Strain-Induced Decoupling Drives Gold-Assisted Exfoliation of Large-Area Monolayer 2D Crystals
Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
Engineering and Physical Sciences Research Council
CZ.02.01.01/00/22_008/0004558
European Regional Development Fund
GA22-04408S
Grantová Agentura České Republiky
Science Foundation Ireland - Ireland
PubMed
39972663
PubMed Central
PMC11983244
DOI
10.1002/adma.202419184
Knihovny.cz E-zdroje
- Klíčová slova
- 2D materials, MoS2, Raman spectroscopy, decoupling, gold‐assisted exfoliation, strain,
- Publikační typ
- časopisecké články MeSH
Gold-assisted exfoliation (GAE) is a groundbreaking mechanical exfoliation technique that produces centimeter-scale single-crystal monolayers of 2D materials. Such large, high-quality films offer unparalleled advantages over the micron-sized flakes typically produced by conventional exfoliation techniques, significantly accelerating the research and technological advancements in the field of 2D materials. Despite its wide applications, the fundamental mechanism of GAE remains poorly understood. In this study, using MoS₂ on Au as a model system, ultra-low frequency Raman spectroscopy is employed to elucidate how the interlayer interactions within MoS2 crystals are impacted by the gold substrate. The results reveal that the coupling at the first MoS2-MoS2 interface between the adhered layer on the gold substrate and the adjacent layer is substantially weakened, with the binding force being reduced to nearly zero. This renders the first interface the weakest point in the system, thereby the crystal preferentially cleaves at this junction, generating large-area monolayers with sizes comparable to the parent crystal. Biaxial strain in the adhered layer, induced by the gold substrate, is identified as the driving factor for the decoupling effect. The strain-induced decoupling effect is established as the primary mechanism of GAE, which can also play a significant role in general mechanical exfoliations.
Zobrazit více v PubMed
Velický M., Donnelly G. E., Hendren W. R., McFarland S., Scullion D., DeBenedetti W. J. I., Correa G. C., Han Y., Wain A. J., Hines M. A., Muller D. A., Novoselov K. S., Abruńa H. D., Bowman R. M., Santos E. J. G., Huang F., ACS Nano 2018, 12, 10463. PubMed
Huang Y., Pan Y. H., Yang R., Bao L. H., Meng L., Luo H. L., Cai Y. Q., Liu G. D., Zhao W. J., Zhou Z., Wu, Zhu Z. L., Huang M., Liu L. W., Liu L., Cheng P., Wu K. H., Tian S. B., Gu C. Z., Shi Y. G., Guo Y. F., Cheng Z. G., Hu J. P., Zhao L., Yang G. H., Sutter E., Sutter P., Wang Y. L., Ji W., Zhou X. J., et al., Nat. Commun. 2020, 11, 2453. PubMed PMC
Desai S. B., Madhvapathy S. R., Amani M., Kiriya D., Hettick M., Tosun M., Zhou Y., Dubey M., Ager J. W., Chrzan D., Javey A., Adv. Mater. 2016, 28, 4053. PubMed
Cabo G., Michiardi M., Sanders C. E., Bianchi M., Curcio D., Phuyal D., Berntsen M. H., Guo Q., Dendzik M. I., Adv. Sci. 2023, 10, 2301243. PubMed PMC
Novoselov K. S., Geim A. K., Morozov S. V., Jiang D., Zhang Y., Dubonos S. V., Grigorieva I. V., Firsov A. A., Science 2004, 306, 666. PubMed
Gao X., Zheng L., Luo F., Qian J., Wang J., Yan M., Wang W., Wu Q., Tang J., Cao Y., Tan C., Tang J., Zhu M., Wang Y., Li Y., Sun L., Gao G., Yin J., Lin L., Liu Z., Qin S., Peng H., Nat. Commun. 2022, 13, 5410. PubMed PMC
Li L., Wang Q., Wu F., Xu Q., Tian J., Huang Z., Wang Q., Zhao X., Zhang Q., Fan Q., Li X., Peng Y., Zhang Y., Ji K., Zhi A., Sun H., Zhu M., Zhu J., Lu N., Lu Y., Wang S., Bai, Xu Y., Yang W., Li N., Shi D., Xian L., Liu K., Du L., Zhang G., Nat. Commun. 2024, 15, 1825. PubMed PMC
Wang Q., Li N., Tang J., Zhu J., Zhang Q., Jia Q., Lu Y., Wei Z., Yu H., Zhao Y., Guo Y., Gu L., Sun G., Yang W., Yang R., Shi D., Zhang G., Nano Lett. 2020, 20, 7193. PubMed
Chen Y., Fang F., Zhang N., NPJ 2D Mater Appl 2024, 8, 17.
Kang T., Tang T. W., Pan B., Liu H., Zhang K., Luo Z., ACS Mater Au. 2022, 2, 665. PubMed PMC
Hus S. M., Ge R., Chen P. A., Liang L., Donnelly G. E., Ko W., Huang F., Chiang M. H., Li A. P., Nat. Nanotech. 2021, 16, 58. PubMed
Liu F., Wu W., Bai Y., Chae S. H., Li Q., Wang J., Hone J., Zhu X. Y., Science 2020, 367, 903. PubMed
Wu K., Wang H., Yang M., Liu L., Sun Z., Hu G., Song Y., Han X., Guo J., Wu K., Feng B., Shen C., Huang Y., Shi Y., Cheng Z., Yang H., Bao L., Pantelides S. T., Gao H. J., Adv. Mater. 2024, 36, 2313511. PubMed
Huang Y., Wang Y. K., Huang X. Y., Zhang G. H., Han X., Yang Y., Gao Y., Meng L., Wang Y., Geng G. Z., Liu L. W., Zhao L., Cheng Z. H., Liu X. F., Ren Z. F., Yang H. X., Hao Y., Gao H. J., Zhou X. Y., Ji W., Wang Y. L., InfoMat. 2022, 4, e12274.
Islam M. A., Kim J. H., Schropp A., Kalita H., Choudhary N., Weitzman D., Khondaker S. I., Oh K. H., Roy T., Chung H. S., Jung Y., Nano Lett. 2017, 17, 6157. PubMed
Zaborski G. Jr., Majchrzak P. E., Lai S., Johnson A. C., Saunders A. P., Zhu Z., Deng Y., Lu D., Hashimoto M., Shen Z. X., Liu F., Macroscopic uniform 2D moiré superlattices with controllable angles, https://arxiv.org/pdf/2407.02600 (accessed: July 2024).
Bianchi M., Hsieh K., Porat E. J., Dirnberger F., Klein J., Mosina K., Sofer Z., Rudenko A. N., Katsnelson M. I., Chen Y. P., Rösner M., Hofmann P., Phys. Rev. B 2023, 108, 195410.
Pirker L., Honolka J., Velický M., Frank O., 2D Mater. 2024, 11, 022003.
Guan L., Xing B., Niu X., Wang D., Yu Y., Zhang S., Yan X., Wang Y., Sha J., Chem. Commun. 2018, 54, 595. PubMed
Johnston A. C., Khondaker S. I., Adv. Mater. Interfaces 2022, 9, 2200106.
Moon J. Y., Kim M., Kim S.‐I., Xu S., Choi J. H., Whang D., Watanabe K., Taniguchi T., Park D. S., Seo J., Cho S. H., Son S. K., Lee J. H., Sci. Adv. 2020, 6, eabc6601. PubMed PMC
Velický M., Donnelly G. E., Hendren W. R., DeBenedetti W. J. I., Hines M. A., Novoselov K. S., Abruña H. D., Huang F., Frank O., Adv. Mater. Interfaces 2020, 7, 2001324.
Liu F., Prog. Surf. Sci. 2021, 96, 100626.
Sun H., Sirott E. W., Mastandrea J., Gramling H. M., Zhou Y., Poschmann M., Taylor H. K., Ager J. W., Chrzan D. C., Phys. Rev. Mater. 2018, 2, 094004.
Pizzi G., Milana S., Ferrari A. C., Marzari N., Gibertini M., ACS Nano 2021, 15, 12509. PubMed PMC
Zhang X., Han W. P., Wu J. B., Milana S., Lu Y., Li Q. Q., Ferrari A. C., Tan P. H., Phys. Rev. B 2012, 87, 115413.
Zhao Y., Luo X., Li H., Zhang J., Araujo P. T., Gan C. K., Wu J., Zhang H., Quek S. Y., Dresselhaus M. S., Xiong Q., Nano Lett. 2013, 13, 1007. PubMed
Tan P. H., Han W. P., Zhao W. J., Wu Z. H., Chang K., Wang H., Wang, Bonini N., Marzari N., Pugno N., Savini G., Lombardo A., Ferrari A. C., Nat. Mater. 2012, 11, 294. PubMed
Velický M., Rodriguez A., Bouša M., Krayev A. V., Vondráček M., Honolka J., Ahmadi M., Donnelly G. E., Huang F., Abrunã H. D., Novoselov K. S., Frank O., J. Phys. Chem. Lett. 2020, 11, 6112. PubMed PMC
Li S. L., Miyazaki H., Song H., Kuramochi H., Nakaharai S., Tsukagoshi K., ACS Nano 2012, 6, 7381. PubMed
Li H., Zhang Q., Yap C. C. R., Tay B. K., Edwin T. H. T., Olivier A., Baillargeat D., Adv. Funct. Mater. 2012, 22, 1385.
Lloyd D., Liu X., Christopher J. W., Cantley L., Wadehra A., Kim B. L., Goldberg B. B., Swan A. K., Bunch J. S., Nano Lett. 2016, 16, 5836. PubMed
Michail A., Delikoukos N., Parthenios J., Galiotis C., Papagelis K., Appl. Phys. Lett. 2016, 108, 173102.
Conley H. J., Wang B., Ziegler J. I., Haglund R. F., Pantelides S. T., Bolotin K. I., Nano Lett. 2013, 13, 3626. PubMed
Peña T., Chowdhury S. A., Azizimanesh A., Sewaket A., Askari H., Wu S. M., 2D Mater. 2021, 8, 045001.
Kukucska G., Koltai J., Phys. Status Solidi B 2017, 254, 1700184.
Chakraborty B., Bera A., Muthu D. V. S., Bhowmick S., Waghmare U. V., Sood A. K., Phys. Rev. B 2012, 85, 161403.
Huang X., Zhang L., Liu L., Qin Y., Fu Q., Wu Q., YANG R., LV J. P., Ni Z., Liu L., Ji W., Wang Y., Zhou X., Huang Y., Sci. China Inf. Sci. 2021, 64, 140406.
Van Baren J., Ye G., Yan J. A., Ye Z., Rezaie P., Yu P., Liu Z., He R., Lui C. H., 2D Mater. 2019, 6, 025022.
Khestanova E., Guinea F., Fumagalli L., Geim A. K., Grigorieva I. V., Nat. Commun. 2016, 7, 12587. PubMed PMC
Kim Y., Herlinger P., Taniguchi T., Watanabe K., Smet J. H., ACS Nano 2019, 13, 14182. PubMed
Zhao M., Casiraghi C., Parvez K., Chem. Soc. Rev. 2024, 53, 3036. PubMed
Ci P., Chen Y., Kang J., Suzuki R., Choe H. S., Suh J., Ko C., Park T., Shen K., Iwasa Y., Tongay S., Ager J. W., Wang L. W., Wu J., Nano Lett. 2017, 17, 4982. PubMed
Giannozzi P., Baroni S., Bonini N., Calandra M., Car R., Cavazzoni C., Ceresoli D., Chiarotti G. L., Cococcioni M., Dabo I., Dal Corso A., De Gironcoli S., Fabris S., Fratesi G., Gebauer R., Gerstmann U., Gougoussis C., Kokalj A., Lazzeri M., Martin‐Samos L., Marzari N., Mauri F., Mazzarello R., Paolini S., Pasquarello A., Paulatto L., Sbraccia C., Scandolo S., Sclauzero G., Seitsonen A. P., et al., J. Phys. Cond. Matt. 2009, 21, 395502. PubMed
Giannozzi P., Andreussi O., Brumme T., Bunau O., Buongiorno Nardelli M., Calandra M., Car R., Cavazzoni C., Ceresoli D., Cococcioni M., Colonna N., Carnimeo I., Dal Corso A., De Gironcoli S., Delugas P., Distasio R. A., Ferretti A., Floris A., Fratesi, Fugallo G., Gebauer R., Gerstmann U., Giustino F., Gorni T., Jia J., Kawamura M., Ko H. Y., Kokalj A., Kücükbenli E., Lazzeri M., et al., J. Phys. Cond. Matt. 2017, 29, 465901. PubMed
Dal Corso A., Comput. Mater. Sci. 2014, 95, 337.
Perdew J. P., Burke K., Ernzerhof M., Phys. Rev. Lett. 1996, 77, 3865. PubMed
Monkhorst H. J., Pack J. D., Spec. Point. Brillonin‐Zone Integrat. 1976, 13, 5188.
Billeter S. R., Turner A. J., Thiel W., Phys. Chem. Chem. Phys. 2000, 2, 2177.
Grimme S., Antony J., Ehrlich S., Krieg H., J. Chem. Phys. 2010, 132, 154104. PubMed
Momma K., Izumi F., J. Appl. Crystallogr. 2011, 44, 1272.
Hybridization Directionality Governs the Interaction Strength between MoS2 and Metals