Societal attention toward extinction threats: a comparison between climate change and biological invasions
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu srovnávací studie, časopisecké články, práce podpořená grantem
PubMed
32632156
PubMed Central
PMC7338409
DOI
10.1038/s41598-020-67931-5
PII: 10.1038/s41598-020-67931-5
Knihovny.cz E-zdroje
- MeSH
- extinkce biologická * MeSH
- klimatické změny * MeSH
- ohrožené druhy statistika a číselné údaje MeSH
- veřejné mínění * MeSH
- zachování přírodních zdrojů * MeSH
- zavlečené druhy statistika a číselné údaje MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
Public attention and interest in the fate of endangered species is a crucial prerequisite for effective conservation programs. Societal awareness and values will largely determine whether conservation initiatives receive necessary support and lead to adequate policy change. Using text data mining, we assessed general public attention in France, Germany and the United Kingdom toward climate change and biological invasions in relation to endangered amphibian, reptile, bird and mammal species. Our analysis revealed that public attention patterns differed among species groups and countries but was globally higher for climate change than for biological invasions. Both threats received better recognition in threatened than in non-threatened species, as well as in native species than in species from other countries and regions. We conclude that more efficient communication regarding the threat from biological invasions should be developed, and that conservation practitioners should take advantage of the existing attention toward climate change.
CESAM Centre for Environmental and Marine Studies University of Aveiro Aveiro Portugal
Helsinki Institute of Sustainability Science University of Helsinki Helsinki Finland
Leibniz Institute of Freshwater Ecology and Inland Fisheries Berlin Germany
Université Paris Dauphine PSL Research University CNRS Paris France
Université Paris Saclay CNRS AgroParisTech Ecologie Systématique Evolution 91405 Orsay France
Zobrazit více v PubMed
Knight AT, et al. Knowing but not doing: selecting priority conservation areas and the research–implementation gap. Conserv. Biol. 2008;22:610–617. PubMed
Schindler S, et al. From research to implementation: nature conservation in the Eastern Rhodopes mountains (Greece and Bulgaria), European Grenn Belt. J. Nat. Conserv. 2011;19:193–201.
Schultz PW. Conservation means behavior. Conserv. Biol. 2011;25:1080–1083. PubMed
Stokes DL. Things we like: human preferences among similar organisms and implications for conservation. Hum. Ecol. 2007;35:361–369.
Kim JY, Do Y, Im RY, Kim GY, Joo GJ. Use of large web-based data to identify public interest and trends related to endangered species. Biodivers. Conserv. 2014;23:2961–2984.
Ladle RJ, et al. Conservation culturomics. Front. Ecol. Environ. 2016;14:269–275.
Sutherland WJ, et al. A 2018 horizon scan of emerging issues for global conservation and biological diversity. Trends Ecol. Evol. 2018;33:47–58. PubMed
Roll U, et al. Using Wikipedia page views to explore the cultural importance of global reptiles. Biol. Conserv. 2016;204:42–50.
Correia RA, et al. Nomenclature instability in species culturomic assessments: why synonyms matter. Ecol. Indic. 2018;90:74–78.
Jarić I, et al. On the overlap between scientific and societal taxonomic attentions—Insights for conservation. Sci. Tot. Environ. 2019;648:772–778. PubMed
Retka J, et al. Assessing cultural ecosystem services of a large marine protected area through social media photographs. Ocean Coast. Manage. 2019;176:40–48.
Toivonen T, et al. Social media data for conservation science: A methodological overview. Biol. Conserv. 2019;233:298–315.
Mccallum ML, Bury GW. Google search patterns suggest declining interest in the environment. Biodivers. Conserv. 2013;22:1355–1367.
Anderegg WR, Goldsmith GR. Public interest in climate change over the past decade and the effects of the ‘climategate’ media event. Environ. Res. Lett. 2014;9:054005. doi: 10.1088/1748-9326/9/5/054005. DOI
Funk SM, Rusowsky D. The importance of cultural knowledge and scale for analysing internet search data as a proxy for public interest toward the environment. Biodivers. Conserv. 2014;23:3101–3112.
Proulx R, Massicotte P, Pépino M. Googling trends in conservation biology. Conserv. Biol. 2014;28:44–51. PubMed
Veríssimo D, MacMillan DC, Smith RJ, Crees J, Davies ZG. Has climate change taken prominence over biodiversity conservation? Bioscience. 2014;64:625–629.
Nghiem LT, Papworth SK, Lim FK, Carrasco LR. Analysis of the capacity of Google Trends to measure interest in conservation topics and the role of online news. PLoS ONE. 2016;11:e0152802. doi: 10.1371/journal.pone.0152802. PubMed DOI PMC
Burivalova Z, Butler RA, Wilcove DS. Analyzing Google search data to debunk myths about the public's interest in conservation. Front. Ecol. Environ. 2018;16:509–514.
Legagneux P, et al. Our house is burning: discrepancy in climate change vs biodiversity coverage in the media as compared to scientific literature. Front. Ecol. Evol. 2018;5:175. doi: 10.3389/fevo.2017.00175. DOI
Correia RA, et al. Inferring public interest from search engine data requires caution. Front. Ecol. Environ. 2019;17:254–255.
Troumbis AY. The time and timing components of conservation culturomics cycles and scenarios of public interest in the Google era. Biodivers. Conserv. 2019;28:1717–1727.
Dukes JS, Mooney HA. Does global change increase the success of biological invaders? Trends Ecol. Evol. 1999;14:135–139. PubMed
Clavero M, García-Berthou E. Invasive species are a leading cause of animal extinctions. Trends Ecol. Evol. 2005;20:110. PubMed
Walther GR, et al. Alien species in a warmer world: risks and opportunities. Trends Ecol. Evol. 2009;24:686–693. PubMed
Bellard C, Bertelsmeier C, Leadley P, Thuiller W, Courchamp F. Impacts of climate change on the future of biodiversity. Ecol. Lett. 2012;15:365–377. PubMed PMC
McClelland GT, et al. Climate change leads to increasing population density and impacts of a key island invader. Ecol. Appl. 2018;28:212–224. PubMed
Courchamp F, et al. Invasion biology: specific problems and possible solutions. Trends Ecol. Evol. 2017;32:13–22. PubMed
Jarić I, Courchamp F, Gessner J, Roberts DL. Data mining in conservation research using Latin and vernacular species names. PeerJ. 2016;4:e2202. doi: 10.7717/peerj.2202. PubMed DOI PMC
Correia RA, Jepson P, Malhado ACM, Ladle RJ. Internet scientific name frequency as an indicator of cultural salience of biodiversity. Ecol. Indic. 2017;78:549–555.
Correia RA, Jepson PR, Malhado ACM, Ladle RJ. Familiarity breeds content: assessing bird species popularity with culturomics. PeerJ. 2016;4:e1728. doi: 10.7717/peerj.1728. PubMed DOI PMC
Miller JR. Biodiversity conservation and the extinction of experience. Trends Ecol. Evol. 2005;20:430–434. PubMed
Davies T, et al. Popular interest in vertebrates does not reflect extinction risk and is associated with bias in conservation investment. PLoS ONE. 2018;13:e0203694. doi: 10.1371/journal.pone.0203694. PubMed DOI PMC
IUCN. The IUCN Red List of Threatened Species. Version 2017-2. https://www.iucnredlist.org (2017).
Capstick S, Whitmarsh L, Poortinga W, Pidgeon N, Upham P. International trends in public perceptions of climate change over the past quarter century. WIREs Clim. Change. 2015;6:35–61.
Vaz AS, et al. The progress of interdisciplinarity in invasion science. Ambio. 2017;46:428–442. PubMed PMC
IPBES . In: Global Assessment Report on Biodiversity and Ecosystem Services of the Intergovernmental Science-Policy Platform on Biodiversity and Ecosystem Services. Brondizio ES, Settele J, Díaz S, Ngo HT, editors. IPBES Secretariat: Bonn; 2019.
Antilla L. Climate of scepticism: US newspaper coverage of the science of climate change. Glob. Environ. Change. 2005;15:338–352.
Russell JC, Blackburn TM. The rise of invasive species denialism. Trends Ecol. Evol. 2017;32:3–6. PubMed
Ricciardi A, Ryan R. The exponential growth of invasive species denialism. Biol. Invasions. 2018;20:549–553.
García-Llorente M, Martín-López B, González JA, Alcorlo P, Montes C. Social perceptions of the impacts and benefits of invasive alien species: implications for management. Biol. Conserv. 2008;141:2969–2983.
Shackleton RT, et al. Explaining people's perceptions of invasive alien species: a conceptual framework. J. Environ. Manage. 2019;229:10–26. PubMed
Hoegh-Guldberg O, et al. Assisted colonization and rapid climate change. Science. 2008;321:345–346. PubMed
Thomas CD. Translocation of species, climate change, and the end of trying to recreate past ecological communities. Trends Ecol. Evol. 2011;26:216–221. PubMed
Jones HP, et al. Invasive mammal eradication on islands results in substantial conservation gains. Proc. Natl. Acad. Sci. USA. 2016;113:4033–4038. PubMed PMC
Bellard C, Cassey P, Blackburn TM. Alien species as a driver of recent extinctions. Biol. Lett. 2016;12:20150623. PubMed PMC
Kouba A, Petrusek A, Kozák P. Continental-wide distribution of crayfish species in Europe: update and maps. Knowl. Manag. Aquat. Ec. 2014;413:05.
Keller RP, Geist J, Jeschke JM, Kühn I. Invasive species in Europe: ecology, status, and policy. Environ. Sci. Eur. 2011;23:23.
Hulme PE, editor. Handbook of Alien Species in Europe. Dordrecht: Springer; 2009.
Bellard C, Jeschke JM. A spatial mismatch between invader impacts and research publications. Conserv. Biol. 2016;30:230–232. PubMed
Bellard C, Jeschke JM, Leroy B, Mace GM. Insights from modeling studies on how climate change affects invasive alien species geography. Ecol. Evol. 2018;8:5688–5700. PubMed PMC
Spatz DR, et al. Globally threatened vertebrates on islands with invasive species. Sci. Adv. 2017;3:e1603080. PubMed PMC
Combe FJ, et al. After the ice age: the impact of post-glacial dispersal on the phylogeography of a small mammal, Muscardinus avellanarius. Front. Ecol. Evol. 2016;4:72.
Spada G, Galassi G. Extent and dynamic evolution of the lost land aquaterra since the Last Glacial Maximum. C. R. Geosci. 2017;349:151–158.
Veitch CR, Clout MN. Human dimensions in the management of invasive species in New Zealand. In: McNeely JA, editor. The Great Reshuffling: Human Dimensions of Invasive Alien Species. Cambridge, UK, IUCN: Gland; 2001. pp. 63–71.
Kidd LR, Gregg EA, Bekessy SA, Robinson JA, Garrard GE. Tweeting for their lives: Visibility of threatened species on twitter. J. Nat. Conserv. 2018;46:106–109.
Fernández-Bellon D, Kane A. Natural history films raise species awareness: a big data approach. Conserv. Lett. 2020;13:e12678. PubMed PMC
Clucas B, McHugh K, Caro T. Flagship species on covers of US conservation and nature magazines. Biodivers. Conserv. 2008;17:1517–1528.
Albert C, Luque GM, Courchamp F. The twenty most charismatic species. PLoS ONE. 2018;13:e0199149. PubMed PMC
Courchamp F, et al. The paradoxical extinction of the most charismatic animals. PLoS Biol. 2018;16:e2003997. PubMed PMC
Martín-Forés I, Martín-López B, Montes C. Anthropomorphic factors influencing Spanish conservation policies of vertebrates. Int. J. Biodivers. 2013;2013:142670.
Żmihorski M, Dziarska-Pałac J, Sparks TH, Tryjanowski P. Ecological correlates of the popularity of birds and butterflies in Internet information resources. Oikos. 2013;122:183–190.
Jarić I, et al. The role of species charisma in biological invasions. Front. Ecol. Environ. 2020 doi: 10.1002/fee.2195. DOI
Miralles A, Raymond M, Lecointre G. Empathy and compassion toward other species decrease with evolutionary divergence time. Sci. Rep. 2019;9:19555. PubMed PMC
Wilson JR, Procheş Ş, Braschler B, Dixon ES, Richardson DM. The (bio)diversity of science reflects the interests of society. Front. Ecol. Environ. 2007;5:409–414.
Larson BM. The war of the roses: demilitarizing invasion biology. Front. Ecol. Environ. 2005;3:495–500.
Wallach AD, Bekoff M, Batavia C, Nelson MP, Ramp D. Summoning compassion to address the challenges of conservation. Conserv. Biol. 2018;32:1255–1265. PubMed
Johns D, DellaSala DA. Caring, killing, euphemism and George Orwell: how language choice undercuts our mission. Biol. Conserv. 2017;211:174–176.
Devictor V, Meinard Y. Empowering biodiversity knowledge. Conserv. Biol. 2020;34:527–529. PubMed
Trull N, Böhm M, Carr J. Patterns and biases of climate change threats in the IUCN Red List. Conserv. Biol. 2018;32:135–147. PubMed
Keith DA, et al. Detecting extinction risk from climate change by IUCN Red List criteria. Conserv. Biol. 2014;28:810–819. PubMed
Pearson RG, et al. Life history and spatial traits predict extinction risk due to climate change. Nat. Clim. Change. 2014;4:217–221.
Jarić I, Lennox RJ, Kalinkat G, Cvijanović G, Radinger J. Susceptibility of European freshwater fish to climate change: Species profiling based on life-history and environmental characteristics. Glob Change Biol. 2019;25:448–458. PubMed