Overcoming challenges in human saliva gene expression measurements
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
32636420
PubMed Central
PMC7341869
DOI
10.1038/s41598-020-67825-6
PII: 10.1038/s41598-020-67825-6
Knihovny.cz E-zdroje
- MeSH
- bakteriální RNA genetika MeSH
- dospělí MeSH
- exprese genu * MeSH
- komplementární DNA genetika MeSH
- kvantitativní polymerázová řetězová reakce metody MeSH
- lidé MeSH
- RNA ribozomální 18S genetika MeSH
- RNA analýza MeSH
- sliny chemie metabolismus MeSH
- stanovení celkové genové exprese metody MeSH
- transkriptom MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- bakteriální RNA MeSH
- komplementární DNA MeSH
- RNA ribozomální 18S MeSH
- RNA MeSH
Saliva, as a non-invasive and easily accessible biofluid, has been shown to contain RNA biomarkers for prediction and diagnosis of several diseases. However, systematic analysis done by our group identified two problematic issues not coherently described before: (1) most of the isolated RNA originates from the oral microbiome and (2) the amount of isolated human RNA is comparatively low. The degree of bacterial contamination showed ratios up to 1:900,000, so that only about one out of 900,000 RNA copies was of human origin, but the RNA quality (average RIN 6.7 + /- 0.8) allowed for qRT-PCR. Using 12 saliva samples from healthy donors, we modified the methodology to (1) select only human RNA during cDNA synthesis by aiming at the poly(A)+-tail and (2) introduced a pre-amplification of human RNA before qRT-PCR. Further, the manufacturer's criteria for successful pre-amplification (Ct values ≤ 35 for unamplified cDNA) had to be replaced by (3) proofing linear pre-amplification for each gene, thus, increasing the number of evaluable samples up to 70.6%. When considering theses three modifications unbiased gene expression analysis on human salivary RNA can be performed.
Department of Radiation Oncology Northwestern University Chicago IL 60611 USA
Department of Urology Bundeswehrkrankenhaus Ulm Ulm Germany
Institute for Hematology and Blood Transfusion Hospital Na Bulovce Prague Czech Republic
Zobrazit více v PubMed
Caporossi L, Santoro A, Papaleo B. Saliva as an analytical matrix: State of the art and application for biomonitoring. Biomarkers. 2010 doi: 10.3109/1354750X.2010.481364. PubMed DOI
Maron JL, et al. Neonatal salivary analysis reveals global developmental gene expression changes in the premature infant. Clin. Chem. 2010 doi: 10.1373/clinchem.2009.136234. PubMed DOI PMC
Watanabe K, Akutsu T, Takamura A, Sakurada K. Practical evaluation of an RNA-based saliva identification method. Sci. Justice. 2017 doi: 10.1016/j.scijus.2017.07.001. PubMed DOI
Lacombe J, et al. Analysis of saliva gene expression during head and neck cancer radiotherapy: a pilot study. Radiat. Res. 2017 doi: 10.1667/rr14707.1. PubMed DOI PMC
Kaczor-Urbanowicz KE, et al. Saliva diagnostics: current views and directions. Exp. Biol. Med. 2017 doi: 10.1177/1535370216681550. PubMed DOI PMC
Ghizoni JS, Nichele R, de Oliveira MT, Pamato S, Pereira JR. The utilization of saliva as an early diagnostic tool for oral cancer: microRNA as a biomarker. Clin. Transl. Oncol. 2019 doi: 10.1007/s12094-019-02210-y. PubMed DOI
Li Y, et al. Salivary transcriptome diagnostics for oral cancer detection. Clin. Cancer Res. 2004 doi: 10.1158/1078-0432.CCR-04-1167. PubMed DOI
Chen W, Cao H, Lin J, Olsen N, Zheng SG. Biomarkers for Primary Sjögren’s Syndrome. Genom. Proteom. Bioinf. 2015 doi: 10.1016/j.gpb.2015.06.002. PubMed DOI PMC
Michael A, et al. Exosomes from human saliva as a source of microRNA biomarkers. Oral Dis. 2010 doi: 10.1111/j.1601-0825.2009.01604.x. PubMed DOI PMC
Yoshizawa JM, et al. Salivary biomarkers: toward future clinical and diagnostic utilities. Clin. Microbiol. Rev. 2013 doi: 10.1128/CMR.00021-13. PubMed DOI PMC
Segal A, Wong DT. Salivary diagnostics: Enhancing disease detection and making medicine better. Eur. J. Dent. Educ. 2008 doi: 10.1111/j.1600-0579.2007.00477.x. PubMed DOI PMC
Lee, Y. H. & Wong, D. T. Saliva: An emerging biofluid for early detection of diseases. Am. J. Dent. (2009). PubMed PMC
Lau C, et al. Role of pancreatic cancer-derived exosomes in salivary biomarker development. J. Biol. Chem. 2013 doi: 10.1074/jbc.M113.452458. PubMed DOI PMC
Li Y, Zhou X, St. John MAR, Wong DTW. RNA profiling of cell-free saliva using microarray technology. J. Dent. Res. 2004 doi: 10.1177/154405910408300303. PubMed DOI
Theda C, et al. Quantitation of the cellular content of saliva and buccal swab samples. Sci. Rep. 2018 doi: 10.1038/s41598-018-25311-0. PubMed DOI PMC
Gallo A, Tandon M, Alevizos I, Illei GG. The majority of microRNAs detectable in serum and saliva is concentrated in exosomes. PLoS ONE. 2012;7:1–5. PubMed PMC
Chaudhry MA. Biomarkers for human radiation exposure. J. Biomed. Sci. 2008;15:557–563. doi: 10.1007/s11373-008-9253-z. PubMed DOI
Aro K, Wei F, Wong DT, Tu M. Saliva liquid biopsy for point-of-care applications. Front. Public Health. 2017 doi: 10.3389/FPUBH.2017.00077. PubMed DOI PMC
Pernot E, Cardis E, Badie C. Usefulness of saliva samples for biomarker studies in radiation research. Cancer Epidemiol. Biomarkers Prev. 2014 doi: 10.1158/1055-9965.EPI-14-0588. PubMed DOI
Port M, et al. First generation gene expression signature for early prediction of late occurring hematological acute radiation syndrome in baboons. Radiat. Res. 2016;186:39–54. doi: 10.1667/RR14318.1. PubMed DOI
Port M, et al. Pre-exposure gene expression in baboons with and without pancytopenia after radiation exposure. Int. J. Mol. Sci. 2017;18:1. doi: 10.3390/ijms18030541. PubMed DOI PMC
Port M, et al. MicroRNA expression for early prediction of late occurring hematologic acute radiation syndrome in baboons. PLoS ONE. 2016;11:1. doi: 10.1371/journal.pone.0165307. PubMed DOI PMC
Port M, et al. Validating baboon ex vivo and in vivo radiation-related gene expression with corresponding human data. Radiat. Res. 2018 doi: 10.1667/RR14958.1. PubMed DOI
Port M, et al. Correcting false gene expression measurements from degraded RNA using RTQ-PCR. Diagnos. Mol. Pathol. 2007 doi: 10.1097/01.pdm.0000213472.70054.94. PubMed DOI
Oragene ® • RNA purification protocol using the Qiagen RNeasy Micro Kit for volumes up to 1 , 000 µL. 3–5 (2012).
Life Technologies. mirVanaTM miRNA Isolation Kit. 33 (2011).
RevTsc, A. High Capacity cDNA Reverse Transcription Kits for 200 and 1000 Reactions Protocol (Rev E). Manual 1–29 (2010).
RevTsc, T. SuperScript III Reverse Transcriptase (200U/µL) #18080–085. Manual 1–4 (2004).
Fisher, T. & July, S. TaqMan PreAmp Master Mix User Guide. (2018).
O’Brien G, et al. FDXR is a biomarker of radiation exposure in vivo. Sci. Rep. 2018 doi: 10.1038/s41598-017-19043-w. PubMed DOI PMC
Park NJ, Li Y, Yu T, Brinkman BMN, Wong DT. Characterization of RNA in saliva. Clin. Chem. 2006 doi: 10.1373/clinchem.2005.063206. PubMed DOI PMC
Palanisamy V, Wong DT. Transcriptomic analyses of saliva. Methods Mol. Biol. 2010 doi: 10.1007/978-1-60761-820-1_4. PubMed DOI PMC