• This record comes from PubMed

Modelling sexually deceptive orchid species distributions under future climates: the importance of plant-pollinator interactions

. 2020 Jun 30 ; 10 (1) : 10623. [epub] 20200630

Language English Country Great Britain, England Media electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Links

PubMed 32606363
PubMed Central PMC7327032
DOI 10.1038/s41598-020-67491-8
PII: 10.1038/s41598-020-67491-8
Knihovny.cz E-resources

Biotic interactions play an important role in species distribution models, whose ignorance may cause an overestimation of species' potential distributions. Species of the family Orchidaceae are almost totally dependent on mycorrhizal symbionts and pollinators, with sexually deceptive orchids being often highly specialized, and thus the interactions with their pollinators are expected to strongly affect distribution predictions. We used Maxent algorithm to explore the extent of current and future habitat suitability for two Greek endemic sexually deceptive orchids (Ophrys argolica and Ophrys delphinensis) in relation to the potential distribution of their unique pollinator (Anthophora plagiata). Twelve climate change scenarios were used to predict future distributions. Results indicated that the most important factors determining potential distribution were precipitation seasonality for O. argolica and geological substrate for O. delphinensis. The current potential distribution of the two orchids was almost of the same extent but spatially different, without accounting for their interaction with A. plagiata. When the interaction was included in the models, their potentially suitable area decreased for both species. Under future climatic conditions, the effects of the orchid-pollinator interaction were more intense. Specifically, O. argolica was restricted in specific areas of southern Greece, whereas O. delphinensis was expected to become extinct. Our findings highlighted the significant role of plant-pollinator interactions in species distribution models. Failing to study such interactions might expose plant species to serious conservation issues.

See more in PubMed

Pacifici M, Foden WB, Visconti P, Watson JEM, Butchart SHM, Kovacs KM, et al. Assessing species vulnerability to climate change. Nat. Clim. Change. 2015;5:215–225.

Foden WB, Young BE, editors. IUCN SSC Guidelines for Assessing Species’ Vulnerability to Climate Change. Gland: IUCN Species Survival Commission; 2016.

Conde DA, Staerk J, Colchero F, da Silva R, Schöley J, Baden HM, et al. Data gaps and opportunities for comparative and conservation biology. PNAS. 2019;116:9658–9664. PubMed PMC

Pearson RG. Species’ distribution modeling for conservation educators and practitioners. Lessons Conserv. 2010;3:54–89.

Tsiftsis S, Djordjević V, Tsiripidis I. Neottia cordata (Orchidaceae) at its southernmost distribution border in Europe: Threat status and effectiveness of Natura 2000 Network for its conservation. J. Nat. Conserv. 2019;48:27–35.

Margules CR, Sarkar S. Systematic Conservation Planning. Cambridge: Cambridge University Press; 2007.

Elith J, Leathwick J. The contribution of species distribution modelling to conservation prioritization. In: Moilanen A, Wilson AK, Possingham HP, editors. Spatial Conservation Prioritization. Quantitative Methods and Computational Tools. Oxford: Oxford University Press Inc.; 2009. pp. 70–93.

Thompson RN, Brooks-Pollock E. Detection, forecasting and control of infectious disease epidemics: Modelling outbreaks in humans, animals and plants. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2019;B374:20190038. PubMed PMC

Bertolino S, Sciandra C, Bosso L, Russo D, Lurz PWW, Di Febbraro M. Spatially-explicit models as tools for implementing effective management strategies for invasive alien mammals. Mamm. Rev. 2020;50:187–199.

Suggitt AJ, Platts PJ, Barata IM, Bennie J, Burgess MD, Bystriakova N, et al. Conducting robust ecological analyses with climate data. Oikos. 2017;126:1533–1541.

Rojas-Sandoval J, Meléndez-Ackerman EJ. Spatial patterns of distribution and abundance of Harrisia portoricensis, an endangered Caribbean cactus. J. Plant Ecol. 2013;6:489–498.

Smeraldo S, Bosso L, Fraissinet M, Bordignon L, Brunelli M, Ancillotto L, Russo D. Modelling risks posed by wind turbines and power lines to soaring birds: The black stork (Ciconia nigra) in Italy as a case study. Biodivers. Conserv. 2020;29:1959–1976.

Jensen AM, O'Neil NP, Iwaniuk AN, Burg TM. Landscape effects on the contemporary genetic structure of ruffed grouse (Bonasa umbellus) populations. Ecol. Evol. 2019;9(10):5572–5592. PubMed PMC

Araújo MB, Luoto M. The importance of biotic interactions for modelling species distributions under climate change. Glob. Ecol. Biogeogr. 2007;16:743–753.

van der Putten WH, Macel M, Visser ME. Predicting species distribution and abundance responses to climate change: Why it is essential to include biotic interactions across trophic levels. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2010;365:2025–2034. PubMed PMC

Duffy KJ, Johnson SD. Specialized mutualisms may constrain the geographical distribution of flowering plants. Proc. R. Soc. B. 2017;284:20171841. PubMed PMC

Engelhardt EK, Neuschulz EL, Hof C. Ignoring biotic interactions overestimates climate change effects: The potential response of the spotted nutcracker to changes in climate and resource plants. J. Biogeogr. 2020;47:143–154.

Chase MW, Cameron KM, Freudenstein JV, Pridgeon AM, Salazar G, van den Berg C, Schuiteman A. An updated classification of Orchidaceae. Bot. J. Linn. Soc. 2015;177:151–174.

Govaerts, R. World Checklist of Orchidaceae. Facilitated by the Royal Botanic Gardens, Kew. (2019) https://wcsp.science.kew.org/. Accessed 14 Dec 2019.

Waterman RJ, Bidartondo MI. Deception above, deception below: Linking pollination and mycorrhizal biology of orchids. J. Exp. Bot. 2008;59:1085–1096. PubMed

Claessens, J. & Kleynen, J. The Flower of the European Orchid. Form and Function. (Jean Claessens and Jacques Kleynen, 2011).

McCormick MK, Jacquemyn H. What constrains the distribution of orchid populations? New Phytol. 2014;202:392–400.

Kull T, Hutchings MJ. A comparative analysis of decline in the distribution ranges of orchid species in Estonia and the United Kingdom. Biol. Conserv. 2006;129:31–39.

Wotavová K, Balounová Z, Kindlmann P. Factors affecting persistence of terrestrial orchids in wet meadows and implications for their conservation in a changing agricultural landscape. Biol. Conserv. 2004;118:271–279.

Pfeifer M, Wiegand K, Heinrich W, Jetschke G. Long-term demographic fluctuations in an orchid species driven by weather: Implications for conservation planning. J. Appl. Ecol. 2006;43:313–324.

Tremblay RL. Trends in the pollination ecology of the Orchidaceae: Evolution and systematics. Can. J. Bot. 1992;70:642–650.

Cozzolino S, Scopece G. Specificity in pollination and consequences for postmating reproductive isolation in deceptive Mediterranean orchids. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2008;363:3037–3046. PubMed PMC

Peakall R, Ebert D, Poldy J, Barrow RA, Francke W, Bower CC, Schiestl FP. Pollinator specificity, floral odour chemistry and the phylogeny of Australian sexually deceptive Chiloglottis orchids: Implications for pollinator-driven speciation. New Phytol. 2010;188:437–450. PubMed

Jersáková J, Johnson SD, Kindlmann P. Mechanisms and evolution of deceptive pollination in orchids. Biol. Rev. 2006;81:219–235. PubMed

Gaskett AC. Orchid pollination by sexual perspectives. Biol. Rev. 2011;86:33–75. PubMed

Vereecken NJ, Dafni A, Cozzolino S. Pollination syndromes in mediterranean orchids—Implications for speciation, taxonomy and conservation. Bot. Rev. 2010;76:220–240.

Swarts ND, Dixon KW. Terrestrial orchid conservation in the age of extinction. Ann. Bot. 2009;104:543–556. PubMed PMC

Rasmussen NH. Terrestrial Orchids. From Seed to Mycotrophic Plant. Cambridge: Cambridge University Press; 1995.

Tsiftsis S, Tsiripidis I, Trigas P. Identifying important areas for orchid conservation in Crete. Eur. J. Environ. Sci. 2011;1:28–37.

Tsiftsis S, Tsiripidis I, Trigas P, Karagiannakidou V. The effects of presence/absence vs. continuous suitability data on reserve selection. Eur. J. Environ. Sci. 2012;2:125–137.

Kolanowska M. Niche conservatism and the future potential range of Epipactis helleborine (Orchidaceae) PLoS ONE. 2013;8(10):e77352. PubMed PMC

Kolanowska M, Rykaczewski M. From the past to the future glacial refugia, current distribution patterns and future potential range changes of Diodonopsis (Orchidaceae) representatives. Lankesteriana. 2017;17:315–327.

Kolanowska M, Kras M, Lipińska M, Mystkowska K, Szlachetko DL, Naczk AM. Global warming not so harmful for all plants—response of holomycotrophic orchid species for the future climate change. Sci. Rep. 2017;7:12704. PubMed PMC

Štípková Z, Romportl D, Černocká V, Kindlmann P. Factors associated with the distributions of orchids in the Zeleníky mountains, Czech Republic. Eur. J. Environ. Sci. 2017;7:135–145.

Martinis A, Chaideftou E, Minotou C, Poirazidis K. Spatial analysis of orchids diversity unveils hot-spots: The case of Zante Island, Greece. J. Agric. Inform. 2018;9:26–40.

Paulus HF, Gack C. Pollination of Ophrys (Orchidaceae) in Cyprus. Plant Syst. Evol. 1990;169:177–207.

Holt RD. Bringing the Hutchinsonian niche into the 21st century: Ecological and evolutionary perspectives. PNAS. 2009;106:19659–19665. PubMed PMC

Antonopoulos Z, Tsiftsis S. Atlas of the Greek Orchids. Rethymno: Mediterraneo Editions; 2017.

Waud M, Brys R, Van Landuyt W, Lievens B, Jacquemyn H. Mycorrhizal specificity does not limit the distribution of an endangered orchid species. Mol. Ecol. 2017;26:1687–1701. PubMed

Giannini TC, Costa WF, Borges RC, Miranda L, Priscila C, da Costa W, Saraiva A-M, Fonseca V-L-I. Climate change in the Eastern Amazon: Crop-pollinator and occurrence-restricted bees are potentially more affected. Reg. Environ. Change. 2020;20:9.

Elias MAS, Borges FJA, Bergamini LL, Franceschinelli EV, Sujii ER. Climate change threatens pollination services in tomato crops in Brazil. Agric. Ecosyst. Environ. 2017;239:257–264.

Burkle LA, Marlin JC, Knight TM. Plant–pollinator interactions over 120 years: Loss of species, co-occurrence, and function. Science. 2013;339:1611–1615. PubMed

Robbirt KM, Roberts DL, Hutchings MJ, Davy AJ. Potential disruption of pollination in a sexually deceptive orchid by climate change. Curr. Biol. 2014;24:2845–2849. PubMed

Schweiger O, Heikkinen RK, Harpke A, Hickler T, Klotz S, Kudrna O, et al. Increasing range mismatching of interacting species under global change is related to their ecological characteristics. Glob. Ecol. Biogeogr. 2012;21:88–99.

Holt RD. The microevolutionary consequences of climate change. Trends Ecol. Evol. 1990;5:311–315. PubMed

Saupe EE, Barve V, Myers CE, Soberón J, Barve N, Hensz CM, et al. Variation in niche and distribution model performance: The need for a priori assessment of key causal factors. Ecol. Model. 2012;237–238:11–22.

Early R, Sax DF. Climatic niche shifts between species’ native and naturalized ranges raise concern for ecological forecasts during invasions and climate change. Glob. Ecol. Biogeogr. 2014;23:1356–1365.

Breitkopf H, Onstein RE, Cafasso D, Schlüter PM, Cozzolino S. Multiple shifts to different pollinators fuelled rapid diversification in sexually deceptive Ophrys orchids. New Phytol. 2015;207:377–389. PubMed

Schlüter PM, Xu S, Gagliardini V, Whittle E, Shanklin J, Grossniklaus U, Schiestl FP. Stearoyl-acyl carrier protein desaturases are associated with floral isolation in sexually deceptive orchids. PNAS. 2011;108:5696–5791. PubMed PMC

Bilz M, Kell SP, Maxted N, Lansdown RV. European Red List of Vascular Plants. Brussels: Publications Office of the European Union; 2011.

Tsiftsis S, Tsiripidis I. Threat categories of the Greek orchids. Bot. Chron. 2016;21:43–74.

Paulus HF. Zur Bestäubungsbiologie einiger Ophrys-Arten in Nordthessalien mit Beschreibung von Ophrys olympiotissa aus der Ophrys argolica–ferrum-equinum-Gruppe (Orchidaceae und Insecta, Apoidea) J. Eur. Orch. 2011;43:498–526.

Hennecke M, Munzinger S. Ophrys subgen. Fuciflorae sect. Araniferae subsect. Argolicae. Ber. Arbeitskr. Heim. Orch. 2014;31:232–238.

Paulus HF. Deceived males—Pollination biology of the Mediterranean orchid genus Ophrys (Orchidaceae) J. Eur. Orch. 2006;38:303–353.

Rasmont, P. & Dehon, M. Anthophora plagiata. The IUCN Red List of Threatened Species 2015: e.T19199906A21776289. (2015). Downloaded on 06 December 2019.

Phillips SJ, Dudík M. Modeling of species distributions with Maxent: New extensions and a comprehensive evaluation. Ecography. 2008;31:161–175.

Phillips SJ, Anderson RP, Dudík M, Schapire RE, Blair ME. Opening the black box: An open-source release of Maxent. Ecography. 2017;40:887–893.

Elith J, Graham CH, Anderson RP, Dudik M, Ferrier S, Guisan A, et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography. 2006;29:129–151.

Tsiftsis S, Antonopoulos Z. Atlas of the Greek Orchids. Rethymno: Mediterraneo Editions; 2017.

Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A. Very high resolution interpolated climate surfaces for global land areas. Int. J. Climatol. 2005;25:1965–1978.

Fick SE, Hijmans RJ. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017;37:4302–4315.

IGME . Geological Map of Greece, 1:500,000. Cantabria: IGME; 1983.

Habel JC, Teucher M, Rödder D. Mark-release-recapture meets Species Distribution Models: Identifying micro-habitats of grassland butterflies in agricultural landscapes. PLoS ONE. 2018;13(11):e0207052. PubMed PMC

Kärcher O, Frank K, Walz A, Markovic D. Scale effects on the performance of niche-based models of freshwater fish distributions. Ecol. Model. 2019;405:33–42.

Phillips SJ. Transferability, sample selection bias and background data in presence-only modeling: A response to Peterson et al. (2007) Ecography. 2008;31:272–278.

Warren DL, Seifert SN. Ecological niche modeling in Maxent: The importance of model complexity and the performance of model selection criteria. Ecol. Appl. 2011;21:335–342. PubMed

Duffy KJ, Jacquemyn H. Climate change increases ecogeographical isolation between closely related plants. J. Ecol. 2019;107:167–177.

Wróblewska A, Mirski P. From past to future: Impact of climate change on range shifts and genetic diversity patterns of circumboreal plants. Reg. Environ. Change. 2018;18:409–424.

Zurell D, Pollock LJ, Thuiller W. Do joint species distribution models reliably detect interspecific interactions from co-occurrence data in homogenous environments? Ecography. 2018;41:1812–1819.

Jeschke JM, Strayer DL. Usefulness of bioclimatic models for studying climate change and invasive species. Ann. N. Y. Acad. Sci. 2008;1134:1–24. PubMed

Warren DL, Glor RE, Turelli M. Environmental niche equivalency versus conservatism: Quantitative approaches to niche evolution. Evolution. 2008;62:2868–2883. PubMed

Nunes LA, Pearson RG. A null biogeographical test for assessing ecological niche evolution. J. Biogeogr. 2017;44:1331–1343.

Martínez-Méndez N, Mejía O, Ortega J, Méndez-de la Cruz F. Climatic niche evolution in the viviparous Sceloporus torquatus group (Squamata: Phrynosomatidae) PeerJ. 2019;6:e6192. PubMed PMC

ESRI . ArcGIS Desktop: Release 10. Redlands: Environmental Systems Research Institute; 2012.

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...