Strain and Charge Doping Fingerprints of the Strong Interaction between Monolayer MoS2 and Gold

. 2020 Aug 06 ; 11 (15) : 6112-6118. [epub] 20200717

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32633525

Gold-mediated exfoliation of MoS2 has recently attracted considerable interest. The strong interaction between MoS2 and Au facilitates preferential production of centimeter-sized monolayer MoS2 with near-unity yield and provides a heterostructure system noteworthy from a fundamental standpoint. However, little is known about the detailed nature of the MoS2-Au interaction and its evolution with the MoS2 thickness. Here, we identify the specific vibrational and binding energy fingerprints of this interaction using Raman and X-ray photoelectron spectroscopy, which indicate substantial strain and charge doping in monolayer MoS2. Tip-enhanced Raman spectroscopy reveals heterogeneity of the MoS2-Au interaction at the nanoscale, reflecting the spatial nonconformity between the two materials. Micro-Raman spectroscopy shows that this interaction is strongly affected by the roughness and cleanliness of the underlying Au. Our results elucidate the nature of the MoS2-Au interaction and guide strain and charge doping engineering of MoS2.

Zobrazit více v PubMed

Magda G. Z.; Pető J.; Dobrik G.; Hwang C.; Biró L. P.; Tapasztó L. Exfoliation of Large-Area Transition Metal Chalcogenide Single Layers. Sci. Rep. 2015, 5, 14714.10.1038/srep14714. PubMed DOI PMC

Desai S. B.; Madhvapathy S. R.; Amani M.; Kiriya D.; Hettick M.; Tosun M.; Zhou Y.; Dubey M.; Ager J. W.; Chrzan D.; et al. Gold-Mediated Exfoliation of Ultralarge Optoelectronically-Perfect Monolayers. Adv. Mater. 2016, 28, 4053–4058. 10.1002/adma.201506171. PubMed DOI

Velický M.; Donnelly G. E.; Hendren W. R.; McFarland S.; Scullion D.; DeBenedetti W. J. I.; Correa G. C.; Han Y.; Wain A. J.; Hines M. A.; et al. Mechanism of Gold-Assisted Exfoliation of Centimeter-Sized Transition-Metal Dichalcogenide Monolayers. ACS Nano 2018, 12, 10463–10472. 10.1021/acsnano.8b06101. PubMed DOI

Guo S.; Yang D.; Li B.; Dong Q.; Li Z.; Zaghloul M. E.. 2019 IEEE 62nd International Midwest Symposium on Circuits and Systems, 4–7 Aug. 2019; pp 884–887.

Gramling H. M.; Towle C. M.; Desai S. B.; Sun H.; Lewis E. C.; Nguyen V. D.; Ager J. W.; Chrzan D.; Yeatman E. M.; Javey A.; et al. Spatially Precise Transfer of Patterned Monolayer WS2 and MoS2 with Features Larger than 104 μm2 Directly from Multilayer Sources. ACS Appl. Electron. Mater. 2019, 1, 407–416. 10.1021/acsaelm.8b00128. DOI

Nguyen V.; Gramling H.; Towle C.; Li W.; Lien D.-H.; Kim H.; Chrzan D. C.; Javey A.; Xu K.; Ager J.; et al. Deterministic Assembly of Arrays of Lithographically Defined WS2 and MoS2 Monolayer Features Directly From Multilayer Sources Into Van Der Waals Heterostructures. J. Micro Nano-Manuf. 2019, 7, 041006.10.1115/1.4045259. DOI

Liu F.; Wu W.; Bai Y.; Chae S. H.; Li Q.; Wang J.; Hone J.; Zhu X.-Y. Disassembling 2D van der Waals crystals into macroscopic monolayers and reassembling into artificial lattices. Science 2020, 367, 903–906. 10.1126/science.aba1416. PubMed DOI

Sun H.; Sirott E. W.; Mastandrea J.; Gramling H. M.; Zhou Y.; Poschmann M.; Taylor H. K.; Ager J. W.; Chrzan D. C. Theory of thin-film-mediated exfoliation of van der Waals bonded layered materials. Phys. Rev. Mater. 2018, 2, 094004.10.1103/PhysRevMaterials.2.094004. DOI

Blue B. T.; Jernigan G. G.; Le D.; Fonseca J. J.; Lough S. D.; Thompson J. E.; Smalley D. D.; Rahman T. S.; Robinson J. T.; Ishigami M. Metallicity of 2H-MoS2 induced by Au hybridization. 2D Mater. 2020, 7, 025021.10.1088/2053-1583/ab6d34. DOI

Donnelly G. E.; Velický M.; Hendren W. R.; Bowman R. M.; Huang F. Achieving extremely high optical contrast of atomically-thin MoS2. Nanotechnology 2020, 31, 145706.10.1088/1361-6528/ab6237. PubMed DOI

Michail A.; Delikoukos N.; Parthenios J.; Galiotis C.; Papagelis K. Optical detection of strain and doping inhomogeneities in single layer MoS2. Appl. Phys. Lett. 2016, 108, 173102.10.1063/1.4948357. DOI

Lloyd D.; Liu X.; Christopher J. W.; Cantley L.; Wadehra A.; Kim B. L.; Goldberg B. B.; Swan A. K.; Bunch J. S. Band Gap Engineering with Ultralarge Biaxial Strains in Suspended Monolayer MoS2. Nano Lett. 2016, 16, 5836–5841. 10.1021/acs.nanolett.6b02615. PubMed DOI

Pető J.; Dobrik G.; Kukucska G.; Vancsó P.; Koós A. A.; Koltai J.; Nemes-Incze P.; Hwang C.; Tapasztó L. Moderate strain induced indirect bandgap and conduction electrons in MoS2 single layers. npj 2D Mater. Appl. 2019, 3, 39.10.1038/s41699-019-0123-5. DOI

Chakraborty B.; Bera A.; Muthu D. V. S.; Bhowmick S.; Waghmare U. V.; Sood A. K. Symmetry-dependent phonon renormalization in monolayer MoS2 transistor. Phys. Rev. B: Condens. Matter Mater. Phys. 2012, 85, 161403.10.1103/PhysRevB.85.161403. DOI

Melnikova-Kominkova Z.; Jurkova K.; Vales V.; Drogowska-Horná K.; Frank O.; Kalbac M. Strong and efficient doping of monolayer MoS2 by a graphene electrode. Phys. Chem. Chem. Phys. 2019, 21, 25700–25706. 10.1039/C9CP04993B. PubMed DOI

Gong C.; Huang C.; Miller J.; Cheng L.; Hao Y.; Cobden D.; Kim J.; Ruoff R. S.; Wallace R. M.; Cho K.; et al. Metal Contacts on Physical Vapor Deposited Monolayer MoS2. ACS Nano 2013, 7, 11350–11357. 10.1021/nn4052138. PubMed DOI

Sørensen S. G.; Füchtbauer H. G.; Tuxen A. K.; Walton A. S.; Lauritsen J. V. Structure and Electronic Properties of In Situ Synthesized Single-Layer MoS2 on a Gold Surface. ACS Nano 2014, 8, 6788–6796. 10.1021/nn502812n. PubMed DOI

Sohier T.; Ponomarev E.; Gibertini M.; Berger H.; Marzari N.; Ubrig N.; Morpurgo A. F. Enhanced Electron-Phonon Interaction in Multivalley Materials. Phys. Rev. X 2019, 9, 031019.10.1103/PhysRevX.9.031019. DOI

Scheuschner N.; Ochedowski O.; Kaulitz A.-M.; Gillen R.; Schleberger M.; Maultzsch J. Photoluminescence of freestanding single- and few-layer MoS2. Phys. Rev. B: Condens. Matter Mater. Phys. 2014, 89, 125406.10.1103/PhysRevB.89.125406. DOI

Rodriguez A.; Verhagen T.; Kalbac M.; Vejpravova J.; Frank O. Imaging Nanoscale Inhomogeneities and Edge Delamination in As-Grown MoS2 Using Tip-Enhanced Photoluminescence. Phys. Status Solidi RRL 2019, 13, 1900381.10.1002/pssr.201900381. DOI

Konečný M.; Bartošík M.; Mach J.; Švarc V.; Nezval D.; Piastek J.; Procházka P.; Cahlík A.; Šikola T. Kelvin Probe Force Microscopy and Calculation of Charge Transport in a Graphene/Silicon Dioxide System at Different Relative Humidity. ACS Appl. Mater. Interfaces 2018, 10, 11987–11994. 10.1021/acsami.7b18041. PubMed DOI

Pimenta M. A.; del Corro E.; Carvalho B. R.; Fantini C.; Malard L. M. Comparative Study of Raman Spectroscopy in Graphene and MoS2-type Transition Metal Dichalcogenides. Acc. Chem. Res. 2015, 48, 41–47. 10.1021/ar500280m. PubMed DOI

Li H.; Contryman A. W.; Qian X.; Ardakani S. M.; Gong Y.; Wang X.; Weisse J. M.; Lee C. H.; Zhao J.; Ajayan P. M.; et al. Optoelectronic crystal of artificial atoms in strain-textured molybdenum disulphide. Nat. Commun. 2015, 6, 7381.10.1038/ncomms8381. PubMed DOI PMC

Rice C.; Young R. J.; Zan R.; Bangert U.; Wolverson D.; Georgiou T.; Jalil R.; Novoselov K. S. Raman-scattering measurements and first-principles calculations of strain-induced phonon shifts in monolayer MoS2. Phys. Rev. B: Condens. Matter Mater. Phys. 2013, 87, 081307.10.1103/PhysRevB.87.081307. DOI

Trainer D. J.; Zhang Y.; Bobba F.; Xi X.; Hla S.-W.; Iavarone M. The Effects of Atomic-Scale Strain Relaxation on the Electronic Properties of Monolayer MoS2. ACS Nano 2019, 13, 8284–8291. 10.1021/acsnano.9b03652. PubMed DOI

Yasuda S.; Takahashi R.; Osaka R.; Kumagai R.; Miyata Y.; Okada S.; Hayamizu Y.; Murakoshi K. Out-of-Plane Strain Induced in a Moiré Superstructure of Monolayer MoS2 and MoSe2 on Au(111). Small 2017, 13, 1700748.10.1002/smll.201700748. PubMed DOI

Bruix A.; Füchtbauer H. G.; Tuxen A. K.; Walton A. S.; Andersen M.; Porsgaard S.; Besenbacher F.; Hammer B.; Lauritsen J. V. In Situ Detection of Active Edge Sites in Single-Layer MoS2 Catalysts. ACS Nano 2015, 9, 9322–9330. 10.1021/acsnano.5b03199. PubMed DOI

Mattila S.; Leiro J. A.; Heinonen M.; Laiho T. Core level spectroscopy of MoS2. Surf. Sci. 2006, 600, 5168–5175. 10.1016/j.susc.2006.08.038. DOI

Yu Y.; Nam G.-H.; He Q.; Wu X.-J.; Zhang K.; Yang Z.; Chen J.; Ma Q.; Zhao M.; Liu Z.; et al. High phase-purity 1T′-MoS2- and 1T′-MoSe2-layered crystals. Nat. Chem. 2018, 10, 638–643. 10.1038/s41557-018-0035-6. PubMed DOI

Yin X.; Wang Q.; Cao L.; Tang C. S.; Luo X.; Zheng Y.; Wong L. M.; Wang S. J.; Quek S. Y.; Zhang W.; et al. Tunable inverted gap in monolayer quasi-metallic MoS2 induced by strong charge-lattice coupling. Nat. Commun. 2017, 8, 486.10.1038/s41467-017-00640-2. PubMed DOI PMC

Peña-Álvarez M.; del Corro E.; Morales-García Á.; Kavan L.; Kalbac M.; Frank O. Single Layer Molybdenum Disulfide under Direct Out-of-Plane Compression: Low-Stress Band-Gap Engineering. Nano Lett. 2015, 15, 3139–3146. 10.1021/acs.nanolett.5b00229. PubMed DOI

Lee C.; Yan H.; Brus L. E.; Heinz T. F.; Hone J.; Ryu S. Anomalous Lattice Vibrations of Single- and Few-Layer MoS2. ACS Nano 2010, 4, 2695–2700. 10.1021/nn1003937. PubMed DOI

Zhang X.; Qiao X.-F.; Shi W.; Wu J.-B.; Jiang D.-S.; Tan P.-H. Phonon and Raman scattering of two-dimensional transition metal dichalcogenides from monolayer, multilayer to bulk material. Chem. Soc. Rev. 2015, 44, 2757–2785. 10.1039/C4CS00282B. PubMed DOI

Scheuschner N.; Gillen R.; Staiger M.; Maultzsch J. Interlayer resonant Raman modes in few-layer MoS2. Phys. Rev. B: Condens. Matter Mater. Phys. 2015, 91, 235409.10.1103/PhysRevB.91.235409. DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...