• This record comes from PubMed

The time has come to extend the expiration limit of cryopreserved allograft heart valves

. 2021 Jun ; 22 (2) : 161-184. [epub] 20200624

Language English Country Netherlands Media print-electronic

Document type Journal Article, Review

Grant support
LO1506 Czech Ministry of Education, Youth and Sports - NPU I
LO1503 Czech Ministry of Education, Youth and Sports - NPU I
CZ.02.1.01/0.0/0.0/17_048/0007280 European Regional Development Fund-Project "Application of Modern Technologies in Medicine and Industry"
Progres Q39 Charles University Research Fund

Links

PubMed 32583302
DOI 10.1007/s10561-020-09843-2
PII: 10.1007/s10561-020-09843-2
Knihovny.cz E-resources

Despite the wide choice of commercial heart valve prostheses, cryopreserved semilunar allograft heart valves (C-AHV) are required, and successfully transplanted in selected groups of patients. The expiration limit (EL) criteria have not been defined yet. Most Tissue Establishments (TE) use the EL of 5 years. From physiological, functional, and surgical point of view, the morphology and mechanical properties of aortic and pulmonary roots represent basic features limiting the EL of C-AHV. The aim of this work was to review methods of AHV tissue structural analysis and mechanical testing from the perspective of suitability for EL validation studies. Microscopic structure analysis of great arterial wall and semilunar leaflets tissue should clearly demonstrate cells as well as the extracellular matrix components by highly reproducible and specific histological staining procedures. Quantitative morphometry using stereological grids has proved to be effective, as the exact statistics was feasible. From mechanical testing methods, tensile test was the most suitable. Young's moduli of elasticity, ultimate stress and strain were shown to represent most important AHV tissue mechanical characteristics, suitable for exact statistical analysis. C-AHV are prepared by many different protocols, so as each TE has to work out own EL for C-AHV.

See more in PubMed

Adham M, Gournier JP, Favre JP et al (1996) Mechanical characteristics of fresh and frozen human descending thoracic aorta. J Surg Res 64:32–34. https://doi.org/10.1006/jsre.1996.0302 PubMed DOI

Avanzini A, Battini D (2016) Integrated experimental and numerical comparison of different approaches for planar biaxial testing of a hyperelastic material. Adv Mater Sci Eng 2016:1–12. https://doi.org/10.1155/2016/6014129 DOI

Azadani AN, Chitsaz S, Matthews PB et al (2012) Comparison of mechanical properties of human ascending aorta and aortic sinuses. Ann Thorac Surg 93:87–94. https://doi.org/10.1016/j.athoracsur.2011.08.002 PubMed DOI

Bäck M, Gasser TC, Michel JB, Caligiuri G (2013) Biomechanical factors in the biology of aortic wall and aortic valve diseases. Cardiovasc Res 99:232–241. https://doi.org/10.1093/cvr/cvt040 PubMed DOI PMC

Bancroft JD, Gamble M (2008) Theory and practice of histological techniques. Churchill Livingstone, Edinburgh

Barratt-Boyes BG (1964) Homograft aortic valve replacement in aortic incompetence and stenosis. Thorax 19:131–150. https://doi.org/10.1136/thx.19.2.131 PubMed DOI PMC

Barrett TJ (2020) Macrophages in atherosclerosis regression. ATVB 40:20–33. https://doi.org/10.1161/ATVBAHA.119.312802 DOI

Berillis P (2013) The role of collagen in the aorta’s structure. Open Circ Vasc J 6:1–8. https://doi.org/10.2174/1877382601306010001 DOI

Billiar KL, Sacks MS (2000) Biaxial mechanical properties of the native and glutaraldehyde-treated aortic valve cusp: Part II—A structural constitutive model. J Biomech Eng 122:327–335. https://doi.org/10.1115/1.1287158 PubMed DOI

Blassova T, Tonar Z, Tomasek P et al (2019) Inflammatory cell infiltrates, hypoxia, vascularization, pentraxin 3 and osteoprotegerin in abdominal aortic aneurysms—A quantitative histological study. PLoS ONE 14:e0224818. https://doi.org/10.1371/journal.pone.0224818 PubMed DOI PMC

Boethig D, Goerler H, Westhoff-Bleck M et al (2007) Evaluation of 188 consecutive homografts implanted in pulmonary position after 20 years. Eur J Cardio-thoracic Surg 32:133–142. https://doi.org/10.1016/j.ejcts.2007.02.025 DOI

Boethig D, Horke A, Hazekamp M et al (2019) An European study on decellularized homografts for pulmonary valve replacement: initial results from the prospective ESPOIR Trial and ESPOIR Registry data. Eur J Cardiothorac Surg 56:503–509. https://doi.org/10.1093/ejcts/ezz054 PubMed DOI PMC

Borghi A, New SEP, Chester AH et al (2013) Time-dependent mechanical properties of aortic valve cusps: effect of glycosaminoglycan depletion. Acta Biomater 9:4645–4652. https://doi.org/10.1016/j.actbio.2012.09.001 PubMed DOI

Brazile B, Wang B, Wang G et al (2015) On the bending properties of porcine mitral, tricuspid, aortic, and pulmonary valve leaflets. J Long Term Eff Med Implants 25:41–53. https://doi.org/10.1615/JLongTermEffMedImplants.2015011741 PubMed DOI PMC

Brewer RJ, Deck JD, Capati B, Nolan SP (1976) The dynamic aortic root. Its role in aortic valve function. J Thorac Cardiovasc Surg 72:413–417. https://doi.org/10.1016/S0022-5223(19)40069-X PubMed DOI

Brockbank KG, Schenke-Layland K, Greene ED et al (2012) Ice-free cryopreservation of heart valve allografts: better extracellular matrix preservation in vivo and preclinical results. Cell Tissue Bank 13(4):663–671. https://doi.org/10.1007/s10561-011-9288-7 PubMed DOI

Brockbank KG, Wright GJ, Yao H et al (2011) Allogeneic heart valve storage above the glass transition at -80°C. Ann Thorac Surg 91(6):1829–1835. https://doi.org/10.1016/j.athoracsur.2011.02.043 PubMed DOI

Carr-White G, Afoke A, Birks E et al (2000) Aortic root characteristics of human pulmonary autografts. Circulation 102:III-15–III-21. https://doi.org/10.1161/01.CIR.102.suppl DOI

Cavalcante JL, Lima JAC, Redheuil A, Al-Mallah MH (2011) Aortic stiffness: current understanding and future directions. J Am Coll Cardiol 57:1511–1522. https://doi.org/10.1016/j.jacc.2010.12.017 PubMed DOI

Cavinato C, Helfenstein-Didier C, Olivier T et al (2017) Biaxial loading of arterial tissues with 3D in situ observations of adventitia fibrous microstructure: A method coupling multi-photon confocal microscopy and bulge inflation test. J Mech Behav Biomed Mater 74:488–498. https://doi.org/10.1016/j.jmbbm.2017.07.022 PubMed DOI

Cebotari S, Lichtenberg A, Tudorache I et al (2006) Clinical application of tissue engineered human heart valves using autologous progenitor cells. Circulation 114:132–137. https://doi.org/10.1161/CIRCULATIONAHA.105.001065 DOI

Chandran KB, Udaykumar HS, Reinhardt JM (2011) Image-based computational modeling of the human circulatory and pulmonary systems: methods and applications. Springer, Switzerland DOI

Chiang H-Y, Korshunov VA, Serour A et al (2009) Fibronectin is an important regulator of flow-induced vascular remodeling. ATVB 29:1074–1079. https://doi.org/10.1161/ATVBAHA.108.181081 DOI

Chow MJ, Zhang Y (2011) Changes in the mechanical and biochemical properties of aortic tissue due to cold storage. J Surg Res 171:434–442. https://doi.org/10.1016/j.jss.2010.04.007 PubMed DOI

Christie G, Barratt-Boyes B (1995) Mechanical properties of porcine pulmonary valve leaflets: How do they differ from aortic leaflets? Ann Thorac Surg 60:S195–S199. https://doi.org/10.1016/0003-4975(95)00279-T PubMed DOI

Cocciolone AJ, Hawes JZ, Staiculescu MC et al (2018) Elastin, arterial mechanics, and cardiovascular disease. Am J Physiol Hear Circ Physiol 315:H189–H205. https://doi.org/10.1152/ajpheart.00087.2018 DOI

Conza N (2005) Part 3: Tissue preconditioning. Exp Tech 29:43–46. https://doi.org/10.1111/j.1747-1567.2005.tb00213.x DOI

Cox R (1981) Basis for the altered arterial wall mechanics in the spontaneously hypertensive rat. Hypertension 3:485–495. https://doi.org/10.1161/01.HYP.3.4.485 PubMed DOI

Davies H, Lessof MH, Roberts CI et al (1965) Homograft replacement of the aortic valve: follow-up studies in twelve patients. Lancet 1:926–929. https://doi.org/10.1016/S0140-6736(65)91252-3 PubMed DOI

de By TMMH, Parker R, Delmo Walter EM, Hetzer R (2012) Cardiovascular tissue banking in Europe. HSR Proc Intensive Care Cardiovasc Anesth 4:251–260 PubMed PMC

de By TMMH, McDonald C, Susner S et al (2017) Validation of microbiological testing incardiovascular tissue banks: results of a quality round trial. Eur J Cardiothorac Surg 52:895–900. https://doi.org/10.1093/ejcts/ezx178 PubMed DOI

de By TMMH (2020) International benchmarking in cardio-thoracic surgery. Dissertation, Erasmus University, Rotterdam, Netherlands

Deboer O, Becker A, Vanderwal A (2003) T lymphocytes in atherogenesis—functional aspects and antigenic repertoire. Cardiovasc Res 60:78–86. https://doi.org/10.1016/S0008-6363(03)00341-9 DOI

Dekker S, van Geemen D, van den Bogaerdt AJ et al (2018) Sheep-specific immunohistochemical panel for the evaluation of regenerative and inflammatory processes in tissue-engineered heart valves. Front Cardiovasc Med 15(5):105. https://doi.org/10.3389/fcvm.2018.00105 DOI

Dekens E, van Damme E, Jashari R et al (2019) Durability of pulmonary homografts for reconstruction of the right ventricular outflow tract: How relevant are donor-related factors? Interact Cardiovasc Thorac Surg 28(4):503–509. https://doi.org/10.1093/icvts/ivy316 PubMed DOI

Delgadillo JOV, Delorme S, El-Ayoubi R et al (2010) Effect of freezing on the passive mechanical properties of arterial samples. J Biomed Sci Eng 03:645–652. https://doi.org/10.4236/jbise.2010.37088 DOI

Drangova M, Holdsworth DW, Boyd CJ et al (1993) Elasticity and geometry measurements of vascular specimens using a high-resolution laboratory CT scanner. Physiol Meas 14:277–290 DOI

Duran CG, Gunning AJ (1962) A method for placing a total homologous aortic valve in the subcoronary position. Lancet 2:488–489. https://doi.org/10.1016/S0140-6736(62)90346-X PubMed DOI

Eckert CE, Fan R, Mikulis B et al (2013) On the biomechanical role of glycosaminoglycans in the aortic heart valve leaflet. Acta Biomater 9:4653–4660. https://doi.org/10.1016/j.actbio.2012.09.031 PubMed DOI

Ferguson JJ, Julius S, Randall OS (1984) Stroke volume - Pulse pressure relationships in borderline hypertension: A possible indicator a decreased arterial compliance. J Hypertens 2:S397–S399 DOI

Fiala R, Kochová P, Kubíková T et al (2019) Mechanical and structural properties of human aortic and pulmonary allografts do not deteriorate in the first 10 years of cryopreservation and storage in nitrogen. Cell Tissue Bank 20:221–241. https://doi.org/10.1007/s10561-019-09762-x PubMed DOI

Fridez P, Makino A, Miyazaki H et al (2001) Short-term biomechanical adaptation of the rat carotid to acute hypertension: contribution of smooth muscle. Ann Biomed Eng 29:26–34. https://doi.org/10.1114/1.1342054 PubMed DOI

Fridez P, Zulliger M, Bobard F et al (2003) Geometrical, functional, and histomorphometric adaptation of rat carotid artery in induced hypertension. J Biomech 36:671–680. https://doi.org/10.1016/S0021-9290(02)00445-1 PubMed DOI

Germain M, Strong DM, Dowling G et al (2016) Disinfection of human cardiac valve allografts in tissue banking: systematic review report. Cell Tissue Bank 17(4):593–601. https://doi.org/10.1007/s10561-016-9570-9 PubMed DOI PMC

Gilpin CM (2005) Cyclic loading of porcine coronary arteries. Disertation, Georgia Institute of Technology

Goffin YAH, de Gouveia RH, Szombathelyi T et al (1997) Morphologis study of homograft valves before and after cryopreservation and after short-term implantation in patients. Cardiovasc Pathol 6:35–42. https://doi.org/10.1016/S1054-8807(96)00072-5 PubMed DOI

Grashow JS, Sacks MS, Liao J, Yoganathan AP (2006) Planar biaxial creep and stress relaxation of the mitral valve anterior leaflet. Ann Biomed Eng 34:1509–1518. https://doi.org/10.1007/s10439-006-9183-8 PubMed DOI

Greenwald SE (2007) Ageing of the conduit arteries. J Pathol 211:157–172. https://doi.org/10.1002/path.2101 PubMed DOI

Halushka MK, Angelini A, Bartoloni G et al (2016) Consensus statement on surgical pathology of the aorta from the Society for Cardiovascular Pathology and the Association For European Cardiovascular Pathology: II. Noninflammatory degenerative diseases — nomenclature and diagnostic criteria. Cardiovasc Pathol 25:247–257. https://doi.org/10.1016/j.carpath.2016.03.002 PubMed DOI

Hamdan A, Guetta V, Konen E et al (2012) Deformation dynamics and mechanical properties of the aortic annulus by 4-dimensional computed tomography: insights into the functional anatomy of the aortic valve complex and implications for transcatheter aortic valve therapy. J Am Coll Cardiol 59:119–127. https://doi.org/10.1016/j.jacc.2011.09.045 PubMed DOI

Hasan A, Ragaert K, Swieszkowski W et al (2014) Biomechanical properties of native and tissue engineered heart valve constructs. J Biomech 47:1949–1963. https://doi.org/10.1016/j.jbiomech.2013.09.023 PubMed DOI

He R, Guo D-C, Sun W et al (2008) Characterization of the inflammatory cells in ascending thoracic aortic aneurysms in patients with Marfan syndrome, familial thoracic aortic aneurysms, and sporadic aneurysms. J Thorac Cardiovasc Surg 136(922–929):929.e1. https://doi.org/10.1016/j.jtcvs.2007.12.063 DOI

Heimbecker RO, Baird RJ, Lajos TZ et al (1962) Homograft replacement of the human mitral valve. A preliminary report. Can Med Assoc J 86:805–809 PubMed PMC

Hepfer RG, Brockbank KG, Chen Z et al (2016) Comparison and evaluation of biomechanical, electrical, and biological methods for assessment of damage to tissue collagen. Cell Tissue Bank 17(3):531–539. https://doi.org/10.1007/s10561-016-9560-y PubMed DOI PMC

Hlubocký J, Mokráček A, Nováček V et al (2011) Mechanical properties of mitral allografts are not reasonably influenced by cryopreservation in sheep model. Physiol Res 60:475–482. https://doi.org/10.33549/physiolres.932074 PubMed DOI

Holzapfel GA, Ogden RW (eds) (2003) Biomechanics of soft tissue in cardiovascular systems. Springer, Udine

Huang HY, Balhouse BN, Huang S (2012) Application of simple biomechanical and biochemical tests to heart valve leaflets: Implications for heart valve characterization and tissue engineering. Proc Inst Mech Eng Part H J Eng Med 226:868–876. https://doi.org/10.1177/0954411912455004 DOI

Huber AJ, Aberle T, Schleicher M et al (2013) Characterization of a simplified ice-free cryopreservation method for heart valves. Cell Tissue Bank 14(2):195–203. https://doi.org/10.1007/s10561-012-9319-z PubMed DOI

Imura T, Yamamoto K, Satoh T et al (1990) In vivo viscoelastic behavior in the human aorta. Circ Res 66:1413–1419. https://doi.org/10.1161/01.RES.66.5.1413 PubMed DOI

Iop L, Paolin A, Aguiari P et al (2017) Decellularized cryopreserved allografts as off-the-shelf allogeneic alternative for heart valve replacement: In vitro assessment before clinical translation. J Cardiovasc Transl Res 10(2):93–103. https://doi.org/10.1007/s12265-017-9738-0 PubMed DOI

Jett S, Laurence D, Kunkel R et al (2018a) An investigation of the anisotropic mechanical properties and anatomical structure of porcine atrioventricular heart valves. J Mech Behav Biomed Mater 87:155–171. https://doi.org/10.1016/j.jmbbm.2018.07.024 PubMed DOI PMC

Jett S, Laurence D, Kunkel R et al (2018b) Biaxial mechanical data of porcine atrioventricular valve leaflets. Data Br 21:358–363. https://doi.org/10.1016/j.dib.2018.09.073 DOI

Kassab GS (2006) Biomechanics of the cardiovascular system: the aorta as an illustratory example. J R Soc Interface 3:719–740. https://doi.org/10.1098/rsif.2006.0138 PubMed DOI PMC

Kaushik SD, Vinchurkar M, Patwardhan AM et al (1995) MTT assay as a viability test of homograft valves. Indian J Thorac Cardiovasc Sur 11:38–41 DOI

Khan S, Fakhouri F, Majeed W, Kolipaka A (2018) Cardiovascular magnetic resonance elastography: a review. NMR Biomed 31:e3853. https://doi.org/10.1002/nbm.3853 PubMed DOI

Kochová P, Kuncová J, Švíglerová J et al (2012) The contribution of vascular smooth muscle, elastin and collagen on the passive mechanics of porcine carotid arteries. Physiol Meas 33:1335–1351. https://doi.org/10.1088/0967-3334/33/8/1335 PubMed DOI

Kocová J (1970) Overall staining of connective tissue and the muscular layer of vessels. Folia Morphol (Praha) 18:293–295

Korossis S (2018) Structure-function relationship of heart valves in health and disease. In: Kirali K (ed) Structural insufficiency anomalies in cardiac valves. IntechOpen, Rijeka, pp 1–37

Kortsmit J, Driessen NJB, Rutten MCM, Baaijens FPT (2009) Non-destructive and non-invasive assessment of mechanical properties in heart valve tissue engineering. Tissue Eng - Part A 15:797–806. https://doi.org/10.1089/ten.tea.2008.0197 PubMed DOI

Krishnamurthy G, Ennis DB, Itoh A et al (2008) Material properties of the ovine mitral valve anterior leaflet in vivo from inverse finite element analysis. Am J Physiol Hear Circ Physiol 295:1141–1149. https://doi.org/10.1152/ajpheart.00284.2008 DOI

Kubíková T, Kochová P, Brázdil J et al (2017) The composition and biomechanical properties of human cryopreserved aortas, pulmonary trunks, and aortic and pulmonary cusps. Ann Anat 212:17–26. https://doi.org/10.1016/j.aanat.2017.03.004 PubMed DOI

Kular JK, Basu S, Sharma RI (2014) The extracellular matrix: Structure, composition, age-related differences, tools for analysis and applications for tissue engineering. J Tissue Eng 5:204173141455711. https://doi.org/10.1177/2041731414557112 DOI

Lacolley P, Regnault V, Avolio AP (2018) Smooth muscle cell and arterial aging: basic and clinical aspects. Cardiovasc Res 114:513–528. https://doi.org/10.1093/cvr/cvy009 PubMed DOI

Lally C, Reid AJ, Prendergast PJ (2004) Elastic behavior of porcine coronary artery tissue under uniaxial and equibiaxial tension. Ann Biomed Eng 32:1355–1364. https://doi.org/10.1114/B:ABME.0000042224.23927.ce PubMed DOI

Länne T, Sonesson B, Bergqvist D et al (1992) Diameter and compliance in the male human abdominal aorta: influence of age and aortic aneurysm. Eur J Vasc Surg 6:178–184. https://doi.org/10.1016/s0950-821x(05)80237-3 PubMed DOI

Laurence D, Ross C, Jett S et al (2019) An investigation of regional variations in the biaxial mechanical properties and stress relaxation behaviors of porcine atrioventricular heart valve leaflets. J Biomech 83:16–27. https://doi.org/10.1016/j.jbiomech.2018.11.015 PubMed DOI

Li ZY, U-King-Im J, Tang TY et al (2008) Impact of calcification and intraluminal thrombus on the computed wall stresses of abdominal aortic aneurysm. J Vasc Surg 47:928–935. https://doi.org/10.1016/j.jvs.2008.01.006 PubMed DOI

Logrippo GA, Overhulse PR, Szilagyi DE et al (1955) Procedure for sterilization of arterial homografts with beta-propiolactone. Lab Invest 4:217–231 PubMed

Longmore DB, Lockey E, Ross DN, Pickering BN (1966) The preparation of aortic valve homografts. Lancet 288:463–464. https://doi.org/10.1016/S0140-6736(66)92770-X DOI

Macrae RA, Miller K, Doyle BJ (2016) Methods in mechanical testing of arterial tissue: a review. Strain 52:380–399. https://doi.org/10.1111/str.12183 DOI

Marra SP, Daghlian CP, Fillinger MF, Kennedy FE (2006a) Elemental composition, morphology and mechanical properties of calcified deposits obtained from abdominal aortic aneurysms. Acta Biomater 2:515–520. https://doi.org/10.1016/j.actbio.2006.05.003 PubMed DOI

Marra SP, Kennedy FE, Kinkaid JN, Fillinger MF (2006b) Elastic and rupture properties of porcine aortic tissue measured using inflation testing. Cardiovasc Eng 6:123–131. https://doi.org/10.1007/s10558-006-9021-5 PubMed DOI

Martin C, Sun W (2012) Biomechanical characterization of aortic valve tissue in humans and common animal models. J Biomed Mater Res A 100:1591–1599. https://doi.org/10.1002/jbm.a.34099 PubMed DOI

Mayne AS, Christie GW, Smaill BH et al (1989) An assessment of the mechanical properties of leaflets from four second-generation porcine bioprostheses with biaxial testing techniques. J Thorac Cardiovasc Surg 98:170–180 DOI

McNally RT, Brockbank KGM (1992) Issues surrounding the preservation of viable allograft heart valves. J Med Eng Technol 16:34–38. https://doi.org/10.3109/03091909209021955 PubMed DOI

Meershoek A, van Dijk RA, Verhage S et al (2016) Histological evaluation disqualifies IMT and calcification scores as surrogates for grading coronary and aortic atherosclerosis. Int J Cardiol 224:328–334. https://doi.org/10.1016/j.ijcard.2016.09.043 PubMed DOI

Mendelson K, Schoen FJ (2006) Heart valve tissue engineering: Concepts, approaches, progress, and challenges. Ann Biomed Eng 34:1799–1819. https://doi.org/10.1007/s10439-006-9163-z PubMed DOI PMC

Meng L-B, Yu Z-M, Guo P et al (2018) Neutrophils and neutrophil-lymphocyte ratio: Inflammatory markers associated with intimal-media thickness of atherosclerosis. Thromb Res 170:45–52. https://doi.org/10.1016/j.thromres.2018.08.002 PubMed DOI

Merryman WD, Engelmayr GC, Liao J, Sacks MS (2006) Defining biomechanical endpoints for tissue engineered heart valve leaflets from native leaflet properties. Prog Pediatr Cardiol 21:153–160. https://doi.org/10.1016/j.ppedcard.2005.11.001 DOI

Meyers MA, Chen P-Y, Lin AY-M, Seki Y (2008) Biological materials: Structure and mechanical properties. Prog Mater Sci 53:1–206. https://doi.org/10.1016/j.pmatsci.2007.05.002 DOI

Meyns B, Jashari R, Gewillig M et al (2005) Factors influencing the survival of cryopreserved homografts. The second homograft performs as well as the first. Eur J Cardiothorac Surg 28:211–216. https://doi.org/10.1016/j.ejcts.2005.03.041 PubMed DOI

Mirabet V, Carda C, Solves P et al (2008) Long-term storage in liquid nitrogen does not affect cell viability in cardiac valve allografts. Cryobiology 57(2):113–121. https://doi.org/10.1016/j.cryobiol.2008.07.008 PubMed DOI

Mohammad SN (1994) Effect of storage on tensile properties of natural heart valve tissue. University of Surrey, Disertation

Mohan D, Melvin J (1982) Failure properties of passive human aortic tissue. I—uniaxial tension tests. J Biomech 15:887–902. https://doi.org/10.1016/0021-9290(82)90055-0 PubMed DOI

Mohan D, Melvin JW (1983) Failure properties of passive human aortic tissue. II-Biaxial tension tests J Biomech 16:31–44. https://doi.org/10.1016/0021-9290(83)90044-1 PubMed DOI

Mori S, Spicer DE, Anderson RH (2018) Living anatomy of the aortic root. In: Vojáček J, Žáček P, Dominik J (eds) Aortic regurgitation. Springer, New York, pp 23–31 DOI

Mulligan-Kehoe MJ, Simons M (2014) Vasa vasorum in normal and diseased arteries. Circulation 129:2557–2566. https://doi.org/10.1161/CIRCULATIONAHA.113.007189 PubMed DOI

Muresian H (2018) Clinical and surgical anatomy of the aortic root. In: Vojáček J, Žáček P, Dominik J (eds) Aortic Regurgitation. Springer, New York, pp 7–21 DOI

Nava A, Mazza E, Haefner O, Bajka M (2004) Experimental observation and modelling of preconditioning in soft biological tissues. Lect Notes Comput Sci (including Subser Lect Notes Artif Intell Lect Notes Bioinform) 3078:1–8. https://doi.org/10.1007/978-3-540-25968-8_1 DOI

Nicosia MA (2007) A theoretical framework to analyze bend testing of soft tissue. J Biomech Eng 129:117–120. https://doi.org/10.1115/1.2401191 PubMed DOI

Novotný R, Slížová D, Hlubocký J et al (2018) Structural changes arising from different thawing protocols on cryopreserved human allograft's aortic valve leaflets. Adv Clin Exp Med 27(8):1133–1036. https://doi.org/10.17219/acem/73713 DOI

O'Brien MF, Stafford EG, Gardner MA et al (1987) A comparison of aortic valve replacement with viable cryopreserved and fresh allograft valves, with a note on chromosomal studies. J Thorac Cardiovasc Surg 94:812–823 DOI

Oveissi F, Naficy S, Lee A et al (2020) Materials and manufacturing perspectives in engineering heart valves: A review. Mater Today Bio 5:100038. https://doi.org/10.1016/j.mtbio.2019.100038 PubMed DOI

Papazafiropoulou A, Tentolouris N (2009) Matrix metalloproteinases and cardiovascular diseases. Hippokratia 13:76–82. https://doi.org/10.1016/s0828-282x(06)70983-7 PubMed DOI PMC

Parker R (1997) An international survey of allograft banks. In: Yankah AC, Yacoub MH, Hetzer R (eds) Cardiac valve allografts. Springer, New York, New York, pp 5–9 DOI

Parker R, Hunt C (2000) European Association of Tissue Banks standards for cryopreserved cardiovascular tissue banking. Cell Tissue Banking 1:241–245. https://doi.org/10.1023/A:1026557718029 PubMed DOI

Pejcic S, Ali Hassan SM, Rival DE, Bisleri G (2019) Characterizing the mechanical properties of the aortic wall. Vessel Plus 2019:1–12. https://doi.org/10.20517/2574-1209.2019.18 DOI

Pham T, Sulejmani F, Shin E et al (2017) Quantification and comparison of the mechanical properties of four human cardiac valves. Acta Biomater 54:345–355. https://doi.org/10.1016/j.actbio.2017.03.026 PubMed DOI

Puntmann VO, Nagel E, Hughes AD et al (2012) Gender-specific differences in myocardial deformation and aortic stiffness at rest and dobutamine stress. Hypertension 59:712–718. https://doi.org/10.1161/HYPERTENSIONAHA.111.183335 PubMed DOI

Rauch U, Saxena A, Lorkowski S et al (2011) Laminin isoforms in atherosclerotic arteries from mice and man. Histol Histopathol 26:711–724. https://doi.org/10.14670/HH-26.711 PubMed DOI

Rego BV, Khalighi AH, Drach A et al (2018) A noninvasive method for the determination of in vivo mitral valve leaflet strains. Int J Numer Method Biomed Eng 34:e3142. https://doi.org/10.1002/cnm.3142 PubMed DOI

Rendal Vázquez ME, Díaz Román TM, Rodríguez Cabarcos M et al (2008) Apoptosis in fresh and cryopreserved cardiac valves of pig samples. Cell Tissue Bank 9(2):101–107. https://doi.org/10.1007/s10561-008-9063-6 PubMed DOI

Rich L, Whittaker P (2005) Collagen and Picrosirius Red staining: a polarized light assessment of fibrillar hue and spatial distribution. Braz J Morphol Sci 2005:97–104

Ross DN (1962) Homograft replacement of the aortic valve. Lancet 2:487. https://doi.org/10.1016/s0140-6736(62)90345-8 PubMed DOI

Ross DN (1967) Replacement of aortic and mitral valves with a pulmonary autograft. Lancet 2:956–958. https://doi.org/10.1016/s0140-6736(67)90794-5 PubMed DOI

Ross DN, Yacoub MH (1969) Homografts replacement of the aortic valve: a critical review. Prog Cardiovasc Dis 11(4):275–293. https://doi.org/10.1016/0033-0620(69)90054-1 PubMed DOI

Ross D, Martelli V, Wain WH (1979) Allograft and autograft valves used for aortic valve replacement. In: Ionescu MI (ed) Tissue heart valves. Springer, London, pp 127–172

Sacks MS (2000) Biaxial mechanical evaluation of planar biological materials. J Elast. https://doi.org/10.1023/A:1010917028671 DOI

Samila ZJ, Carter SA (1981) The effect of age on the unfolding of elastin lamellae and collagen fibers with stretch in human carotid arteries. Can J Physiol Pharmacol 59:1050–1057. https://doi.org/10.1139/y81-160 PubMed DOI

Sands MP, Nelson RJ, Mohri H et al (1967) The procurement and preparation of aortic valve homografts. Surgery 62:839–842 PubMed

Sanz-Garcia A, Oliver-de-la-Cruz J, Mirabet V et al (2015) Heart valve tissue engineering: how far is the bedside from the bench? Expert Rev Mol Med 17:e16. https://doi.org/10.1017/erm.2015.15 PubMed DOI

Sarikouch S, et al (2019a) Pediatric aortic valve replacement using decellularized allografts, Congenital, Original Article (EJCTS-2019-801834R1), in press

Sarikouch S, et al (2019b) Early results from a prospective, single-arm European trial on decellularized allografts for aortic valve replacement: the ARISE Study and ARISE registry data, Valves, Original Article (EJCTS-2019-801837R1), in press

Sauren AAHJ, van Hout MC, van Steenhoven AA et al (1983) The mechanical properties of porcine aortic valve tissues. J Biomech 16:327–337. https://doi.org/10.1016/0021-9290(83)90016-7 PubMed DOI

Schulze-Bauer CA, Regitnig P, Holzapfel GA (2002) Mechanics of the human femoral adventitia including the high-pressure response. Am J Physiol Heart Circ Physiol 282:H2427–H2440. https://doi.org/10.1152/ajpheart.00397.2001 PubMed DOI

Seebacher G, Grasl C, Stoiber M et al (2008) Biomechanical properties of decellularized porcine pulmonary valve conduits. Artif Organs 32:28–35. https://doi.org/10.1111/j.1525-1594.2007.00452.x PubMed DOI

Seibert H, Scheffer T, Diebels S (2014) Biaxial testing of elastomers - Experimental setup, measurement and experimental optimisation of specimen’s shape. Tech Mech 34:72–89

Sherratt MJ (2009) Tissue elasticity and the ageing elastic fibre. Age (Dordr) 31:305–325. https://doi.org/10.1007/s11357-009-9103-6 DOI

Shinoka T, Breuer CK, Tanel RE et al (1995) Tissue engineering heart valves: valve leaflet replacement study in a lamb model. Ann Thorac Surg 60:513–516. https://doi.org/10.1016/0003-4975(95)00733-4 DOI

Silver FH, Snowhill PB, Foran DJ (2003) Mechanical behavior of vessel wall: a comparative study of aorta, vena cava, and carotid artery. Ann Biomed Eng 31:793–803. https://doi.org/10.1114/1.1581287 PubMed DOI

Slørdahl SA, Piene H, Linker DT, Vik A (1991) Segmental aortic wall stiffness from intravascular ultrasound at normal and subnormal aortic pressure in pigs. Acta Physiol Scand 143:227–232. https://doi.org/10.1111/j.1748-1716.1991.tb09226.x PubMed DOI

Sokolis DP, Savva GD, Papadodima SA, Kourkoulis SK (2017) Regional distribution of circumferential residual strains in the human aorta according to age and gender. J Mech Behav Biomed Mater 67:87–100. https://doi.org/10.1016/j.jmbbm.2016.12.003 PubMed DOI

Špatenka J, Burkert J (2018) Allograft heart valve in aortic valve surgery. In: Vojáček J, Záček P, Dominik J (eds) Aortic regurgitation. Springer, Cham, pp 155–168 DOI

Stefanadis C, Stratos C, Vlachopoulos C et al (1995) Pressure-diameter relation of the human aorta. A new method of determination by the application of a special ultrasonic dimension catheter. Circulation 92:2210–2219. https://doi.org/10.1161/01.CIR.92.8.2210 PubMed DOI

Stella JA, Liao J, Sacks MS (2007) Time-dependent biaxial mechanical behavior of the aortic heart valve leaflet. J Biomech 40:3169–3177. https://doi.org/10.1016/j.jbiomech.2007.04.001 PubMed DOI PMC

Stemper BD, Yoganandan N, Pintar FA (2007) Mechanics of arterial subfailure with increasing loading rate. J Biomech 40:1806–1812. https://doi.org/10.1016/j.jbiomech.2006.07.005 PubMed DOI

Stone JR, Bruneval P, Angelini A et al (2015) Consensus statement on surgical pathology of the aorta from the Society for cardiovascular pathology and the association for European cardiovascular pathology: I. Inflammatory Diseases Cardiovasc Pathol 24(5):267–278. https://doi.org/10.1016/j.carpath.2015.05.001 PubMed DOI

Stradins P, Lacis R, Ozolanta I et al (2004) Comparison of biomechanical and structural properties between human aortic and pulmonary valve. Eur J Cardiothorac Surg 26:634–639. https://doi.org/10.1016/j.ejcts.2004.05.043 PubMed DOI

Theocharis AD, Tsolakis I, Tzanakakis GN, Karamanos NK (2006) Chondroitin sulfate as a key molecule in the development of atherosclerosis and cancer progression. Adv Pharmacol 53:281–295. https://doi.org/10.1016/S1054-3589(05)53013-8 PubMed DOI

Theodoridis K, Tudorache I, Calistru A et al (2015) Successful matrix guided tissue regeneration of decellularized pulmonary heart valve allografts in elderly sheep. Biomaterials 52:221–228. https://doi.org/10.1016/j.biomaterials.2015.02.023 PubMed DOI

Tian L, Chesler NC (2012) In vivo and in vitro measurements of pulmonary arterial stiffness: A brief review. Pulm Circ 2:505–517. https://doi.org/10.4103/2045-8932.105040 PubMed DOI PMC

Tonar Z (2018) Smooth muscle phenotype in aortic diseases: Are there other histopathological markers besides contractile myofibrils? Anatol J Cardiol 19(1):17–18. https://doi.org/10.14744/AnatolJCardiol.2017.25927 PubMed DOI PMC

Tremblay D, Cartier R, Mongrain R, Leask RL (2010) Regional dependency of the vascular smooth muscle cell contribution to the mechanical properties of the pig ascending aortic tissue. J Biomech 43:2448–2451. https://doi.org/10.1016/j.jbiomech.2010.04.018 PubMed DOI

Tsamis A, Krawiec JT, Vorp DA (2013) Elastin and collagen fibre microstructure of the human aorta in ageing and disease: A review. J R Soc Interface 10:20121004. https://doi.org/10.1098/rsif.2012.1004 PubMed DOI PMC

Vafaee T, Thomas D, Desai A et al (2018) Decellularization of human donor aortic and pulmonary valved conduits using low concentration sodium dodecyl sulfate. J Tissue Eng Regen Med 12(2):e841–e853. https://doi.org/10.1002/term.2391 PubMed DOI

van Geemen D, Soares ALF, Oomen PJA et al (2016) Age-dependent changes in geometry, tissue composition and mechanical properties of fetal to adult cryopreserved human heart valves. PLoS ONE 11:e0149020. https://doi.org/10.1371/journal.pone.0149020 PubMed DOI PMC

Vesely I (1998) The role of elastin in aortic valve mechanics. J Biomech 31:115–123. https://doi.org/10.1016/S0021-9290(97)00122-X PubMed DOI

Vesely I, Boughner D (1989) Analysis of the bending behaviour of porcine xenograft leaflets and of natural aortic valve material: Bending stiffness, neutral axis and shear measurements. J Biomech 22:655–671. https://doi.org/10.1016/0021-9290(89)90016-X PubMed DOI

Vesely I, Gonzalez-Lavin D, Graf D, Boughner DR (1990) Mechanical testing of cryopreserved aortic allografts: comparison with xenografts and fresh tissue. J Thorac Cardiovasc Surg 99:119–123 DOI

Viidik A (1979) Biomechanical behavior of soft connective tissues. In: Akkas N (ed) Progress in Biomechanics. Sijthoff & Nordhoff, Alphen aan den Rijn, pp 75–113 DOI

Vincent JFV (1982) Structural Biomaterials, 3rd edn. Macmillan Education UK, Princeton DOI

Vorp DA, Schiro BJ, Ehrlich MP et al (2003) Effect of aneurysm on the tensile strength and biomechanical behavior of the ascending thoracic aorta. Ann Thorac Surg 75:1210–1214. https://doi.org/10.1016/S0003-4975(02)04711-2 PubMed DOI

Waite L (2005) Biofluid mechanics in cardiovascular systems, 1st edn. McGraw-Hill Professional, New York

Waldman SD, Lee MJ (2002) Boundary conditions during biaxial testing of planar connective tissues. Part 1: Dynamic behavior. J Mater Sci Mater Med 13:933–938. https://doi.org/10.1023/A:1019896210320 PubMed DOI

Waldman SD, Lee JM (2005) Effect of sample geometry on the apparent biaxial mechanical behaviour of planar connective tissues. Biomaterials 26:7504–7513. https://doi.org/10.1016/j.biomaterials.2005.05.056 PubMed DOI

Welch W (1969) A comparative study of different methods of processing aortic homografts. Thorax 24:746–749. https://doi.org/10.1136/thx.24.6.746 PubMed DOI PMC

Woloszyn D, Johnson D, Yacoub MH (1997) Homograft viability, assessment and significance. In: Yankah AC, Yacoub MH, Hetzer R (eds) Cardiac valve allografts. Springer, New York, pp 11–21 DOI

Xu J, Shi G-P (2014) Vascular wall extracellular matrix proteins and vascular diseases. Biochim Biophys Acta Mol Basis Dis 1842:2106–2119. https://doi.org/10.1016/j.bbadis.2014.07.008 DOI

Zahra S, Galea G, Jashari R et al (2019a) Significant variation in heart valve banking practice. Eur J Clin Microbiol Infect Dis 38(8):1491–1498. https://doi.org/10.1007/s10096-019-03577-0 PubMed DOI

Zahra S, Galea G, Jashari R et al (2019b) Validation of microbiological testing in cardiovascular tissue establishments: results of a second international quality-round trial. Eur J Clin Microbiol Infect Dis 38:1481–1490. https://doi.org/10.1007/s10096-019-03576-1 PubMed DOI

Zieman SJ, Melenovsky V, Kass DA (2005) Mechanisms, pathophysiology, and therapy of arterial stiffness. Arterioscler Thromb Vasc Biol 25:932–943. https://doi.org/10.1161/01.ATV.0000160548.78317.29 PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...