Hybridization Directionality Governs the Interaction Strength between MoS2 and Metals
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
40827358
PubMed Central
PMC12395477
DOI
10.1021/acs.nanolett.5c03200
Knihovny.cz E-zdroje
- Klíčová slova
- MoS2, Raman spectroscopy, electronic structure, hybridization, metals, photoemission spectroscopy,
- Publikační typ
- časopisecké články MeSH
Gold-assisted exfoliation has emerged as an effective method for producing large-area monolayers of two-dimensional materials, yet its underlying mechanism remains poorly understood. While other metals also hold promise for facilitating large-area exfoliation, their practical application is hindered by oxidation in air. To address this, we fabricate heterostructures of monolayer MoS2 with polycrystalline gold, silver, copper, palladium, cobalt, and nickel via direct mechanical exfoliation of bulk molybdenite under controlled atmospheric conditions. Our photoemission spectroscopy, vibrational spectroscopy, and density functional theory results reveal the metal-dependent modification of monolayer MoS2. We identify the hybridization directionality and, in particular, the asymmetry between the bottom and top sulfur atoms as previously overlooked key factors in weakening the MoS2-MoS2 van der Waals interaction, ultimately enabling selective monolayer exfoliation.
Hartree Centre STFC Daresbury Laboratory Daresbury WA4 4AD United Kingdom
Institute of Electronic Packaging Technology Technische Universität Dresden 01062 Dresden Germany
Institute of Physics CAS Na Slovance 1999 2 182 21 Prague 8 Czech Republic
Zobrazit více v PubMed
Pushkarna I., Pásztor A., Renner C.. Twist-Angle-Dependent Electronic Properties of Exfoliated Single Layer MoS2 on Au(111) Nano Lett. 2023;23:9406–9412. doi: 10.1021/acs.nanolett.3c02804. PubMed DOI PMC
Shen J., Xie X., Li W., Deng C., Ma Y., Chen H., Fu H., Li F.-S., Yuan B., Ji C.. et al. Metal-Assisted Vacuum Transfer Enabling in Situ Visualization of Charge Density Waves in Monolayer MoS2 . Sci. Adv. 2025;11:eadr9753. doi: 10.1126/sciadv.adr9753. PubMed DOI PMC
Liu Y., Guo J., Zhu E., Liao L., Lee S.-J., Ding M., Shakir I., Gambin V., Huang Y., Duan X.. Approaching the Schottky–Mott Limit in van der Waals Metal–Semiconductor Junctions. Nature. 2018;557:696–700. doi: 10.1038/s41586-018-0129-8. PubMed DOI
Pirker L., Honolka J., Velický M., Frank O.. When 2D Materials Meet Metals. 2D Materials. 2024;11:022003. doi: 10.1088/2053-1583/ad286b. DOI
Magda G. Z., Pető J., Dobrik G., Hwang C., Biró L. P., Tapasztó L.. Exfoliation of Large-Area Transition Metal Chalcogenide Single Layers. Sci. Rep. 2015;5:14714. doi: 10.1038/srep14714. PubMed DOI PMC
Desai S. B., Madhvapathy S. R., Amani M., Kiriya D., Hettick M., Tosun M., Zhou Y., Dubey M., Ager J. W., Chrzan D.. et al. Gold-Mediated Exfoliation of Ultralarge Optoelectronically-Perfect Monolayers. Adv. Mater. 2016;28:4053–4058. doi: 10.1002/adma.201506171. PubMed DOI
Velický M., Donnelly G. E., Hendren W. R., McFarland S., Scullion D., DeBenedetti W. J. I., Correa G. C., Han Y., Wain A. J., Hines M. A.. et al. Mechanism of Gold-Assisted Exfoliation of Centimeter-Sized Transition-Metal Dichalcogenide Monolayers. ACS Nano. 2018;12:10463–10472. doi: 10.1021/acsnano.8b06101. PubMed DOI
Huang Y., Pan Y.-H., Yang R., Bao L.-H., Meng L., Luo H.-L., Cai Y.-Q., Liu G.-D., Zhao W.-J., Zhou Z.. et al. Universal Mechanical Exfoliation of Large-Area 2D Crystals. Nat. Commun. 2020;11:2453. doi: 10.1038/s41467-020-16266-w. PubMed DOI PMC
Johnston A. C., Khondaker S. I.. Can Metals Other than Au be Used for Large Area Exfoliation of MoS2 Monolayers? Adv. Mater. Interfaces. 2022;9:2200106. doi: 10.1002/admi.202200106. DOI
Sun H., Sirott E. W., Mastandrea J., Gramling H. M., Zhou Y., Poschmann M., Taylor H. K., Ager J. W., Chrzan D.. Theory of Thin-Film-Mediated Exfoliation of van der Waals Bonded Layered Materials. Physical Review Materials. 2018;2:094004. doi: 10.1103/PhysRevMaterials.2.094004. DOI
Velický M., Rodriguez A., Bouša M., Krayev A. V., Vondráček M., Honolka J., Ahmadi M., Donnelly G. E., Huang F., Abruña H. D.. et al. Strain and Charge Doping Fingerprints of the Strong Interaction Between Monolayer MoS2 and Gold. J. Phys. Chem. Lett. 2020;11:6112–6118. doi: 10.1021/acs.jpclett.0c01287. PubMed DOI PMC
Ziewer J., Ghosh A., Hanušová M., Pirker L., Frank O., Velický M., Grüning M., Huang F.. Strain-Induced Decoupling Drives Gold-Assisted Exfoliation of Large-Area Monolayer 2D Crystals. Adv. Mater. 2025;37:2419184. doi: 10.1002/adma.202419184. PubMed DOI PMC
Corletto A., Fronzi M., Joannidis A. K., Sherrell P. C., Ford M. J., Winkler D. A., Shapter J. G., Bullock J., Ellis A. V.. A Predictive Model for Monolayer-Selective Metal-Mediated MoS2 Exfoliation Incorporating Electrostatics. Adv. Mater. Interfaces. 2024;11:2300686. doi: 10.1002/admi.202300686. DOI
Velický M., Donnelly G. E., Hendren W. R., DeBenedetti W. J. I., Hines M. A., Novoselov K. S., Abruña H. D., Huang F., Frank O.. The Intricate Love Affairs Between MoS2 and Metallic Substrates. Adv. Mater. Interfaces. 2020;7:2001324. doi: 10.1002/admi.202001324. DOI
Fu Q., Dai J.-Q., Huang X.-Y., Dai Y.-Y., Pan Y.-H., Yang L.-L., Sun Z.-Y., Miao T.-M., Zhou M.-F., Zhao L.. et al. One-Step Exfoliation Method for Plasmonic Activation of Large-Area 2D Crystals. Adv. Sci. 2022;9:2204247. doi: 10.1002/advs.202204247. PubMed DOI PMC
Chen S., Li B., Dai C., Zhu L., Shen Y., Liu F., Deng S., Ming F.. Controlling Gold-Assisted Exfoliation of Large-area MoS2 Monolayers with External Pressure. Nanomaterials. 2024;14:1418. doi: 10.3390/nano14171418. PubMed DOI PMC
Dan Z., Sarmasti Emami R., Feraco G., Vavali M., Gerlach D., Sarott M. F., Zhu Y., Rudolf P., Grubišić-Čabo A.. Role of Chalcogen Atoms in in Situ Exfoliation of Large-Area 2D Semiconducting Transition Metal Dichalcogenides. Front. Nanotechnol. 2025;7:1553976. doi: 10.3389/fnano.2025.1553976. DOI
Sun Z., Han X., Cai Z., Yue S., Geng D., Rong D., Zhao L., Zhang Y.-Q., Cheng P., Chen L.. et al. Exfoliation of 2D van der Waals Crystals in Ultrahigh Vacuum for Interface Engineering. Science Bulletin. 2022;67:1345–1351. doi: 10.1016/j.scib.2022.05.017. PubMed DOI
Grubišić-Čabo A., Michiardi M., Sanders C. E., Bianchi M., Curcio D., Phuyal D., Berntsen M. H., Guo Q., Dendzik M.. In Situ Exfoliation Method of Large-Area 2D Materials. Adv. Sci. 2023;10:2301243. doi: 10.1002/advs.202301243. PubMed DOI PMC
Haider G., Gastaldo M., Karim B., Plšek J., Varade V., Volochanskyi O., Vejpravová J., Kalbáč M.. Highly Efficient Bulk-Crystal-Sized Exfoliation of 2D Materials under Ultrahigh Vacuum. ACS Applied Electronic Materials. 2024;6:2301–2308. doi: 10.1021/acsaelm.3c01824. DOI
Velický M., Toth P. S.. From Two-Dimensional Materials to Their Heterostructures: An Electrochemist’s Perspective. Applied Materials Today. 2017;8:68–103. doi: 10.1016/j.apmt.2017.05.003. DOI
Mak K. F., Lee C., Hone J., Shan J., Heinz T. F.. Atomically Thin MoS2: A New Direct-Gap Semiconductor. Phys. Rev. Lett. 2010;105:136805. doi: 10.1103/PhysRevLett.105.136805. PubMed DOI
Rodríguez A., Velický M., Řáhová J., Zólyomi V., Koltai J., Kalbáč M., Frank O.. Activation of Raman Modes in Monolayer Transition Metal Dichalcogenides Through Strong Interaction With Gold. Phys. Rev. B. 2022;105:195413. doi: 10.1103/PhysRevB.105.195413. DOI
Farmanbar M., Brocks G.. First-Principles Study of van der Waals Interactions and Lattice Mismatch at MoS2/Metal Interfaces. Phys. Rev. B. 2016;93:085304. doi: 10.1103/PhysRevB.93.085304. DOI
Liu F.. Mechanical Exfoliation of Large Area 2D Materials from vdW Crystals. Prog. Surf. Sci. 2021;96:100626. doi: 10.1016/j.progsurf.2021.100626. DOI
Wandelt, K. Encyclopedia of Interfacial Chemistry: Surface Science and Electrochemistry; Elsevier, 2018.
Gong C., Colombo L., Wallace R. M., Cho K.. The Unusual Mechanism of Partial Fermi Level Pinning at Metal–MoS2 Interfaces. Nano Lett. 2014;14:1714–1720. doi: 10.1021/nl403465v. PubMed DOI
Shen P.-C., Su C., Lin Y., Chou A.-S., Cheng C.-C., Park J.-H., Chiu M.-H., Lu A.-Y., Tang H.-L., Tavakoli M. M.. et al. Ultralow Contact Resistance Between Semimetal and Monolayer Semiconductors. Nature. 2021;593:211–217. doi: 10.1038/s41586-021-03472-9. PubMed DOI
Choi S., Shaolin Z., Yang W.. Layer-Number-Dependent Work Function of MoS2 Nanoflakes. Journal of the Korean Physical Society. 2014;64:1550–1555. doi: 10.3938/jkps.64.1550. DOI
Kerelsky A., Nipane A., Edelberg D., Wang D., Zhou X., Motmaendadgar A., Gao H., Xie S., Kang K., Park J.. et al. Absence of a Band Gap at the Interface of a Metal and Highly Doped Monolayer MoS2 . Nano Lett. 2017;17:5962–5968. doi: 10.1021/acs.nanolett.7b01986. PubMed DOI
Padilha J. E., Peelaers H., Janotti A., Van de Walle C. G.. Nature and Evolution of the Band-Edge States in MoS2: From Monolayer to Bulk. Phys. Rev. B. 2014;90:205420. doi: 10.1103/PhysRevB.90.205420. DOI
Dendzik M., Bruix A., Michiardi M., Ngankeu A. S., Bianchi M., Miwa J. A., Hammer B., Hofmann P., Sanders C. E.. Substrate-Induced Semiconductor-to-Metal Transition in Monolayer WS2 . Phys. Rev. B. 2017;96:235440. doi: 10.1103/PhysRevB.96.235440. DOI
Bruix A., Füchtbauer H. G., Tuxen A. K., Walton A. S., Andersen M., Porsgaard S., Besenbacher F., Hammer B., Lauritsen J. V.. In Situ Detection of Active Edge Sites in Single-Layer MoS2 Catalysts. ACS Nano. 2015;9:9322–9330. doi: 10.1021/acsnano.5b03199. PubMed DOI
Ding S., Liu C., Li Z., Lu Z., Tao Q., Lu D., Chen Y., Tong W., Liu L., Li W.. et al. Ag-Assisted Dry Exfoliation of Large-Scale and Continuous 2D Monolayers. ACS Nano. 2024;18:1195–1203. doi: 10.1021/acsnano.3c11573. PubMed DOI
Sahu S., Haider G., Rodriguez A., Plšek J., Mergl M., Kalbáč M., Frank O., Velický M.. Large-Area Mechanically-Exfoliated Two-Dimensional Materials on Arbitrary Substrates. Adv. Mater. Technol. 2023;8:2201993. doi: 10.1002/admt.202201993. DOI
Heyl M., Grützmacher S., Rühl S., Ligorio G., Koch N., List-Kratochvil E. J.. Low Temperature Heating of Silver-Mediated Exfoliation of MoS2 . Adv. Mater. Interfaces. 2022;9:2200362. doi: 10.1002/admi.202200362. DOI
Kokkin D. L., Zhang R., Steimle T. C., Wyse I. A., Pearlman B. W., Varberg T. D.. Au–S Bonding Revealed from the Characterization of Diatomic Gold Sulfide, AuS. J. Phys. Chem. A. 2015;119:11659–11667. doi: 10.1021/acs.jpca.5b08781. PubMed DOI
Sarkar S., Kratzer P.. Signatures of the Dichalcogenide–Gold Interaction in the Vibrational Spectra of MoS2 and MoSe2 on Au(111) J. Phys. Chem. C. 2021;125:26645–26651. doi: 10.1021/acs.jpcc.1c08594. DOI
Chakraborty B., Bera A., Muthu D. V. S., Bhowmick S., Waghmare U. V., Sood A. K.. Symmetry-Dependent Phonon Renormalization in Monolayer MoS2 Transistor. Phys. Rev. B. 2012;85:161403. doi: 10.1103/PhysRevB.85.161403. DOI
Sohier T., Ponomarev E., Gibertini M., Berger H., Marzari N., Ubrig N., Morpurgo A. F.. Enhanced Electron-Phonon Interaction in Multivalley Materials. Physical Review X. 2019;9:031019. doi: 10.1103/PhysRevX.9.031019. DOI
Pollmann E., Sleziona S., Foller T., Hagemann U., Gorynski C., Petri O., Madauß L., Breuer L., Schleberger M.. Large-Area, Two-Dimensional MoS2 Exfoliated on Gold: Direct Experimental Access to the Metal–Semiconductor Interface. ACS Omega. 2021;6:15929–15939. doi: 10.1021/acsomega.1c01570. PubMed DOI PMC
Kim H., Ko H., Kim S. M., Rho H.. Polarization-Dependent Anisotropic Raman Response of CVD-Grown Vertically Stacked MoS2 Layers. J. Raman Spectrosc. 2020;51:774–780. doi: 10.1002/jrs.5850. DOI
Miwa J. A., Ulstrup S., Sørensen S. G., Dendzik M., Čabo A. G., Bianchi M., Lauritsen J. V., Hofmann P.. Electronic Structure of Epitaxial Single-Layer MoS2 . Phys. Rev. Lett. 2015;114:046802. doi: 10.1103/PhysRevLett.114.046802. PubMed DOI
Wang Y., Cong C., Qiu C., Yu T.. Raman Spectroscopy Study of Lattice Vibration and Crystallographic Orientation of Monolayer MoS2 Under Uniaxial Strain. Small. 2013;9:2857–2861. doi: 10.1002/smll.201202876. PubMed DOI
Michail A., Delikoukos N., Parthenios J., Galiotis C., Papagelis K.. Optical Detection of Strain and Doping Inhomogeneities in Single Layer MoS2 . Appl. Phys. Lett. 2016;108:173102. doi: 10.1063/1.4948357. DOI
Scheuschner N., Gillen R., Staiger M., Maultzsch J.. Interlayer Resonant Raman Modes in Few-Layer MoS2 . Phys. Rev. B. 2015;91:235409. doi: 10.1103/PhysRevB.91.235409. DOI
Cortijo-Campos S., Kung P., Prieto C., de Andres A.. Forbidden and Second-Order Phonons in Raman Spectra of Single and Few-Layer MoS2 Close to C Exciton Resonance. J. Phys. Chem. C. 2021;125:23904–23910. doi: 10.1021/acs.jpcc.1c06632. DOI
Bagheri M., Komsa H.-P.. High-Throughput Computation of Raman Spectra from First Principles. Sci. Data. 2023;10:80. doi: 10.1038/s41597-023-01988-5. PubMed DOI PMC
Blue B. T., Jernigan G. G., Le D., Fonseca J. J., Lough S. D., Thompson J. E., Smalley D. D., Rahman T. S., Robinson J. T., Ishigami M.. Metallicity of 2H-MoS2 Induced by Au Hybridization. 2D Mater. 2020;7:025021. doi: 10.1088/2053-1583/ab6d34. DOI
Tan S. J. R., Sarkar S., Zhao X., Luo X., Luo Y. Z., Poh S. M., Abdelwahab I., Zhou W., Venkatesan T., Chen W.. et al. Temperature-and Phase-Dependent Phonon Renormalization in 1T’- MoS2 . ACS Nano. 2018;12:5051–5058. doi: 10.1021/acsnano.8b02649. PubMed DOI
Carvalho B. R., Malard L. M., Alves J. M., Fantini C., Pimenta M. A.. Symmetry-Dependent Exciton-Phonon Coupling in 2D and Bulk MoS2 Observed by Resonance Raman Scattering. Phys. Rev. Lett. 2015;114:136403. doi: 10.1103/PhysRevLett.114.136403. PubMed DOI
Fan J.-H., Gao P., Zhang A.-M., Zhu B.-R., Zeng H.-L., Cui X.-D., He R., Zhang Q.-M.. Resonance Raman Scattering in Bulk 2H-MX2 (M= Mo, W; X= S, Se) and Monolayer MoS2 . J. Appl. Phys. 2014;115:053527. doi: 10.1063/1.4862859. DOI
Krayev A., Isotta E., Hoang L., Yang J. A., Neilson K., Wang M., Haughn N., Pop E., Mannix A., Balogun O.. et al. Excitation Laser Energy Dependence of the Gap-Mode TERSs Spectra of WS2 and MoS2 on Silver. ACS Photonics. 2025;12:1535–1544. doi: 10.1021/acsphotonics.4c02257. DOI