Strain-Induced Decoupling Drives Gold-Assisted Exfoliation of Large-Area Monolayer 2D Crystals

. 2025 Apr ; 37 (14) : e2419184. [epub] 20250219

Status PubMed-not-MEDLINE Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39972663

Grantová podpora
Engineering and Physical Sciences Research Council
CZ.02.01.01/00/22_008/0004558 European Regional Development Fund
GA22-04408S Grantová Agentura České Republiky
Science Foundation Ireland - Ireland

Gold-assisted exfoliation (GAE) is a groundbreaking mechanical exfoliation technique that produces centimeter-scale single-crystal monolayers of 2D materials. Such large, high-quality films offer unparalleled advantages over the micron-sized flakes typically produced by conventional exfoliation techniques, significantly accelerating the research and technological advancements in the field of 2D materials. Despite its wide applications, the fundamental mechanism of GAE remains poorly understood. In this study, using MoS₂ on Au as a model system, ultra-low frequency Raman spectroscopy is employed to elucidate how the interlayer interactions within MoS2 crystals are impacted by the gold substrate. The results reveal that the coupling at the first MoS2-MoS2 interface between the adhered layer on the gold substrate and the adjacent layer is substantially weakened, with the binding force being reduced to nearly zero. This renders the first interface the weakest point in the system, thereby the crystal preferentially cleaves at this junction, generating large-area monolayers with sizes comparable to the parent crystal. Biaxial strain in the adhered layer, induced by the gold substrate, is identified as the driving factor for the decoupling effect. The strain-induced decoupling effect is established as the primary mechanism of GAE, which can also play a significant role in general mechanical exfoliations.

Zobrazit více v PubMed

Velický M., Donnelly G. E., Hendren W. R., McFarland S., Scullion D., DeBenedetti W. J. I., Correa G. C., Han Y., Wain A. J., Hines M. A., Muller D. A., Novoselov K. S., Abruńa H. D., Bowman R. M., Santos E. J. G., Huang F., ACS Nano 2018, 12, 10463. PubMed

Huang Y., Pan Y. H., Yang R., Bao L. H., Meng L., Luo H. L., Cai Y. Q., Liu G. D., Zhao W. J., Zhou Z., Wu, Zhu Z. L., Huang M., Liu L. W., Liu L., Cheng P., Wu K. H., Tian S. B., Gu C. Z., Shi Y. G., Guo Y. F., Cheng Z. G., Hu J. P., Zhao L., Yang G. H., Sutter E., Sutter P., Wang Y. L., Ji W., Zhou X. J., et al., Nat. Commun. 2020, 11, 2453. PubMed PMC

Desai S. B., Madhvapathy S. R., Amani M., Kiriya D., Hettick M., Tosun M., Zhou Y., Dubey M., Ager J. W., Chrzan D., Javey A., Adv. Mater. 2016, 28, 4053. PubMed

Cabo G., Michiardi M., Sanders C. E., Bianchi M., Curcio D., Phuyal D., Berntsen M. H., Guo Q., Dendzik M. I., Adv. Sci. 2023, 10, 2301243. PubMed PMC

Novoselov K. S., Geim A. K., Morozov S. V., Jiang D., Zhang Y., Dubonos S. V., Grigorieva I. V., Firsov A. A., Science 2004, 306, 666. PubMed

Gao X., Zheng L., Luo F., Qian J., Wang J., Yan M., Wang W., Wu Q., Tang J., Cao Y., Tan C., Tang J., Zhu M., Wang Y., Li Y., Sun L., Gao G., Yin J., Lin L., Liu Z., Qin S., Peng H., Nat. Commun. 2022, 13, 5410. PubMed PMC

Li L., Wang Q., Wu F., Xu Q., Tian J., Huang Z., Wang Q., Zhao X., Zhang Q., Fan Q., Li X., Peng Y., Zhang Y., Ji K., Zhi A., Sun H., Zhu M., Zhu J., Lu N., Lu Y., Wang S., Bai, Xu Y., Yang W., Li N., Shi D., Xian L., Liu K., Du L., Zhang G., Nat. Commun. 2024, 15, 1825. PubMed PMC

Wang Q., Li N., Tang J., Zhu J., Zhang Q., Jia Q., Lu Y., Wei Z., Yu H., Zhao Y., Guo Y., Gu L., Sun G., Yang W., Yang R., Shi D., Zhang G., Nano Lett. 2020, 20, 7193. PubMed

Chen Y., Fang F., Zhang N., NPJ 2D Mater Appl 2024, 8, 17.

Kang T., Tang T. W., Pan B., Liu H., Zhang K., Luo Z., ACS Mater Au. 2022, 2, 665. PubMed PMC

Hus S. M., Ge R., Chen P. A., Liang L., Donnelly G. E., Ko W., Huang F., Chiang M. H., Li A. P., Nat. Nanotech. 2021, 16, 58. PubMed

Liu F., Wu W., Bai Y., Chae S. H., Li Q., Wang J., Hone J., Zhu X. Y., Science 2020, 367, 903. PubMed

Wu K., Wang H., Yang M., Liu L., Sun Z., Hu G., Song Y., Han X., Guo J., Wu K., Feng B., Shen C., Huang Y., Shi Y., Cheng Z., Yang H., Bao L., Pantelides S. T., Gao H. J., Adv. Mater. 2024, 36, 2313511. PubMed

Huang Y., Wang Y. K., Huang X. Y., Zhang G. H., Han X., Yang Y., Gao Y., Meng L., Wang Y., Geng G. Z., Liu L. W., Zhao L., Cheng Z. H., Liu X. F., Ren Z. F., Yang H. X., Hao Y., Gao H. J., Zhou X. Y., Ji W., Wang Y. L., InfoMat. 2022, 4, e12274.

Islam M. A., Kim J. H., Schropp A., Kalita H., Choudhary N., Weitzman D., Khondaker S. I., Oh K. H., Roy T., Chung H. S., Jung Y., Nano Lett. 2017, 17, 6157. PubMed

Zaborski G. Jr., Majchrzak P. E., Lai S., Johnson A. C., Saunders A. P., Zhu Z., Deng Y., Lu D., Hashimoto M., Shen Z. X., Liu F., Macroscopic uniform 2D moiré superlattices with controllable angles, https://arxiv.org/pdf/2407.02600 (accessed: July 2024).

Bianchi M., Hsieh K., Porat E. J., Dirnberger F., Klein J., Mosina K., Sofer Z., Rudenko A. N., Katsnelson M. I., Chen Y. P., Rösner M., Hofmann P., Phys. Rev. B 2023, 108, 195410.

Pirker L., Honolka J., Velický M., Frank O., 2D Mater. 2024, 11, 022003.

Guan L., Xing B., Niu X., Wang D., Yu Y., Zhang S., Yan X., Wang Y., Sha J., Chem. Commun. 2018, 54, 595. PubMed

Johnston A. C., Khondaker S. I., Adv. Mater. Interfaces 2022, 9, 2200106.

Moon J. Y., Kim M., Kim S.‐I., Xu S., Choi J. H., Whang D., Watanabe K., Taniguchi T., Park D. S., Seo J., Cho S. H., Son S. K., Lee J. H., Sci. Adv. 2020, 6, eabc6601. PubMed PMC

Velický M., Donnelly G. E., Hendren W. R., DeBenedetti W. J. I., Hines M. A., Novoselov K. S., Abruña H. D., Huang F., Frank O., Adv. Mater. Interfaces 2020, 7, 2001324.

Liu F., Prog. Surf. Sci. 2021, 96, 100626.

Sun H., Sirott E. W., Mastandrea J., Gramling H. M., Zhou Y., Poschmann M., Taylor H. K., Ager J. W., Chrzan D. C., Phys. Rev. Mater. 2018, 2, 094004.

Pizzi G., Milana S., Ferrari A. C., Marzari N., Gibertini M., ACS Nano 2021, 15, 12509. PubMed PMC

Zhang X., Han W. P., Wu J. B., Milana S., Lu Y., Li Q. Q., Ferrari A. C., Tan P. H., Phys. Rev. B 2012, 87, 115413.

Zhao Y., Luo X., Li H., Zhang J., Araujo P. T., Gan C. K., Wu J., Zhang H., Quek S. Y., Dresselhaus M. S., Xiong Q., Nano Lett. 2013, 13, 1007. PubMed

Tan P. H., Han W. P., Zhao W. J., Wu Z. H., Chang K., Wang H., Wang, Bonini N., Marzari N., Pugno N., Savini G., Lombardo A., Ferrari A. C., Nat. Mater. 2012, 11, 294. PubMed

Velický M., Rodriguez A., Bouša M., Krayev A. V., Vondráček M., Honolka J., Ahmadi M., Donnelly G. E., Huang F., Abrunã H. D., Novoselov K. S., Frank O., J. Phys. Chem. Lett. 2020, 11, 6112. PubMed PMC

Li S. L., Miyazaki H., Song H., Kuramochi H., Nakaharai S., Tsukagoshi K., ACS Nano 2012, 6, 7381. PubMed

Li H., Zhang Q., Yap C. C. R., Tay B. K., Edwin T. H. T., Olivier A., Baillargeat D., Adv. Funct. Mater. 2012, 22, 1385.

Lloyd D., Liu X., Christopher J. W., Cantley L., Wadehra A., Kim B. L., Goldberg B. B., Swan A. K., Bunch J. S., Nano Lett. 2016, 16, 5836. PubMed

Michail A., Delikoukos N., Parthenios J., Galiotis C., Papagelis K., Appl. Phys. Lett. 2016, 108, 173102.

Conley H. J., Wang B., Ziegler J. I., Haglund R. F., Pantelides S. T., Bolotin K. I., Nano Lett. 2013, 13, 3626. PubMed

Peña T., Chowdhury S. A., Azizimanesh A., Sewaket A., Askari H., Wu S. M., 2D Mater. 2021, 8, 045001.

Kukucska G., Koltai J., Phys. Status Solidi B 2017, 254, 1700184.

Chakraborty B., Bera A., Muthu D. V. S., Bhowmick S., Waghmare U. V., Sood A. K., Phys. Rev. B 2012, 85, 161403.

Huang X., Zhang L., Liu L., Qin Y., Fu Q., Wu Q., YANG R., LV J. P., Ni Z., Liu L., Ji W., Wang Y., Zhou X., Huang Y., Sci. China Inf. Sci. 2021, 64, 140406.

Van Baren J., Ye G., Yan J. A., Ye Z., Rezaie P., Yu P., Liu Z., He R., Lui C. H., 2D Mater. 2019, 6, 025022.

Khestanova E., Guinea F., Fumagalli L., Geim A. K., Grigorieva I. V., Nat. Commun. 2016, 7, 12587. PubMed PMC

Kim Y., Herlinger P., Taniguchi T., Watanabe K., Smet J. H., ACS Nano 2019, 13, 14182. PubMed

Zhao M., Casiraghi C., Parvez K., Chem. Soc. Rev. 2024, 53, 3036. PubMed

Ci P., Chen Y., Kang J., Suzuki R., Choe H. S., Suh J., Ko C., Park T., Shen K., Iwasa Y., Tongay S., Ager J. W., Wang L. W., Wu J., Nano Lett. 2017, 17, 4982. PubMed

Giannozzi P., Baroni S., Bonini N., Calandra M., Car R., Cavazzoni C., Ceresoli D., Chiarotti G. L., Cococcioni M., Dabo I., Dal Corso A., De Gironcoli S., Fabris S., Fratesi G., Gebauer R., Gerstmann U., Gougoussis C., Kokalj A., Lazzeri M., Martin‐Samos L., Marzari N., Mauri F., Mazzarello R., Paolini S., Pasquarello A., Paulatto L., Sbraccia C., Scandolo S., Sclauzero G., Seitsonen A. P., et al., J. Phys. Cond. Matt. 2009, 21, 395502. PubMed

Giannozzi P., Andreussi O., Brumme T., Bunau O., Buongiorno Nardelli M., Calandra M., Car R., Cavazzoni C., Ceresoli D., Cococcioni M., Colonna N., Carnimeo I., Dal Corso A., De Gironcoli S., Delugas P., Distasio R. A., Ferretti A., Floris A., Fratesi, Fugallo G., Gebauer R., Gerstmann U., Giustino F., Gorni T., Jia J., Kawamura M., Ko H. Y., Kokalj A., Kücükbenli E., Lazzeri M., et al., J. Phys. Cond. Matt. 2017, 29, 465901. PubMed

Dal Corso A., Comput. Mater. Sci. 2014, 95, 337.

Perdew J. P., Burke K., Ernzerhof M., Phys. Rev. Lett. 1996, 77, 3865. PubMed

Monkhorst H. J., Pack J. D., Spec. Point. Brillonin‐Zone Integrat. 1976, 13, 5188.

Billeter S. R., Turner A. J., Thiel W., Phys. Chem. Chem. Phys. 2000, 2, 2177.

Grimme S., Antony J., Ehrlich S., Krieg H., J. Chem. Phys. 2010, 132, 154104. PubMed

Momma K., Izumi F., J. Appl. Crystallogr. 2011, 44, 1272.

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Hybridization Directionality Governs the Interaction Strength between MoS2 and Metals

. 2025 Aug 27 ; 25 (34) : 12995-13002. [epub] 20250819

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...