst/2016/v9i27/90832. DOI

Khanaa V., Sundararajan M. Counting and classification of highway vehicles by using raspberry Pi. Int. J. Pure Appl. Math. 2018;119:1517–1524.

Ambardekar A., Nicolescu M., Bebis G., Nicolescu M. Vehicle classification framework: A comparative study. Eurasip J. Image Video Process. 2014;2014 doi: 10.1186/1687-5281-2014-29. DOI

Song H., Wang X., Hua C., Wang W., Guan Q., Zhang Z. Vehicle trajectory clustering based on 3D information via a coarse-to-fine strategy. Soft Comput. 2018;22:1433–1444. doi: 10.1007/s00500-017-2831-0. DOI

Xu C., Wang Y., Zhan Y. Vehicle classification under different feature sets with a single anisotropic magnetoresistive sensor. IEICE Trans. Fundam. Electron. Commun. Comput. Sci. 2017;E100A:440–447. doi: 10.1587/transfun.E100.A.440. DOI

Haj Mosa A., Kyamakya K., Junghans R., Ali M., Al Machot F., Gutmann M. Soft Radial Basis Cellular Neural Network (SRB-CNN) based robust low-cost truck detection using a single presence detection sensor. Transp. Res. Part C Emerg. Technol. 2016;73:105–127. doi: 10.1016/j.trc.2016.10.016. DOI

Hussain K.F., Moussa G.S. On-road vehicle classification based on random neural network and bag-of-visual words. Probab. Eng. Inform. Sci. 2016;30:403–412. doi: 10.1017/S0269964816000073. DOI

Hannan M.A., Gee C.T., Javadi M.S. Automatic vehicle classification using fast neural network and classical neural network for traffic monitoring. Turkish J. Electr. Eng. Comput. Sci. 2015;23:2031–2042. doi: 10.3906/elk-1211-46. DOI

Almehmadi Tarig Saeed S., Htike Z.Z. Automatic vehicle classification system. Int. J. Appl. Eng. Res. 2015;10:19633–19646.

Tong L., Li Z. Study on the road traffic survey system based on micro-ferromagnetic induction coil sensor. Sens. Trans. 2014;170:73–79.

Zhang P., Chen X., Ruan Y., Chen Q. A vehicle classification technique based on sparse coding. Hsi-An Chiao Tung Ta Hsueh J. Xi’an Jiaotong Univ. 2015;49:137–143. doi: 10.7652/xjtuxb201512022. DOI

Lao Y., Zhang G., Corey J., Wang Y. Gaussian mixture model-based speed estimation and vehicle classification using single-loop measurements. J. Intell. Transp. Syst. 2012;16:184–196. doi: 10.1080/15472450.2012.706196. DOI

Bai S., Liu Z., Yao C. Classify vehicles in traffic scene images with deformable part-based models. Mach. Vis. Appl. 2018;29:393–403. doi: 10.1007/s00138-017-0890-y. DOI

Nam Y., Nam Y.C. Vehicle classification based on images from visible light and thermal cameras. Eurasip J. Image Video Process. 2018;2018 doi: 10.1186/s13640-018-0245-2. DOI

Chen X.J., Ruan Y.D., Chen Q.M., Ye F.Y. Sparse representation of vehicle image and its’ application in surveillance video. Beijing Youdian Daxue Xuebao J. Beijing Univ. Posts Telecommun. 2016;39:81–86.

Fu W., Xin X., Guo P., Zhou Z. A practical intrusion detection system for Internet of vehicles. China Commun. 2016;13:263–275. doi: 10.1109/CC.2016.7733050. DOI

Li H.J., Dong H.H., Shi Y.C., Jia L.M., Guo W.F. Vehicle classification with a single magnetic sensor for urban road. Jilin Daxue Xuebao (Gongxueban) J. Jilin Univ (Eng. Technol. Ed.) 2015;45:97–103. doi: 10.13229/j.cnki.jdxbgxb201501015. DOI

Cretu A.M., Payeur P. Biologically-inspired visual attention features for a vehicle classification task. Int. J. Smart Sens. Intell. Syst. 2011;4:402–423. doi: 10.21307/ijssis-2017-447. DOI

Lan J., Xiang Y., Wang L., Shi Y. Vehicle detection and classification by measuring and processing magnetic signal. Measurement. 2011;44:174–180. doi: 10.1016/j.measurement.2010.09.044. DOI

Silva RR V., Aires K.R.T., Veras R.M.S. Detection of helmets on motorcyclists. Multimed. Tools Appl. 2018;77:5659–5683. doi: 10.1007/s11042-017-4482-7. DOI

Saville M.A., Saini D.K., Smith J. Commercial vehicle classification from spectrum parted linked image test-attributed synthetic aperture radar imagery. IET Radar Sonar Navig. 2016;10:569–576. doi: 10.1049/iet-rsn.2015.0342. DOI

Muthu Vaanathi M.P., Narasimhan K. Vehicle classification and traffic density calculation for automated traffic control systems. Int. J. Appl. Eng. Res. 2014;9:2685–2691.

Jeng S.T., Chu L., Hernandez S. Wavelet-k nearest neighbor vehicle classification approach with inductive loop signatures. Transp. Res. Rec. 2013:72–80. doi: 10.3141/2380-08. DOI

Hsieh J.W., Chen L.C., Chen S.Y., Chen D.Y., Alghyaline S., Chiang H.F. Vehicle color classification under different lighting conditions through color correction. IEEE Sens. J. 2015;15:971–983. doi: 10.1109/JSEN.2014.2358079. DOI

Basyoni Y., Talaat H. A Bilevel Traffic Data Extraction Procedure via Cellular Phone Network for Intercity Travel. J. Intell. Transp. Syst. 2015;19:289–303. doi: 10.1080/15472450.2014.892380. DOI

Zhang B., Pan H. Vehicle identification by improved stacking via kernel principal component regression. Int. J. Intell. Comput. Cybern. 2014;7:415–435. doi: 10.1108/IJICC-06-2013-0030. DOI

Yu S., Wu Y., Li W., Song Z., Zeng W. A model for fine-grained vehicle classification based on deep learning. Neurocomputing. 2017;257:97–103. doi: 10.1016/j.neucom.2016.09.116. DOI

Kafai M., Bhanu B. Dynamic bayesian networks for vehicle classification in video. IEEE Trans. Ind Inform. 2012;8:100–109. doi: 10.1109/TII.2011.2173203. DOI

Aziz N.H.A., Md Thani M.A. Vehicle classification using passive forward scattering radar. Adv. Sci. Lett. 2017;23:11432–11436. doi: 10.1166/asl.2017.10299. DOI

Lee S., Yoon Y.J., Lee J.E., Kim S.C. Human-vehicle classification using feature-based SVM in 77-GHz automotive FMCW radar. IET Radar Sonar Navig. 2017;11:1589–1596. doi: 10.1049/iet-rsn.2017.0126. DOI

Chen H., Lin P., Emrith K., Narayan P., Yao Y. Ensemble-empirical-mode-decomposition based micro-Doppler signal separation and classification. Int. J. Comput. Appl. Technol. 2017;56:253–263. doi: 10.1504/IJCAT.2017.089089. DOI

Lee H., Coifman B. Using LIDAR to Validate the Performance of Vehicle Classification Stations. J. Intell. Transp. Syst. 2015;19:355–369. doi: 10.1080/15472450.2014.941750. DOI

Lee H., Coifman B. Side-fire lidar-based vehicle classification. Transp. Res. Rec. 2012:173–183. doi: 10.3141/2308-19. DOI

Markevicius V., Navikas D., Zilys M., Andriukaitis D., Valinevicius A., Cepenas M. Dynamic vehicle detection via the use of magnetic field sensors. Sensors. 2016;16:78. doi: 10.3390/s16010078. PubMed DOI PMC

Lamas-Seco J.J., Castro P.M., Dapena A., Vazquez-Araujo F.J. Vehicle classification using the discrete fourier transform with traffic inductive sensors. Sensors (Switzerland) 2015;15:27201–27214. doi: 10.3390/s151027201. PubMed DOI PMC

Coifman B., Kim S. Speed estimation and length based vehicle classification from freeway single-loop detectors. Transp. Res. Part C Emerg. Technol. 2009;17:349–364. doi: 10.1016/j.trc.2009.01.004. DOI

Wei H., Liu H., Ai Q., Li Z., Xiong H., Coifman B. Empirical innovation of computational dual-loop models for identifying vehicle classifications against varied traffic conditions. Comput. Civ. Infrastruct. Eng. 2013;28:621–634. doi: 10.1111/mice.12015. DOI

Li B. Bayesian inference for vehicle speed and vehicle length using dual-loop detector data. Transp. Res. Part B Methodol. 2010;44:108–119. doi: 10.1016/j.trb.2009.06.006. DOI

Jeng S.T., Nesamani K.S., Ritchie S.G. A new approach to estimate vehicle emissions using inductive loop detector data. J. Intell. Transp. Syst. 2013;17:179–190. doi: 10.1080/15472450.2012.712495. DOI

He Y., Du Y., Sun L., Wang Y. Improved waveform-feature-based vehicle classification using a single-point magnetic sensor. J. Adv. Transp. 2015;49:663–682. doi: 10.1002/atr.1299. DOI

Šarčević P. Vehicle classification using neural networks with a single magnetic detector. Stud. Comput. Intell. 2014;530:103–115. doi: 10.1007/978-3-319-03206-1_8. DOI

Yang B., Lei Y. Vehicle detection and classification for low-speed congested traffic with anisotropic magnetoresistive sensor. IEEE Sens. J. 2015;15:1132–1138. doi: 10.1109/JSEN.2014.2359014. DOI

Taghvaeeyan S., Rajamani R. Portable roadside sensors for vehicle counting, classification, and speed measurement. IEEE Trans. Intell. Transp. Syst. 2014;15:73–83. doi: 10.1109/TITS.2013.2273876. DOI

Xiang W., Otto C., Wen P. Automated vehicle classification system for AUSTROADS standard based upon laser sensor technology. Aust. J. Electr. Electron. Eng. 2009;5:95–106. doi: 10.1080/1448837X.2009.11464204. DOI

Nordback K., Kothuri S., Phillips T., Gorecki C., Figliozzi M. Accuracy of bicycle counting with pneumatic tubes in Oregon. Transp. Res. Rec. 2016;2593:8–17. doi: 10.3141/2593-02. DOI

Santoso D.R., Nurriyah A.L. Development of a simple traffic sensor and system with vehicle classification based on PVDF film element. Sens. Trans. 2011;126:74–84.

Al-Tarawneh M., Huang Y., Lu P., Tolliver D. Vehicle Classification System Using In-Pavement Fiber Bragg Grating Sensors. IEEE Sens. J. 2018;18:2807–2815. doi: 10.1109/JSEN.2018.2803618. DOI

Du K., Fang X., Zhang W.P., Ding K. Fractal Dimension Based on Morphological Covering for Ground Target Classification. Shock Vib. 2016;2016 doi: 10.1155/2016/4548365. DOI

Zhou Q., Li B., Kuang Z., Xie D., Tong G., Hu L., Yuan X. A quarter-car vehicle model based feature for wheeled and tracked vehicles classification. J. Sound Vib. 2013;332:7279–7289. doi: 10.1016/j.jsv.2013.08.042. DOI

Kumaran U. Vertical handover in vehicular ad-hoc networks—A survey. Int. J. Latest Trends Eng. Technol. 2014;3:132–138.

Kuhr J., Juri N.R., Bhat C.R., Archer J., Duthie J.C., Varela E., Zheng H. Travel Modeling in an Era of Connected and Automated Transportation Systems: An Investigation in the Dallas-Fort Worth Area. University of Texas at Austin; Austin, TX, USA: 2017. Data-Supported Transportation Operations.

Dua A., Kumar N., Bawa S. ReIDD: Reliability-aware intelligent data dissemination protocol for broadcast storm problem in vehicular ad hoc networks. Telecommun. Syst. 2017;64:439–458. doi: 10.1007/s11235-016-0184-0. DOI

Barnwal R.P., Ghosh S.K. Heartbeat message based misbehavior detection scheme for vehicular ad-hoc networks; Proceedings of the 2012 International Conference Conference on Connected Vehicles & Expo (ICCVE 2012); Beijing, China. 12–16 December 2012; Piscataway, NJ, USA: IEEE; 2012. pp. 29–34.

Lee W.-H., Tseng S.-S., Shieh J.-L., Chen H.-H. Discovering traffic bottlenecks in an urban network by spatiotemporal data mining on location-based services. IEEE Trans. Intell. Transp. Syst. 2011;12:1047–1056. doi: 10.1109/TITS.2011.2144586. DOI

Kim Y., Park S., Chi J. Absorbing Markov Chain-based roadside: Units deployment. Contemp. Eng. Sci. 2016;9:579–586. doi: 10.12988/ces.2016.6444. DOI

Yin K., Wang X.B., Zhang Y. Vehicle-to-vehicle connectivity on two parallel roadways with a general headway distribution. Transp. Res. Part C Emerg Technol. 2013;29:84–96. doi: 10.1016/j.trc.2013.01.005. DOI

Raya M., Hubaux J.-P. The security of VANETs; Proceedings of the 2nd ACM International Workshop Vehicular Ad Hoc Networks; Cologne, Germany. 2 Sepember 2005; New York, NY, USA: ACM; 2005. pp. 93–94.

Shrestha R., Bajracharya R., Nam S.Y. Centralized approach for trustworthy message dissemination in VANET; Proceedings of the NOMS 2018-2018 IEEE/IFIP Network Operations and Management Symposium; Taipei, Taiwan. 23–27 April 2018; Piscataway, NJ, USA: IEEE; 2018. pp. 1–5.

Fang M., Li L., Huang W. Research of Hybrid Positioning Based Vehicle Interactive Navigation System. School of Computer and Information Technology, Xinyang Normal University; Xinyang, China: 2010. pp. 974–978. DOI

Hou Y., Zhao Y., Hulme K.F., Huang S., Yang Y., Sadek A.W., Qiao C. An integrated traffic-driving simulation framework: Design, implementation, and validation. Transp. Res. Part C Emerg. Technol. 2014;45:138–153. doi: 10.1016/j.trc.2014.02.004. DOI

Luo X., Wang X., Wang P., Liu F., Van N.N. Local Density Estimation Based on Velocity and Acceleration Aware in Vehicular Ad-Hoc Networks; Proceedings of the International Conference on Machine Learning and Intelligent Communications; Hangzhou, China. 6–8 July 2018; pp. 463–471. DOI

Padron F.M., Mahgoub I., Rathod M. VANET-Based Privacy Preserving Scheme for Detecting Traffic Congestion. Department of Computer and Electrical Engineering and Computer Science, Florida Atlantic University; Boca Raton, FL, USA: 2012. pp. 66–71. DOI

Shao Z., Li W., Wu Y., Shen L. Multi-Layer and Multi-Dimensional Information Based Cooperative Vehicle Localization in Highway Scenarios. National Mobile Communications Research Laboratory, Southeast University; Nanjing, China: 2010. pp. 567–571. DOI

Nayak R.P., Sethi S., Bhoi S.K. PHVA: A Position Based High Speed Vehicle Detection Algorithm for Detecting High Speed Vehicles Using Vehicular Cloud. Institute of Electrical and Electronics Engineers Inc.; Piscataway, NJ, USA: 2018. pp. 227–232. DOI

King T., Füßler H., Transier M., Effelsberg W. Dead-reckoning for position-based forwarding on highways; Proceedings of the 3rd International Workshop on Intelligent Transportation (WIT 2006); Hamburg, Germany. 14–15 March 2006; pp. 199–204.

Krakiwsky E.J., Harris C.B., Wong R.V.C. A Kalman filter for integrating dead reckoning, map matching and GPS positioning; Proceedings of the IEEE PLANS’88., Position Location and Navigation Symposium. Record. Navigation into the 21st Century; Orlando, FL, USA. 29 November–2 December 1988; Piscataway, NJ, USA: IEEE; 1988. pp. 39–46.

Smith I., Tang K., Sohn T., Potter F., LaMarca A., Hightower J., Varshavsky A. Are GSM phones THE solution for localization?; Proceedings of the 7th IEEE Workshop on Mobile Computing Systems & Applications (WMCSA’06 Supplement); Washington, DC, USA. 6–7 April 2006; Piscataway, NJ, USA: IEEE; 2005. pp. 34–42.

Chen M.Y., Sohn T., Chmelev D., Haehnel D., Hightower J., Froehlich J., de Lara E., Chen M.Y., Varshavsky A. Practical metropolitan-scale positioning for gsm phones; Proceedings of the International Conference Ubiquitous Computing; Orange County, CA, USA. 17–21 September 2006; Berlin, Germany: Springer; 2006. pp. 225–242.

Boukerche A., Oliveira H.A.B.F., Nakamura E.F., Loureiro A.A.F. Vehicular Ad Hoc Networks: A New Challenge for Localization-Based Systems. Comput. Commun. 2008;31:2838–2849. doi: 10.1016/j.comcom.2007.12.004. DOI

Nakamura E.F., Loureiro A.A.F., Frery A.C. Information fusion for wireless sensor networks: Methods, models, and classifications. ACM Comput. Surv. 2007;39:9. doi: 10.1145/1267070.1267073. DOI

Boeira F., Asplund M., Barcellos M.P. Vouch: A Secure Proof-of-Location Scheme for VANETs. Association for Computing Machinery, Inc.; New York, NY, USA: 2018. pp. 241–248. DOI

Teshnizi S.H., Koloor S.S.R., Sharifishourabi G., Ayob A.B., Yazid Y.M. Effect of Ply Thickness on Displacements and Stresses in Laminated GFRP Cylinder Subjected to Radial Load. Adv. Mater. Res. 2012;488:367–371. doi: 10.4028/www.scientific.net/AMR.488-489.367. DOI

Teshnizi S.H., Koloor S.S.R., Sharifishourabi G., Ayob A.B., Yazid Y.M. Mechanical behavior of GFRP laminated composite pipe subjected to uniform radial patch load. Adv. Mater. Res. 2012;488:542–546. doi: 10.4028/www.scientific.net/AMR.488-489.542. DOI

Rahimian Koloor S.S., Karimzadeh A., Tamin M.N., Abd Shukor M.H. Effects of Sample and Indenter Configurations of Nanoindentation Experiment on the Mechanical Behavior and Properties of Ductile Materials. Metals (Basel) 2018;8:421. doi: 10.3390/met8060421. DOI

Wisitpongphan N., Tonguz O.K., Parikh J.S., Mudalige P., Bai F., Sadekar V. Broadcast storm mitigation techniques in vehicular ad hoc networks. IEEE Wirel. Commun. 2007;14:84–94. doi: 10.1109/MWC.2007.4407231. DOI

Alwan M.H., Ramli K.N., Al-Jawher Y.A., Sameen A.Z., Mahdi H.F. Performance comparison between 802.11 and 802.11p for high speed vehicle in VANET. Int. J. Electr. Comput. Eng. 2019;9:3687–3694. doi: 10.11591/ijece.v9i5.pp3687-3694. DOI

Jackson J.C., Vijayakumar V. A review on congestion control system using APU and D-FPAV in VANET. Int. J. Adv. Intell. Paradig. 2018;10:391–400. doi: 10.1504/IJAIP.2018.092022. DOI

Mitra S., Mondal A. Connectivity Frameworks for Smart Devices. Springer; Cham, Swizerland: 2016. Secure inter-vehicle communication: A need for evolution of vanet towards the internet of vehicles; pp. 63–96.

Jain A.S., Kundargi J.M. Automatic number plate recognition using artificial neural network. Int. Res. J. Eng. Technol. 2015;2:633–639.

Du S., Ibrahim M., Shehata M., Badawy W. Automatic license plate recognition (ALPR): A state-of-the-art review. IEEE Trans. Circuits Syst. Video Technol. 2012;23:311–325. doi: 10.1109/TCSVT.2012.2203741. DOI

Puranic A., Deepak K.T., Umadevi V. Vehicle number plate recognition system: A literature review and implementation using template matching. Int. J. Comput. Appl. 2016;134:12–16. doi: 10.5120/ijca2016907652. DOI

Gaikwad D.Y., Borole P.B. A Review Paper on Automatic Number Plate Recognition (ANPR) System. Int. J. Innov. Res. Adv. Eng. 2014;1:88–92.

Yamada M. On-Vehicle Data Collection Apparatus, Center, and on-Vehicle System. No. 12/081,166. U.S. Patent. 2008 Oct 16;

Jalooli A., Shaghaghi E., Jabbarpour M.R., Md Noor R., Yeo H., Jung J.J. Intelligent advisory speed limit dedication in highway using VANET. Sci. World J. 2014;2014 doi: 10.1155/2014/629412. PubMed DOI PMC

Alhammad A., Siewe F., Al-Bayatti A.H. An InfoStation-based context-aware on-street parking system; Proceedings of the 2012 International Conference computer systems and industrial informatics; Dubai, UAE. 18–20 December 2012; Piscataway, NJ, USA: IEEE; 2012. pp. 1–6.

Ye N., Wang Z., Malekian R., Zhang Y., Wang R. A method of vehicle route prediction based on social network analysis. J. Sens. 2015;2015 doi: 10.1155/2015/210298. DOI

Sakiz F., Sen S. A survey of attacks and detection mechanisms on intelligent transportation systems: VANETs and IoV. Ad Hoc Netw. 2017;61:33–50. doi: 10.1016/j.adhoc.2017.03.006. DOI

Pathak S., Mani A., Sharma M., Chatterjee A. Augmenting Industrial Transportation System with the Internet-of Vehicles Paradigm; Proceedings of the 2018 IEEE Punecon; Pune, India. 30 November 2018; Piscataway, NJ, USA: IEEE; pp. 1–6.

Wang J., Jiang C., Han Z., Ren Y., Hanzo L. Internet of vehicles: Sensing-aided transportation information collection and diffusion. IEEE Trans. Veh. Technol. 2018;67:3813–3825. doi: 10.1109/TVT.2018.2796443. DOI

Gu M.-S., Miao F., Gao C.-B., He Z.-S., Fan W.-J., Li L. Research of Localization Algorithm of Internet of Vehicles Based on Intelligent Transportation; Proceedings of the 2018 International Conference Wavelet Analysis and Pattern Recognition; Chengdu, China. 15–18 July 2018; Piscataway, NJ, USA: IEEE; 2018. pp. 13–16.

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Vehicle-Assisted Techniques for Health Monitoring of Bridges

. 2020 Jun 19 ; 20 (12) : . [epub] 20200619

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...