Prevention of Prosthetic Joint Infection: From Traditional Approaches towards Quality Improvement and Data Mining

. 2020 Jul 11 ; 9 (7) : . [epub] 20200711

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid32664491

Grantová podpora
VES 17-29680A Ministerstvo Zdravotnictví Ceské Republiky
University Hospital Olomouc, 00098892 Ministerstvo zdravotnictví České Republiky

A projected increased use of total joint arthroplasties will naturally result in a related increase in the number of prosthetic joint infections (PJIs). Suppression of the local peri-implant immune response counters efforts to eradicate bacteria, allowing the formation of biofilms and compromising preventive measures taken in the operating room. For these reasons, the prevention of PJI should focus concurrently on the following targets: (i) identifying at-risk patients; (ii) reducing "bacterial load" perioperatively; (iii) creating an antibacterial/antibiofilm environment at the site of surgery; and (iv) stimulating the local immune response. Despite considerable recent progress made in experimental and clinical research, a large discrepancy persists between proposed and clinically implemented preventative strategies. The ultimate anti-infective strategy lies in an optimal combination of all preventative approaches into a single "clinical pack", applied rigorously in all settings involving prosthetic joint implantation. In addition, "anti-infective" implants might be a choice in patients who have an increased risk for PJI. However, further progress in the prevention of PJI is not imaginable without a close commitment to using quality improvement tools in combination with continual data mining, reflecting the efficacy of the preventative strategy in a particular clinical setting.

Zobrazit více v PubMed

Fischbacher A., Borens O. Prosthetic-joint infections: Mortality over the last 10 years. J. Bone Jt. Infect. 2019;4:198–202. doi: 10.7150/jbji.35428. PubMed DOI PMC

Natsuhara K.M., Shelton T.J., Meehan J.P., Lum Z.C. Mortality during total hip periprosthetic joint infection. J. Arthroplast. 2019;34:S337–S342. doi: 10.1016/j.arth.2018.12.024. PubMed DOI

Gundtoft P.H., Pedersen A.B., Varnum C., Overgaard S. Increased mortality after prosthetic joint infection in primary tha. Clin. Orthop. Relat. Res. 2017;475:2623–2631. doi: 10.1007/s11999-017-5289-6. PubMed DOI PMC

Puhto T., Puhto A.P., Vielma M., Syrjala H. Infection triples the cost of a primary joint arthroplasty. Infect. Dis. 2019;51:348–355. doi: 10.1080/23744235.2019.1572219. PubMed DOI

Musil D., Snorek M., Gallo J., Jahoda D., Stehlik J. Economic analysis of the costs of hospital stay of patients with infection as a complication of total replacements-part 2: Total hip arthroplasty. Acta Chir. Orthop. Traumatol. Cechoslov. 2019;86:241–248. (In Czech) PubMed

Musil D., Snorek M., Gallo J., Jahoda D., Stehlik J. Economic analysis of the costs of hospital stay of patients with infection as a complication of total replacements-part 1: Total knee arthroplasty. Acta Chir. Orthop. Traumatol. Cechoslov. 2019;86:173–180. (In Czech) PubMed

Marculescu C.E., Mabry T., Berbari E.F. Prevention of surgical site infections in joint replacement surgery. Surg. Infect. 2016;17:152–157. doi: 10.1089/sur.2015.258. PubMed DOI

Wang F.D., Wang Y.P., Chen C.F., Chen H.P. The incidence rate, trend and microbiological aetiology of prosthetic joint infection after total knee arthroplasty: A 13 years’ experience from a tertiary medical center in taiwan. J. Microbiol. Immunol. Infect. 2018;51:717–722. doi: 10.1016/j.jmii.2018.08.011. PubMed DOI

Boddapati V., Fu M.C., Mayman D.J., Su E.P., Sculco P.K., McLawhorn A.S. Revision total knee arthroplasty for periprosthetic joint infection is associated with increased postoperative morbidity and mortality relative to noninfectious revisions. J. Arthroplast. 2018;33:521–526. doi: 10.1016/j.arth.2017.09.021. PubMed DOI

Dale H., Hallan G., Hallan G., Espehaug B., Havelin L.I., Engesaeter L.B. Increasing risk of revision due to deep infection after hip arthroplasty. Acta Orthop. 2009;80:639–645. doi: 10.3109/17453670903506658. PubMed DOI PMC

Matthews J., Bamal R., McLean A., Bindra R. Bacteriological profile of community-acquired musculoskeletal infections: A study from queensland. ANZ J. Surg. 2018;88:1061–1065. doi: 10.1111/ans.14825. PubMed DOI

Lourtet-Hascoet J., Felice M.P., Bicart-See A., Bouige A., Giordano G., Bonnet E. Species and antimicrobial susceptibility testing of coagulase-negative staphylococci in periprosthetic joint infections. Epidemiol. Infect. 2018;146:1771–1776. doi: 10.1017/S0950268818001437. PubMed DOI PMC

Triffault-Fillit C., Ferry T., Laurent F., Pradat P., Dupieux C., Conrad A., Becker A., Lustig S., Fessy M.H., Chidiac C., et al. Microbiologic epidemiology depending on time to occurrence of prosthetic joint infection: A prospective cohort study. Clin. Microbiol. Infect. 2019;25:353–358. doi: 10.1016/j.cmi.2018.04.035. PubMed DOI

Rosteius T., Jansen O., Fehmer T., Baecker H., Citak M., Schildhauer T.A., Gessmann J. Evaluating the microbial pattern of periprosthetic joint infections of the hip and knee. J. Med Microbiol. 2018;67:1608–1613. doi: 10.1099/jmm.0.000835. PubMed DOI

Tsai Y., Chang C.H., Lin Y.C., Lee S.H., Hsieh P.H., Chang Y. Different microbiological profiles between hip and knee prosthetic joint infections. J. Orthop. Surg. 2019;27:2309499019847768. doi: 10.1177/2309499019847768. PubMed DOI

Armit D., Vickers M., Parr A., Van Rosendal S., Trott N., Gunasena R., Parkinson B. Humidity a potential risk factor for prosthetic joint infection in a tropical australian hospital. ANZ J. Surg. 2018;88:1298–1301. doi: 10.1111/ans.14916. PubMed DOI

Davidson D.J., Spratt D., Liddle A.D. Implant materials and prosthetic joint infection: The battle with the biofilm. EFORT Open Rev. 2019;4:633–639. doi: 10.1302/2058-5241.4.180095. PubMed DOI PMC

Gristina A.G., Naylor P., Myrvik Q. Infections from biomaterials and implants: A race for the surface. Med Prog. Technol. 1988;14:205–224. PubMed

Moriarty T.F., Harris L.G., Mooney R.A., Wenke J.C., Riool M., Zaat S.A.J., Moter A., Schaer T.P., Khanna N., Kuehl R., et al. Recommendations for design and conduct of preclinical in vivo studies of orthopedic device-related infection. J. Orthop. Res. 2019;37:271–287. doi: 10.1002/jor.24230. PubMed DOI

Raphel J., Holodniy M., Goodman S.B., Heilshorn S.C. Multifunctional coatings to simultaneously promote osseointegration and prevent infection of orthopaedic implants. Biomaterials. 2016;84:301–314. doi: 10.1016/j.biomaterials.2016.01.016. PubMed DOI PMC

Kimkes T.E.P., Heinemann M. How bacteria recognise and respond to surface contact. FEMS Microbiol. Rev. 2019;44:106–122. doi: 10.1093/femsre/fuz029. PubMed DOI PMC

Van Dyke T.E., Bartold P.M., Reynolds E.C. The nexus between periodontal inflammation and dysbiosis. Front. Immunol. 2020;11:511. doi: 10.3389/fimmu.2020.00511. PubMed DOI PMC

Arciola C.R., Campoccia D., Montanaro L. Implant infections: Adhesion, biofilm formation and immune evasion. Nat. Rev. Microbiol. 2018;16:397–409. doi: 10.1038/s41579-018-0019-y. PubMed DOI

Herman-Bausier P., Labate C., Towell A.M., Derclaye S., Geoghegan J.A., Dufrene Y.F. Staphylococcus aureus clumping factor a is a force-sensitive molecular switch that activates bacterial adhesion. Proc. Natl. Acad. Sci. USA. 2018;115:5564–5569. doi: 10.1073/pnas.1718104115. PubMed DOI PMC

Berne C., Ellison C.K., Ducret A., Brun Y.V. Bacterial adhesion at the single-cell level. Nat. Rev. Microbiol. 2018;16:616–627. doi: 10.1038/s41579-018-0057-5. PubMed DOI

Carniello V., Peterson B.W., van der Mei H.C., Busscher H.J. Physico-chemistry from initial bacterial adhesion to surface-programmed biofilm growth. Adv. Colloid Interface Sci. 2018;261:1–14. doi: 10.1016/j.cis.2018.10.005. PubMed DOI

Orazi G., O’Toole G.A. “It takes a village”: Mechanisms underlying antimicrobial recalcitrance of polymicrobial biofilms. J. Bacteriol. 2019;202:e00530-19. doi: 10.1128/JB.00530-19. PubMed DOI PMC

Josse J., Laurent F., Diot A. Staphylococcal adhesion and host cell invasion: Fibronectin-binding and other mechanisms. Front. Microbiol. 2017;8:2433. doi: 10.3389/fmicb.2017.02433. PubMed DOI PMC

Schulz F., Horn M. Intranuclear bacteria: Inside the cellular control center of eukaryotes. Trends Cell Biol. 2015;25:339–346. doi: 10.1016/j.tcb.2015.01.002. PubMed DOI

Broz P. Recognition of intracellular bacteria by inflammasomes. Microbiol. Spectr. 2019;7 doi: 10.1128/microbiolspec.BAI-0003-2019. PubMed DOI

Weiss G., Schaible U.E. Macrophage defense mechanisms against intracellular bacteria. Immunol. Rev. 2015;264:182–203. doi: 10.1111/imr.12266. PubMed DOI PMC

de Mesy Bentley K.L., Trombetta R., Nishitani K., Bello-Irizarry S.N., Ninomiya M., Zhang L., Chung H.L., McGrath J.L., Daiss J.L., Awad H.A., et al. Evidence of staphylococcus aureus deformation, proliferation, and migration in canaliculi of live cortical bone in murine models of osteomyelitis. J. Bone Miner. Res. 2017;32:985–990. doi: 10.1002/jbmr.3055. PubMed DOI PMC

Escoll P., Buchrieser C. Metabolic reprogramming: An innate cellular defence mechanism against intracellular bacteria? Curr. Opin. Immunol. 2019;60:117–123. doi: 10.1016/j.coi.2019.05.009. PubMed DOI

Toyofuku M., Nomura N., Eberl L. Types and origins of bacterial membrane vesicles. Nat. Rev. Microbiol. 2019;17:13–24. doi: 10.1038/s41579-018-0112-2. PubMed DOI

Chapman C.D., Benedict C., Schioth H.B. Experimenter gender and replicability in science. Sci. Adv. 2018;4:e1701427. doi: 10.1126/sciadv.1701427. PubMed DOI PMC

Ioannidis J.P.A. Why replication has more scientific value than original discovery. Behav. Brain Sci. 2018;41:e137. doi: 10.1017/S0140525X18000729. PubMed DOI

Kurtz S.M., Lau E.C., Son M.S., Chang E.T., Zimmerli W., Parvizi J. Are we winning or losing the battle with periprosthetic joint infection: Trends in periprosthetic joint infection and mortality risk for the medicare population. J. Arthroplast. 2018;33:3238–3245. doi: 10.1016/j.arth.2018.05.042. PubMed DOI

Berbari E.F., Hanssen A.D., Duffy M.C., Steckelberg J.M., Ilstrup D.M., Harmsen W.S., Osmon D.R. Risk factors for prosthetic joint infection: Case-control study. Clin. Infect. Dis. 1998;27:1247–1254. doi: 10.1086/514991. PubMed DOI

Kunutsor S.K., Whitehouse M.R., Blom A.W., Beswick A.D., Team I. Patient-related risk factors for periprosthetic joint infection after total joint arthroplasty: A systematic review and meta-analysis. PLoS ONE. 2016;11:e0150866. doi: 10.1371/journal.pone.0150866. PubMed DOI PMC

Deegan B.F., Richard R.D., Bowen T.R., Perkins R.M., Graham J.H., Foltzer M.A. Impact of chronic kidney disease stage on lower-extremity arthroplasty. Orthopedics. 2014;37:e613–e618. doi: 10.3928/01477447-20140626-51. PubMed DOI

Miric A., Inacio M.C., Namba R.S. Can total knee arthroplasty be safely performed in patients with chronic renal disease? Acta Orthop. 2014;85:71–78. doi: 10.3109/17453674.2013.878829. PubMed DOI PMC

Chen J.H., Kuo F.C., Wang J.W. Total knee arthroplasty in patients with dialysis: Early complications and mortality. Biomed. J. 2014;37:84–89. PubMed

Li W.C., Shih C.H., Ueng S.W., Shih H.N., Lee M.S., Hsieh P.H. Uncemented total hip arthroplasty in chronic hemodialysis patients. Acta Orthop. 2010;81:178–182. doi: 10.3109/17453671003628749. PubMed DOI PMC

Lieu D., Harris I.A., Naylor J.M., Mittal R. Review article: Total hip replacement in haemodialysis or renal transplant patients. J. Orthop. Surg. 2014;22:393–398. doi: 10.1177/230949901402200325. PubMed DOI

Onochie E., Kayani B., Dawson-Bowling S., Millington S., Achan P., Hanna S. Total hip arthroplasty in patients with chronic liver disease: A systematic review. SICOT J. 2019;5:40. doi: 10.1051/sicotj/2019037. PubMed DOI PMC

Lee D.K., Kim H.J., Cho I.Y., Lee D.H. Infection and revision rates following primary total knee arthroplasty in patients with rheumatoid arthritis versus osteoarthritis: A meta-analysis. Knee Surg. Sports Traumatol. Arthrosc. 2017;25:3800–3807. doi: 10.1007/s00167-016-4306-8. PubMed DOI

George M.D., Baker J.F., Winthrop K., Alemao E., Chen L., Connolly S., Hsu J.Y., Simon T.A., Wu Q., Xie F., et al. Risk of biologics and glucocorticoids in patients with rheumatoid arthritis undergoing arthroplasty: A cohort study. Ann. Intern. Med. 2019;170:825–836. doi: 10.7326/M18-2217. PubMed DOI PMC

Ma Z., Guo F., Qi J., Xiang W., Zhang J. Meta-analysis shows that obesity may be a significant risk factor for prosthetic joint infections. Int. Orthop. 2016;40:659–667. doi: 10.1007/s00264-015-2914-4. PubMed DOI

Tsantes A.G., Papadopoulos D.V., Lytras T., Tsantes A.E., Mavrogenis A.F., Korompilias A.V., Gelalis I.D., Tsantes C.G., Bonovas S. Association of malnutrition with periprosthetic joint and surgical site infections after total joint arthroplasty: A systematic review and meta-analysis. J. Hosp. Infect. 2019;103:69–77. doi: 10.1016/j.jhin.2019.04.020. PubMed DOI

Bedard N.A., DeMik D.E., Owens J.M., Glass N.A., DeBerg J., Callaghan J.J. Tobacco use and risk of wound complications and periprosthetic joint infection: A systematic review and meta-analysis of primary total joint arthroplasty procedures. J. Arthroplast. 2019;34:385–396.E4. doi: 10.1016/j.arth.2018.09.089. PubMed DOI

Kolz J.M., Rainer W.G., Wyles C.C., Houdek M.T., Perry K.I., Lewallen D.G. Lymphedema: A significant risk factor for infection and implant failure after total knee arthroplasty. J. Am. Acad. Orthop. Surg. 2020 doi: 10.5435/JAAOS-D-20-00005. PubMed DOI

O’Neill S.C., Queally J.M., Hickey A., Mulhall K.J. Outcome of total hip and knee arthroplasty in hiv-infected patients: A systematic review. Orthop. Rev. 2019;11:8020. doi: 10.4081/or.2019.8020. PubMed DOI PMC

Somerson J.S., Boylan M.R., Hug K.T., Naziri Q., Paulino C.B., Huang J.I. Risk factors associated with periprosthetic joint infection after total elbow arthroplasty. Shoulder Elb. 2019;11:116–120. doi: 10.1177/1758573217741318. PubMed DOI PMC

Althoff A., Cancienne J.M., Cooper M.T., Werner B.C. Patient-related risk factors for periprosthetic ankle joint infection: An analysis of 6977 total ankle arthroplasties. J. Foot Ankle Surg. 2018;57:269–272. doi: 10.1053/j.jfas.2017.09.006. PubMed DOI

Chalmers B.P., Weston J.T., Osmon D.R., Hanssen A.D., Berry D.J., Abdel M.P. Prior hip or knee prosthetic joint infection in another joint increases risk three-fold of prosthetic joint infection after primary total knee arthroplasty: A matched control study. Bone Jt. J. 2019;101-B:91–97. doi: 10.1302/0301-620X.101B7.BJJ-2018-1189.R1. PubMed DOI

Malcolm T.L., Robinson le D., Klika A.K., Ramanathan D., Higuera C.A., Murray T.G. Predictors of staphylococcus aureus colonization and results after decolonization. Interdiscip. Perspect. Infect. Dis. 2016;2016:4367156. doi: 10.1155/2016/4367156. PubMed DOI PMC

Zhu X., Sun X., Zeng Y., Feng W., Li J., Zeng J., Zeng Y. Can nasal staphylococcus aureus screening and decolonization prior to elective total joint arthroplasty reduce surgical site and prosthesis-related infections? A systematic review and meta-analysis. J. Orthop. Surg. Res. 2020;15:60. doi: 10.1186/s13018-020-01601-0. PubMed DOI PMC

Ma N., Cameron A., Tivey D., Grae N., Roberts S., Morris A. Systematic review of a patient care bundle in reducing staphylococcal infections in cardiac and orthopaedic surgery. ANZ J. Surg. 2017;87:239–246. doi: 10.1111/ans.13879. PubMed DOI

Kim K.Y., Anoushiravani A.A., Chen K.K., Li R., Bosco J.A., Slover J.D., Iorio R. Perioperative orthopedic surgical home: Optimizing total joint arthroplasty candidates and preventing readmission. J. Arthroplast. 2019;34:S91–S96. doi: 10.1016/j.arth.2019.01.020. PubMed DOI

Maradit Kremers H., Lewallen L.W., Mabry T.M., Berry D.J., Berbari E.F., Osmon D.R. Diabetes mellitus, hyperglycemia, hemoglobin a1c and the risk of prosthetic joint infections in total hip and knee arthroplasty. J. Arthroplast. 2015;30:439–443. doi: 10.1016/j.arth.2014.10.009. PubMed DOI

Shohat N., Tarabichi M., Tan T.L., Goswami K., Kheir M., Malkani A.L., Shah R.P., Schwarzkopf R., Parvizi J. 2019 john insall award: Fructosamine is a better glycaemic marker compared with glycated haemoglobin (hba1c) in predicting adverse outcomes following total knee arthroplasty: A prospective multicentre study. Bone Jt. J. 2019;101-B:3–9. doi: 10.1302/0301-620X.101B7.BJJ-2018-1418.R1. PubMed DOI

Colunga-Lozano L.E., Gonzalez Torres F.J., Delgado-Figueroa N., Gonzalez-Padilla D.A., Hernandez A.V., Roman Y., Cuello-Garcia C.A. Sliding scale insulin for non-critically ill hospitalised adults with diabetes mellitus. Cochrane Database Syst. Rev. 2018;11:CD011296. doi: 10.1002/14651858.CD011296.pub2. PubMed DOI PMC

Uppal C., Blanshard A., Ahluwalia R., Dhatariya K. Achieving a preoperative target hba1c of <69 mmol/mol in elective vascular and orthopedic surgery: A retrospective single center observational study. Diabetes Ther. 2019;10:1959–1967. PubMed PMC

Zhong J., Wang B., Chen Y., Li H., Lin N., Xu X., Lu H. Relationship between body mass index and the risk of periprosthetic joint infection after primary total hip arthroplasty and total knee arthroplasty. Ann. Transl. Med. 2020;8:464. doi: 10.21037/atm.2020.03.112. PubMed DOI PMC

Shearer J., Agius L., Burke N., Rahardja R., Young S.W. Bmi is a better predictor of periprosthetic joint infection risk than local measures of adipose tissue after tka. J. Arthroplast. 2020;35:S313–S318. doi: 10.1016/j.arth.2020.01.048. PubMed DOI

Kwasny M.J., Edelstein A.I., Manning D.W. Statistical methods dictate the estimated impact of body mass index on major and minor complications after total joint arthroplasty. Clin. Orthop. Relat. Res. 2018;476:2418–2429. doi: 10.1097/CORR.0000000000000493. PubMed DOI PMC

Baratz M.D., Hallmark R., Odum S.M., Springer B.D. Twenty percent of patients may remain colonized with methicillin-resistant staphylococcus aureus despite a decolonization protocol in patients undergoing elective total joint arthroplasty. Clin. Orthop. Relat. Res. 2015;473:2283–2290. doi: 10.1007/s11999-015-4191-3. PubMed DOI PMC

Tandon T., Tadros B.J., Akehurst H., Avasthi A., Hill R., Rao M. Risk of surgical site infection in elective hip and knee replacements after confirmed eradication of mrsa in chronic carriers. J. Arthroplast. 2017;32:3711–3717. doi: 10.1016/j.arth.2017.06.036. PubMed DOI

Yeganeh M.H., Kheir M.M., Shahi A., Parvizi J. Rheumatoid arthritis, disease modifying agents, and periprosthetic joint infection: What does a joint surgeon need to know? J. Arthroplast. 2018;33:1258–1264. doi: 10.1016/j.arth.2017.11.031. PubMed DOI

Eiselt D. Presurgical skin preparation with a novel 2% chlorhexidine gluconate cloth reduces rates of surgical site infection in orthopaedic surgical patients. Orthop. Nurs. 2009;28:141–145. doi: 10.1097/NOR.0b013e3181a469db. PubMed DOI

Kapadia B.H., Elmallah R.K., Mont M.A. A randomized, clinical trial of preadmission chlorhexidine skin preparation for lower extremity total joint arthroplasty. J. Arthroplast. 2016;31:2856–2861. doi: 10.1016/j.arth.2016.05.043. PubMed DOI

Cai Y., Xu K., Hou W., Yang Z., Xu P. Preoperative chlorhexidine reduces the incidence of surgical site infections in total knee and hip arthroplasty: A systematic review and meta-analysis. Int. J. Surg. 2017;39:221–228. doi: 10.1016/j.ijsu.2017.02.004. PubMed DOI

Kuo F.C., Tan T.L., Wang J.W., Wang C.J., Ko J.Y., Lee M.S. Use of antimicrobial-impregnated incise drapes to prevent periprosthetic joint infection in primary total joint arthroplasty: A retrospective analysis of 9774 cases. J. Arthroplast. 2020;35:1686–1691. doi: 10.1016/j.arth.2020.01.050. PubMed DOI

Hesselvig A.B., Arpi M., Madsen F., Bjarnsholt T., Odgaard A., Group I.S. Does an antimicrobial incision drape prevent intraoperative contamination? A randomized controlled trial of 1187 patients. Clin. Orthop. Relat. Res. 2020;478:1007–1015. doi: 10.1097/CORR.0000000000001142. PubMed DOI PMC

Rezapoor M., Tan T.L., Maltenfort M.G., Parvizi J. Incise draping reduces the rate of contamination of the surgical site during hip surgery: A prospective, randomized trial. J. Arthroplast. 2018;33:1891–1895. doi: 10.1016/j.arth.2018.01.013. PubMed DOI

Villa J.M., Pannu T.S., Riesgo A.M., Patel P.D., Mont M.A., Higuera-Rueda C.A. Dual antibiotic prophylaxis in total knee arthroplasty: Where do we stand? J. Knee Surg. 2020;33:100–105. doi: 10.1055/s-0039-1695742. PubMed DOI

Burger J.R., Hansen B.J., Leary E.V., Aggarwal A., Keeney J.A. Dual-agent antibiotic prophylaxis using a single preoperative vancomycin dose effectively reduces prosthetic joint infection rates with minimal renal toxicity risk. J. Arthroplast. 2018;33:S213–S218. doi: 10.1016/j.arth.2018.03.009. PubMed DOI

DeFrancesco C.J., Fu M.C., Kahlenberg C.A., Miller A.O., Bostrom M.P. Extended antibiotic prophylaxis may be linked to lower peri-prosthetic joint infection rates in high-risk patients: An evidence-based review. HSS J. 2019;15:297–301. doi: 10.1007/s11420-019-09698-8. PubMed DOI PMC

Inabathula A., Dilley J.E., Ziemba-Davis M., Warth L.C., Azzam K.A., Ireland P.H., Meneghini R.M. Extended oral antibiotic prophylaxis in high-risk patients substantially reduces primary total hip and knee arthroplasty 90-day infection rate. J. Bone Jt. Surg. 2018;100:2103–2109. doi: 10.2106/JBJS.17.01485. PubMed DOI

Chen A.F., Fleischman A., Austin M.S. Use of intrawound antibiotics in orthopaedic surgery. J. Am. Acad. Orthop. Surg. 2018;26:e371–e378. doi: 10.5435/JAAOS-D-17-00003. PubMed DOI

Wang Q., Goswami K., Shohat N., Aalirezaie A., Manrique J., Parvizi J. Longer operative time results in a higher rate of subsequent periprosthetic joint infection in patients undergoing primary joint arthroplasty. J. Arthroplast. 2019;34:947–953. doi: 10.1016/j.arth.2019.01.027. PubMed DOI

Cheng H., Chen B.P., Soleas I.M., Ferko N.C., Cameron C.G., Hinoul P. Prolonged operative duration increases risk of surgical site infections: A systematic review. Surg. Infect. 2017;18:722–735. doi: 10.1089/sur.2017.089. PubMed DOI PMC

Parvizi J., Barnes S., Shohat N., Edmiston C.E., Jr. Environment of care: Is it time to reassess microbial contamination of the operating room air as a risk factor for surgical site infection in total joint arthroplasty? Am. J. Infect. Control. 2017;45:1267–1272. doi: 10.1016/j.ajic.2017.06.027. PubMed DOI

Driesman A., Shen M., Feng J.E., Waren D., Slover J., Bosco J., Schwarzkopf R. Perioperative chlorhexidine gluconate wash during joint arthroplasty has equivalent periprosthetic joint infection rates in comparison to betadine wash. J. Arthroplast. 2020;35:845–848. doi: 10.1016/j.arth.2019.10.009. PubMed DOI

Slullitel P.A., Dobransky J.S., Bali K., Poitras S., Bhullar R.S., Ottawa Arthroplasty G., Kim P.R. Is there a role for preclosure dilute betadine irrigation in the prevention of postoperative infection following total joint arthroplasty? J. Arthroplast. 2020;35:1374–1378. doi: 10.1016/j.arth.2019.12.035. PubMed DOI

Romano C.L., Malizos K., Capuano N., Mezzoprete R., D’Arienzo M., Van Der Straeten C., Scarponi S., Drago L. Does an antibiotic-loaded hydrogel coating reduce early post-surgical infection after joint arthroplasty? J. Bone Jt. Infect. 2016;1:34–41. doi: 10.7150/jbji.15986. PubMed DOI PMC

Sebastian S., Liu Y., Christensen R., Raina D.B., Tagil M., Lidgren L. Antibiotic containing bone cement in prevention of hip and knee prosthetic joint infections: A systematic review and meta-analysis. J. Orthop. Translat. 2020;23:53–60. doi: 10.1016/j.jot.2020.04.005. PubMed DOI PMC

van Vugt T.A.G., Walraven J.M.B., Geurts J.A.P., Arts J.J.C. Antibiotic-loaded collagen sponges in clinical treatment of chronic osteomyelitis: A systematic review. J. Bone Jt. Surg. 2018;100:2153–2161. doi: 10.2106/JBJS.17.01140. PubMed DOI

Parry M.C., Laitinen M.K., Albergo J.I., Gaston C.L., Stevenson J.D., Grimer R.J., Jeys L.M. Silver-coated (agluna(r)) tumour prostheses can be a protective factor against infection in high risk failure patients. Eur. J. Surg. Oncol. 2019;45:704–710. doi: 10.1016/j.ejso.2018.12.009. PubMed DOI

Gustin M.P., Ohannessian R., Giard M., Caillat-Vallet E., Savey A., Vanhems P., CCLIN Sud-Est study group Use of surveillance data to calculate the sample size and the statistical power of randomized clinical trials testing staphylococcus aureus vaccine efficacy in orthopedic surgery. Vaccine. 2017;35:6934–6937. doi: 10.1016/j.vaccine.2017.10.068. PubMed DOI

Fowler V.G., Allen K.B., Moreira E.D., Moustafa M., Isgro F., Boucher H.W., Corey G.R., Carmeli Y., Betts R., Hartzel J.S., et al. Effect of an investigational vaccine for preventing staphylococcus aureus infections after cardiothoracic surgery: A randomized trial. JAMA. 2013;309:1368–1378. doi: 10.1001/jama.2013.3010. PubMed DOI

Rezapoor M., Alvand A., Jacek E., Paziuk T., Maltenfort M.G., Parvizi J. Operating room traffic increases aerosolized particles and compromises the air quality: A simulated study. J. Arthroplast. 2018;33:851–855. doi: 10.1016/j.arth.2017.10.012. PubMed DOI

Hamilton W.G., Balkam C.B., Purcell R.L., Parks N.L., Holdsworth J.E. Operating room traffic in total joint arthroplasty: Identifying patterns and training the team to keep the door shut. Am. J. Infect. Control. 2018;46:633–636. doi: 10.1016/j.ajic.2017.12.019. PubMed DOI

Baldini A., Blevins K., Del Gaizo D., Enke O., Goswami K., Griffin W., Indelli P.F., Jennison T., Kenanidis E., Manner P., et al. General assembly, prevention, operating room-personnel: Proceedings of international consensus on orthopedic infections. J. Arthroplast. 2019;34:S97–S104. doi: 10.1016/j.arth.2018.09.059. PubMed DOI PMC

Curtis G.L., Faour M., Jawad M., Klika A.K., Barsoum W.K., Higuera C.A. Reduction of particles in the operating room using ultraviolet air disinfection and recirculation units. J. Arthroplast. 2018;33:S196–S200. doi: 10.1016/j.arth.2017.11.052. PubMed DOI

Illingworth K.D., Mihalko W.M., Parvizi J., Sculco T., McArthur B., el Bitar Y., Saleh K.J. How to minimize infection and thereby maximize patient outcomes in total joint arthroplasty: A multicenter approach: Aaos exhibit selection. J. Bone Jt. Surg. 2013;95:e50. doi: 10.2106/JBJS.L.00596. PubMed DOI

Andersson A.E., Bergh I., Karlsson J., Eriksson B.I., Nilsson K. Traffic flow in the operating room: An explorative and descriptive study on air quality during orthopedic trauma implant surgery. Am. J. Infect. Control. 2012;40:750–755. doi: 10.1016/j.ajic.2011.09.015. PubMed DOI

Clyburn T.A., Evans R.P., Moucha C.S., Prokuski L. Surgical site infection prevention: The operating room environment. Instr. Course Lect. 2011;60:565–574. PubMed

Hester R.A., Nelson C.L., Harrison S. Control of contamination of the operative team in total joint arthroplasty. J. Arthroplast. 1992;7:267–269. doi: 10.1016/0883-5403(92)90047-T. PubMed DOI

Jolivet S., Lucet J.C. Surgical field and skin preparation. Orthop. Traumatol. Surg. Res. 2019;105:S1–S6. doi: 10.1016/j.otsr.2018.04.033. PubMed DOI

Hijas-Gomez A.I., Lucas W.C., Checa-Garcia A., Martinez-Martin J., Fahandezh-Saddi H., Gil-de-Miguel A., Duran-Poveda M., Rodriguez-Caravaca G. Surgical site infection incidence and risk factors in knee arthroplasty: A 9-year prospective cohort study at a university teaching hospital in spain. Am. J. Infect. Control. 2018;46:1335–1340. doi: 10.1016/j.ajic.2018.06.010. PubMed DOI

Cooper A.L., Brown J.A., Salathiel J., Gollner S. An intervention to improve patient understanding and use of preoperative chlorhexidine washes. Infect Dis. Health. 2019;24:194–200. doi: 10.1016/j.idh.2019.06.005. PubMed DOI

George J., Klika A.K., Higuera C.A. Use of chlorhexidine preparations in total joint arthroplasty. J. Bone Jt. Infect. 2017;2:15–22. doi: 10.7150/jbji.16934. PubMed DOI PMC

Matsen F.A., Whitson A.J., Hsu J.E. While home chlorhexidine washes prior to shoulder surgery lower skin loads of most bacteria, they are not effective against cutibacterium (propionibacterium) Int. Orthop. 2020;44:531–534. doi: 10.1007/s00264-019-04477-w. PubMed DOI

Privitera G.P., Costa A.L., Brusaferro S., Chirletti P., Crosasso P., Massimetti G., Nespoli A., Petrosillo N., Pittiruti M., Scoppettuolo G., et al. Skin antisepsis with chlorhexidine versus iodine for the prevention of surgical site infection: A systematic review and meta-analysis. Am. J. Infect. Control. 2017;45:180–189. doi: 10.1016/j.ajic.2016.09.017. PubMed DOI

Letzelter J., Hill J.B., Hacquebord J. An overview of skin antiseptics used in orthopaedic surgery procedures. J. Am. Acad. Orthop. Surg. 2019;27:599–606. doi: 10.5435/JAAOS-D-18-00105. PubMed DOI

Chen S., Chen J.W., Guo B., Xu C.C. Preoperative antisepsis with chlorhexidine versus povidone-iodine for the prevention of surgical site infection: A systematic review and meta-analysis. World J. Surg. 2020;44:1412–1424. doi: 10.1007/s00268-020-05384-7. PubMed DOI

Cooke C.L., Greene R.S., van Eck C.F., Uquilas C., Limpisvasti O. Bioelectric silver-zinc dressing equally effective to chlorhexidine in reducing skin bacterial load in healthy volunteers. Arthroscopy. 2018;34:2886–2891. doi: 10.1016/j.arthro.2018.05.046. PubMed DOI

Peel T.N., Dowsey M.M., Buising K.L., Cheng A.C., Choong P.F.M. Chlorhexidine-alcohol versus iodine-alcohol for surgical site skin preparation in an elective arthroplasty (acaisa) study: A cluster randomized controlled trial. Clin. Microbiol. Infect. 2019;25:1239–1245. doi: 10.1016/j.cmi.2019.06.016. PubMed DOI

Wood C., Phillips C. Cyanoacrylate microbial sealants for skin preparation prior to surgery. Cochrane Database Syst. Rev. 2016;18:CD008062. doi: 10.1002/14651858.CD008062.pub4. PubMed DOI PMC

Webster J., Alghamdi A. Use of plastic adhesive drapes during surgery for preventing surgical site infection. Cochrane Database Syst. Rev. 2015;17:CD006353. doi: 10.1002/14651858.CD006353.pub4. PubMed DOI PMC

Morrison T.N., Chen A.F., Taneja M., Kucukdurmaz F., Rothman R.H., Parvizi J. Single vs repeat surgical skin preparations for reducing surgical site infection after total joint arthroplasty: A prospective, randomized, double-blinded study. J. Arthroplast. 2016;31:1289–1294. doi: 10.1016/j.arth.2015.12.009. PubMed DOI

Langvatn H., Schrama J.C., Cao G., Hallan G., Furnes O., Lingaas E., Walenkamp G., Engesaeter L.B., Dale H. Operating room ventilation and the risk of revision due to infection after total hip arthroplasty: Assessment of validated data in the norwegian arthroplasty register. J. Hosp. Infect. 2020 doi: 10.1016/j.jhin.2020.04.010. PubMed DOI

Teo B.J.X., Woo Y.L., Phua J.K.S., Chong H.C., Yeo W., Tan A.H.C. Laminar flow does not affect risk of prosthetic joint infection after primary total knee replacement in asian patients. J. Hosp. Infect. 2020;104:305–308. doi: 10.1016/j.jhin.2019.12.014. PubMed DOI

Bischoff P., Kubilay N.Z., Allegranzi B., Egger M., Gastmeier P. Effect of laminar airflow ventilation on surgical site infections: A systematic review and meta-analysis. Lancet Infect. Dis. 2017;17:553–561. doi: 10.1016/S1473-3099(17)30059-2. PubMed DOI

McHugh S.M., Hill A.D., Humphreys H. Laminar airflow and the prevention of surgical site infection. More harm than good? Surgeon. 2015;13:52–58. doi: 10.1016/j.surge.2014.10.003. PubMed DOI

Knobben B.A., van Horn J.R., van der Mei H.C., Busscher H.J. Evaluation of measures to decrease intra-operative bacterial contamination in orthopaedic implant surgery. J. Hosp. Infect. 2006;62:174–180. doi: 10.1016/j.jhin.2005.08.007. PubMed DOI

Ban K.A., Minei J.P., Laronga C., Harbrecht B.G., Jensen E.H., Fry D.E., Itani K.M., Dellinger E.P., Ko C.Y., Duane T.M. American college of surgeons and surgical infection society: Surgical site infection guidelines, 2016 update. J. Am. Coll. Surg. 2017;224:59–74. doi: 10.1016/j.jamcollsurg.2016.10.029. PubMed DOI

Allegranzi B., Zayed B., Bischoff P., Kubilay N.Z., de Jonge S., de Vries F., Gomes S.M., Gans S., Wallert E.D., Wu X., et al. New who recommendations on intraoperative and postoperative measures for surgical site infection prevention: An evidence-based global perspective. Lancet Infect. Dis. 2016;16:e288–e303. doi: 10.1016/S1473-3099(16)30402-9. PubMed DOI

Agodi A., Auxilia F., Barchitta M., Cristina M.L., D’Alessandro D., Mura I., Nobile M., Pasquarella C., Italian Study Group of Hospital Hygiene Operating theatre ventilation systems and microbial air contamination in total joint replacement surgery: Results of the gisio-ischia study. J. Hosp. Infect. 2015;90:213–219. doi: 10.1016/j.jhin.2015.02.014. PubMed DOI

National Institute for Health Research Global Research Health Unit on Global Surgery Delphi prioritization and development of global surgery guidelines for the prevention of surgical-site infection. Br. J. Surg. 2020;107:970–977. doi: 10.1002/bjs.11530. PubMed DOI PMC

Mackain-Bremner A.A., Owens K., Wylde V., Bannister G.C., Blom A.W. Adherence to recommendations designed to decrease intra-operative wound contamination. Ann. R Coll. Surg. Engl. 2008;90:412–416. doi: 10.1308/003588408X301028. PubMed DOI PMC

Lo Giudice D., Trimarchi G., La Fauci V., Squeri R., Calimeri S. Hospital infection control and behaviour of operating room staff. Cent. Eur. J. Public Health. 2019;27:292–295. doi: 10.21101/cejph.a4932. PubMed DOI

Zucco R., Lavano F., Nobile C.G.A., Papadopoli R., Bianco A. Adherence to evidence-based recommendations for surgical site infection prevention: Results among italian surgical ward nurses. PLoS ONE. 2019;14:e0222825. doi: 10.1371/journal.pone.0222825. PubMed DOI PMC

Ho Y.H., Wang Y.C., Loh E.W., Tam K.W. Antiseptic efficacies of waterless hand rub, chlorhexidine scrub, and povidone-iodine scrub in surgical settings: A meta-analysis of randomized controlled trials. J. Hosp. Infect. 2019;101:370–379. doi: 10.1016/j.jhin.2018.11.012. PubMed DOI

Tanner J., Dumville J.C., Norman G., Fortnam M. Surgical hand antisepsis to reduce surgical site infection. Cochrane Database Syst. Rev. 2016;22:CD004288. doi: 10.1002/14651858.CD004288.pub3. PubMed DOI PMC

Fry D.E. Operating room hand preparation: To scrub or to rub? Surg Infect. (Larchmt) 2019;20:129–134. doi: 10.1089/sur.2018.302. PubMed DOI

Croke L. Recommended practices for surgical hand antisepsis. AORN J. 2019;109:P8–P10. doi: 10.1002/aorn.12705. PubMed DOI

Young S.W., Zhu M., Shirley O.C., Wu Q., Spangehl M.J. Do ‘surgical helmet systems’ or ‘body exhaust suits’ affect contamination and deep infection rates in arthroplasty? A systematic review. J. Arthroplast. 2016;31:225–233. doi: 10.1016/j.arth.2015.07.043. PubMed DOI

Ling F., Halabi S., Jones C. Comparison of air exhausts for surgical body suits (space suits) and the potential for periprosthetic joint infection. J. Hosp. Infect. 2018;99:279–283. doi: 10.1016/j.jhin.2018.03.012. PubMed DOI

Moores T.S., Khan S.A., Chatterton B.D., Harvey G., Lewthwaite S.C. A microbiological assessment of sterile surgical helmet systems using particle counts and culture plates: Recommendations for safe use whilst scrubbing. J. Hosp. Infect. 2019;101:354–360. doi: 10.1016/j.jhin.2018.06.005. PubMed DOI

Vermeiren A., Verheyden M., Verheyden F. Do double-fan surgical helmet systems result in less gown-particle contamination than single-fan designs? Clin. Orthop. Relat. Res. 2020;478:1359–1365. doi: 10.1097/CORR.0000000000001121. PubMed DOI PMC

Klaber I., Ruiz P., Schweitzer D., Lira M.J., Botello E., Wozniak A. Contamination rate of the surgical gowns during total hip arthroplasty. Arch. Orthop. Trauma Surg. 2019;139:1015–1019. doi: 10.1007/s00402-019-03211-w. PubMed DOI

Fraser J.F., Young S.W., Valentine K.A., Probst N.E., Spangehl M.J. The gown-glove interface is a source of contamination: A comparative study. Clin. Orthop. Relat. Res. 2015;473:2291–2297. doi: 10.1007/s11999-014-4094-8. PubMed DOI PMC

Hosseini P., Mundis G.M., Jr., Eastlack R., Nourian A., Pawelek J., Nguyen S., Akbarnia B.A. Do longer surgical procedures result in greater contamination of surgeons’ hands? Clin. Orthop. Relat. Res. 2016;474:1707–1713. doi: 10.1007/s11999-016-4832-1. PubMed DOI PMC

Beldame J., Lagrave B., Lievain L., Lefebvre B., Frebourg N., Dujardin F. Surgical glove bacterial contamination and perforation during total hip arthroplasty implantation: When gloves should be changed. Orthop. Traumatol. Surg. Res. 2012;98:432–440. doi: 10.1016/j.otsr.2011.10.015. PubMed DOI

Aboltins C.A., Berdal J.E., Casas F., Corona P.S., Cuellar D., Ferrari M.C., Hendershot E., Huang W., Kuo F.C., Malkani A., et al. Hip and knee section, prevention, antimicrobials (systemic): Proceedings of international consensus on orthopedic infections. J. Arthroplast. 2019;34:S279–S288. doi: 10.1016/j.arth.2018.09.012. PubMed DOI

Stefansdottir A., Robertsson O., Annette W.D., Kiernan S., Gustafson P., Lidgren L. Inadequate timing of prophylactic antibiotics in orthopedic surgery. We can do better. Acta Orthop. 2009;80:633–638. doi: 10.3109/17453670903316868. PubMed DOI PMC

Siddiqi A., Forte S.A., Docter S., Bryant D., Sheth N.P., Chen A.F. Perioperative antibiotic prophylaxis in total joint arthroplasty: A systematic review and meta-analysis. J. Bone Jt. Surg. 2019;101:828–842. doi: 10.2106/JBJS.18.00990. PubMed DOI

Tan T.L., Gomez M.M., Kheir M.M., Maltenfort M.G., Chen A.F. Should preoperative antibiotics be tailored according to patient’s comorbidities and susceptibility to organisms? J. Arthroplast. 2017;32:1089–1094.E3. doi: 10.1016/j.arth.2016.11.021. PubMed DOI

Al-Mayahi M., Cian A., Lipsky B.A., Suva D., Muller C., Landelle C., Miozzari H.H., Uckay I. Administration of antibiotic agents before intraoperative sampling in orthopedic infections alters culture results. J. Infect. 2015;71:518–525. doi: 10.1016/j.jinf.2015.08.002. PubMed DOI

Bedencic K., Kavcic M., Faganeli N., Mihalic R., Mavcic B., Dolenc J., Bajc Z., Trebse R. Does preoperative antimicrobial prophylaxis influence the diagnostic potential of periprosthetic tissues in hip or knee infections? Clin. Orthop. Relat. Res. 2016;474:258–264. doi: 10.1007/s11999-015-4486-4. PubMed DOI PMC

Tan T.L., Shohat N., Rondon A.J., Foltz C., Goswami K., Ryan S.P., Seyler T.M., Parvizi J. Perioperative antibiotic prophylaxis in total joint arthroplasty: A single dose is as effective as multiple doses. J. Bone Jt. Surg. 2019;101:429–437. doi: 10.2106/JBJS.18.00336. PubMed DOI

Hong C.S., Black C.S., Ryan S.P., Seyler T.M. Extended oral antibiotics and infection prophylaxis after a primary or revision total knee arthroplasty. J. Knee Surg. 2020;33:111–118. doi: 10.1055/s-0039-3400755. PubMed DOI

Honkanen M., Jamsen E., Karppelin M., Huttunen R., Syrjanen J. The effect of preoperative oral antibiotic use on the risk of periprosthetic joint infection after primary knee or hip replacement: A retrospective study with a 1-year follow-up. Clin. Microbiol. Infect. 2019;25:1021–1025. doi: 10.1016/j.cmi.2018.12.038. PubMed DOI

Barbero-Allende J.M., Garcia-Sanchez M., Montero-Ruiz E., Valles-Purroy A., Plasencia-Arriba M.A., Sanz-Moreno J. Dual prophylaxis with teicoplanin and cefazolin in the prevention of prosthetic joint infection. Enferm. Infecc. Microbiol. Clin. 2019;37:588–591. doi: 10.1016/j.eimc.2018.12.013. PubMed DOI

Huiras P., Logan J.K., Papadopoulos S., Whitney D. Local antimicrobial administration for prophylaxis of surgical site infections. Pharmacotherapy. 2012;32:1006–1019. doi: 10.1002/phar.1135. PubMed DOI

Anagnostakos K., Meyer C. Antibiotic elution from hip and knee acrylic bone cement spacers: A systematic review. Biomed. Res. Int. 2017;2017:4657874. doi: 10.1155/2017/4657874. PubMed DOI PMC

Zhang J., Zhang X.Y., Jiang F.L., Wu Y.P., Yang B.B., Liu Z.Y., Liu D. Antibiotic-impregnated bone cement for preventing infection in patients receiving primary total hip and knee arthroplasty: A meta-analysis. Medicine. 2019;98:e18068. doi: 10.1097/MD.0000000000018068. PubMed DOI PMC

Volejnikova A., Melichercik P., Nesuta O., Vankova E., Bednarova L., Rybacek J., Cerovsky V. Antimicrobial peptides prevent bacterial biofilm formation on the surface of polymethylmethacrylate bone cement. J. Med. Microbiol. 2019;68:961–972. doi: 10.1099/jmm.0.001000. PubMed DOI

Pontes M.H., Groisman E.A. A physiological basis for nonheritable antibiotic resistance. mBio. 2020;11 doi: 10.1128/mBio.00817-20. PubMed DOI PMC

Sultan A.A., Samuel L.T., Umpierrez E., Swiergosz A., Rabin J., Mahmood B., Mont M.A. Routine use of commercial antibiotic-loaded bone cement in primary total joint arthroplasty: A critical analysis of the current evidence. Ann. Transl. Med. 2019;7:73. doi: 10.21037/atm.2018.11.50. PubMed DOI PMC

Otte J.E., Politi J.R., Chambers B., Smith C.A. Intrawound vancomycin powder reduces early prosthetic joint infections in revision hip and knee arthroplasty. Surg. Technol. Int. 2017;30:284–289. PubMed

Sweet F.A., Forsthoefel C.W., Sweet A.R., Dahlberg R.K. Local versus systemic antibiotics for surgical infection prophylaxis in a rat model. J. Bone Jt. Surg. 2018;100:e120. doi: 10.2106/JBJS.18.00105. PubMed DOI

Heckmann N.D., Mayfield C.K., Culvern C.N., Oakes D.A., Lieberman J.R., Della Valle C.J. Systematic review and meta-analysis of intrawound vancomycin in total hip and total knee arthroplasty: A call for a prospective randomized trial. J. Arthroplast. 2019;34:1815–1822. doi: 10.1016/j.arth.2019.03.071. PubMed DOI

Hanada M., Nishikino S., Hotta K., Furuhashi H., Hoshino H., Matsuyama Y. Intrawound vancomycin powder increases post-operative wound complications and does not decrease periprosthetic joint infection in primary total and unicompartmental knee arthroplasties. Knee Surg. Sports Traumatol. Arthrosc. 2019;27:2322–2327. doi: 10.1007/s00167-019-05498-z. PubMed DOI

Egawa S., Hirai K., Matsumoto R., Yoshii T., Yuasa M., Okawa A., Sugo K., Sotome S. Efficacy of antibiotic-loaded hydroxyapatite/collagen composites is dependent on adsorbability for treating staphylococcus aureus osteomyelitis in rats. J. Orthop. Res. 2020;38:843–851. doi: 10.1002/jor.24507. PubMed DOI PMC

Bertsch P., Schneider L., Bovone G., Tibbitt M.W., Fischer P., Gstohl S. Injectable biocompatible hydrogels from cellulose nanocrystals for locally targeted sustained drug release. ACS Appl. Mater. Interfaces. 2019;11:38578–38585. doi: 10.1021/acsami.9b15896. PubMed DOI

Boot W., Vogely H.C., Jiao C., Nikkels P.G., Pouran B., van Rijen M.H., Ekkelenkamp M.B., Hansch G.M., Dhert W.J., Gawlitta D. Prophylaxis of implant-related infections by local release of vancomycin from a hydrogel in rabbits. Eur. Cell Mater. 2020;39:108–120. doi: 10.22203/eCM.v039a07. PubMed DOI

Colding-Rasmussen T., Horstmann P., Petersen M.M., Hettwer W. Antibiotic elution characteristics and pharmacokinetics of gentamicin and vancomycin from a mineral antibiotic carrier: An in vivo evaluation of 32 clinical cases. J. Bone Jt. Infect. 2018;3:234–240. doi: 10.7150/jbji.26301. PubMed DOI PMC

Loftus R.W., Dexter F., Goodheart M.J., McDonald M., Keech J., Noiseux N., Pugely A., Sharp W., Sharafuddin M., Lawrence W.T., et al. The effect of improving basic preventive measures in the perioperative arena on staphylococcus aureus transmission and surgical site infections: A randomized clinical trial. JAMA Netw. Open. 2020;3:e201934. doi: 10.1001/jamanetworkopen.2020.1934. PubMed DOI PMC

Paziuk T.M., Luzzi A.J., Fleischman A.N., Goswami K., Schwenk E.S., Levicoff E.A., Parvizi J. General vs spinal anesthesia for total joint arthroplasty: A single-institution observational review. J. Arthroplast. 2020;35:955–959. doi: 10.1016/j.arth.2019.11.019. PubMed DOI

Matharu G.S., Garriga C., Rangan A., Judge A. Does regional anesthesia reduce complications following total hip and knee replacement compared with general anesthesia? An analysis from the national joint registry for england, wales, northern ireland and the isle of man. J. Arthroplast. 2020;35:1521–1528. doi: 10.1016/j.arth.2020.02.003. PubMed DOI

Simpson J.B., Thomas V.S., Ismaily S.K., Muradov P.I., Noble P.C., Incavo S.J. Hypothermia in total joint arthroplasty: A wake-up call. J. Arthroplast. 2018;33:1012–1018. doi: 10.1016/j.arth.2017.10.057. PubMed DOI

Matos J.R., McSwain J.R., Wolf B.J., Doty J.W., Wilson S.H. Examination of intra-operative core temperature in joint arthroplasty: A single-institution prospective observational study. Int. Orthop. 2018;42:2513–2519. doi: 10.1007/s00264-018-3967-y. PubMed DOI PMC

Weenink R.P., de Jonge S.W., van Hulst R.A., Wingelaar T.T., van Ooij P.A.M., Immink R.V., Preckel B., Hollmann M.W. Perioperative hyperoxyphobia: Justified or not? Benefits and harms of hyperoxia during surgery. J. Clin. Med. 2020;9:642. doi: 10.3390/jcm9030642. PubMed DOI PMC

Naranje S., Lendway L., Mehle S., Gioe T.J. Does operative time affect infection rate in primary total knee arthroplasty? Clin. Orthop. Relat. Res. 2015;473:64–69. doi: 10.1007/s11999-014-3628-4. PubMed DOI PMC

Dicks K.V., Baker A.W., Durkin M.J., Anderson D.J., Moehring R.W., Chen L.F., Sexton D.J., Weber D.J., Lewis S.S. Short operative duration and surgical site infection risk in hip and knee arthroplasty procedures. Infect. Control Hosp. Epidemiol. 2015;36:1431–1436. doi: 10.1017/ice.2015.222. PubMed DOI PMC

Surace P., Sultan A.A., George J., Samuel L.T., Khlopas A., Molloy R.M., Stearns K.L., Mont M.A. The association between operative time and short-term complications in total hip arthroplasty: An analysis of 89,802 surgeries. J. Arthroplast. 2019;34:426–432. doi: 10.1016/j.arth.2018.11.015. PubMed DOI

Bohl D.D., Ondeck N.T., Darrith B., Hannon C.P., Fillingham Y.A., Della Valle C.J. Impact of operative time on adverse events following primary total joint arthroplasty. J. Arthroplast. 2018;33:2256–2262.E4. doi: 10.1016/j.arth.2018.02.037. PubMed DOI

Whiteside L.A. Prophylactic peri-operative local antibiotic irrigation. Bone Jt. J. 2016;98-B:23–26. doi: 10.1302/0301-620X.98B1.36357. PubMed DOI

Calkins T.E., Culvern C., Nam D., Gerlinger T.L., Levine B.R., Sporer S.M., Della Valle C.J. Dilute betadine lavage reduces the risk of acute postoperative periprosthetic joint infection in aseptic revision total knee and hip arthroplasty: A randomized controlled trial. J. Arthroplast. 2020;35:538–543.E1. doi: 10.1016/j.arth.2019.09.011. PubMed DOI

Hernandez N.M., Hart A., Taunton M.J., Osmon D.R., Mabry T.M., Abdel M.P., Perry K.I. Use of povidone-iodine irrigation prior to wound closure in primary total hip and knee arthroplasty: An analysis of 11,738 cases. J. Bone Jt. Surg. 2019;101:1144–1150. doi: 10.2106/JBJS.18.01285. PubMed DOI

Sprowson A.P., Jensen C., Parsons N., Partington P., Emmerson K., Carluke I., Asaad S., Pratt R., Muller S., Ahmed I., et al. The effect of triclosan-coated sutures on the rate of surgical site infection after hip and knee arthroplasty: A double-blind randomized controlled trial of 2546 patients. Bone Jt. J. 2018;100-B:296–302. doi: 10.1302/0301-620X.100B3.BJJ-2017-0247.R1. PubMed DOI PMC

Leaper D., Wilson P., Assadian O., Edmiston C., Kiernan M., Miller A., Bond-Smith G., Yap J. The role of antimicrobial sutures in preventing surgical site infection. Ann. R Coll Surg. Engl. 2017;99:439–443. doi: 10.1308/rcsann.2017.0071. PubMed DOI PMC

Krishnan R.J., Crawford E.J., Syed I., Kim P., Rampersaud Y.R., Martin J. Is the risk of infection lower with sutures than with staples for skin closure after orthopaedic surgery? A meta-analysis of randomized trials. Clin. Orthop. Relat. Res. 2019;477:922–937. doi: 10.1097/CORR.0000000000000690. PubMed DOI PMC

Chouirfa H., Bouloussa H., Migonney V., Falentin-Daudre C. Review of titanium surface modification techniques and coatings for antibacterial applications. Acta Biomater. 2019;83:37–54. doi: 10.1016/j.actbio.2018.10.036. PubMed DOI

Wang M., Tang T. Surface treatment strategies to combat implant-related infection from the beginning. J. Orthop. Translat. 2019;17:42–54. doi: 10.1016/j.jot.2018.09.001. PubMed DOI PMC

Wyatt M.C., Foxall-Smith M., Roberton A., Beswick A., Kieser D.C., Whitehouse M.R. The use of silver coating in hip megaprostheses: A systematic review. Hip Int. 2019;29:7–20. doi: 10.1177/1120700018811070. PubMed DOI

Zajonz D., Birke U., Ghanem M., Prietzel T., Josten C., Roth A., Fakler J.K.M. Silver-coated modular megaendoprostheses in salvage revision arthroplasty after periimplant infection with extensive bone loss-a pilot study of 34 patients. BMC Musculoskelet. Disord. 2017;18:383. doi: 10.1186/s12891-017-1742-7. PubMed DOI PMC

Medellin M.R., Fujiwara T., Clark R., Stevenson J.D., Parry M., Jeys L. Mechanisms of failure and survival of total femoral endoprosthetic replacements. Bone Jt. J. 2019;101-B:522–528. doi: 10.1302/0301-620X.101B5.BJJ-2018-1106.R1. PubMed DOI

Shirai T., Tsuchiya H., Terauchi R., Tsuchida S., Mizoshiri N., Mori Y., Takeuchi A., Hayashi K., Yamamoto N., Ikoma K., et al. A retrospective study of antibacterial iodine-coated implants for postoperative infection. Medicine. 2019;98:e17932. doi: 10.1097/MD.0000000000017932. PubMed DOI PMC

Shoji M.M., Chen A.F. Biofilms in periprosthetic joint infections: A review of diagnostic modalities, current treatments, and future directions. J. Knee Surg. 2020;33:119–131. doi: 10.1055/s-0040-1701214. PubMed DOI

Busscher H.J., Alt V., van der Mei H.C., Fagette P.H., Zimmerli W., Moriarty T.F., Parvizi J., Schmidmaier G., Raschke M.J., Gehrke T., et al. A trans-atlantic perspective on stagnation in clinical translation of antimicrobial strategies for the control of biomaterial-implant-associated infection. ACS Biomater. Sci. Eng. 2019;5:402–406. doi: 10.1021/acsbiomaterials.8b01071. PubMed DOI PMC

Kremers K., Leijtens B., Camps S., Tostmann A., Koeter S., Voss A. Evaluation of early wound leakage as a risk factor for prosthetic joint infection. J. Am. Assoc. Nurse Pract. 2019;31:337–343. doi: 10.1097/JXX.0000000000000159. PubMed DOI

Rudasill S., Gittings D.J., Elkassabany N.M., Liu J., Nelson C.L., Kamath A.F. Preoperative risk factor score predicts malnutrition in total joint arthroplasty patients. J. Surg. Orthop. Adv. 2019;28:97–103. PubMed

Li Z., Knetsch M. Antibacterial strategies for wound dressing: Preventing infection and stimulating healing. Curr. Pharm. Des. 2018;24:936–951. doi: 10.2174/1381612824666180213141109. PubMed DOI

Matthews C.N., Chen A.F., Daryoush T., Rothman R.H., Maltenfort M.G., Hozack W.J. Does an elastic compression bandage provide any benefit after primary tka? Clin. Orthop. Relat. Res. 2019;477:134–144. doi: 10.1097/CORR.0000000000000459. PubMed DOI PMC

Keeney J.A., Cook J.L., Clawson S.W., Aggarwal A., Stannard J.P. Incisional negative pressure wound therapy devices improve short-term wound complications, but not long-term infection rate following hip and knee arthroplasty. J. Arthroplast. 2019;34:723–728. doi: 10.1016/j.arth.2018.12.008. PubMed DOI

Newman J.M., Siqueira M.B.P., Klika A.K., Molloy R.M., Barsoum W.K., Higuera C.A. Use of closed incisional negative pressure wound therapy after revision total hip and knee arthroplasty in patients at high risk for infection: A prospective, randomized clinical trial. J. Arthroplast. 2019;34:554–559.E1. doi: 10.1016/j.arth.2018.11.017. PubMed DOI

Benito N., Mur I., Ribera A., Soriano A., Rodriguez-Pardo D., Sorli L., Cobo J., Fernandez-Sampedro M., Del Toro M.D., Guio L., et al. The different microbial etiology of prosthetic joint infections according to route of acquisition and time after prosthesis implantation, including the role of multidrug-resistant organisms. J. Clin. Med. 2019;8:673. doi: 10.3390/jcm8050673. PubMed DOI PMC

Zeller V., Kerroumi Y., Meyssonnier V., Heym B., Metten M.A., Desplaces N., Marmor S. Analysis of postoperative and hematogenous prosthetic joint-infection microbiological patterns in a large cohort. J. Infect. 2018;76:328–334. doi: 10.1016/j.jinf.2017.12.016. PubMed DOI

Rademacher W.M.H., Walenkamp G., Moojen D.J.F., Hendriks J.G.E., Goedendorp T.A., Rozema F.R. Antibiotic prophylaxis is not indicated prior to dental procedures for prevention of periprosthetic joint infections. Acta Orthop. 2017;88:568–574. doi: 10.1080/17453674.2017.1340041. PubMed DOI PMC

Suda K.J., Calip G.S., Zhou J., Rowan S., Gross A.E., Hershow R.C., Perez R.I., McGregor J.C., Evans C.T. Assessment of the appropriateness of antibiotic prescriptions for infection prophylaxis before dental procedures, 2011 to 2015. JAMA Netw. Open. 2019;2:e193909. doi: 10.1001/jamanetworkopen.2019.3909. PubMed DOI PMC

Slullitel P.A., Onativia J.I., Piuzzi N.S., Higuera-Rueda C., Parvizi J., Buttaro M.A. Is there a role for antibiotic prophylaxis prior to dental procedures in patients with total joint arthroplasty? A systematic review of the literature. J. Bone Jt. Infect. 2020;5:7–15. doi: 10.7150/jbji.40096. PubMed DOI PMC

Sollecito T.P., Abt E., Lockhart P.B., Truelove E., Paumier T.M., Tracy S.L., Tampi M., Beltran-Aguilar E.D., Frantsve-Hawley J. The use of prophylactic antibiotics prior to dental procedures in patients with prosthetic joints: Evidence-based clinical practice guideline for dental practitioners—A report of the american dental association council on scientific affairs. J. Am. Dent. Assoc. 2015;146:11–16.E8. doi: 10.1016/j.adaj.2014.11.012. PubMed DOI

Jahoda D., Nyc O., Simsa J., Kucera E., Hanek P., Chrz P., Pokorny D., Tawa N., Landor I., Sosna A. Late hematogenous infection of prosthetic joint. Acta Chir. Orthop. Traumatol. Cechoslov. 2008;75:88–92. (In Czech) PubMed

Jahoda D., Nyc O., Simsa J., Kucera E., Hanek P., Chrz P., Pokorny D., Tawa N., Landor I., Sosna A. Late hematogenous infection of prosthetic joints in our patients and proposal for a system of prevention. Acta Chir. Orthop. Traumatol. Cechoslov. 2007;74:397–400. (In Czech) PubMed

Rakow A., Perka C., Trampuz A., Renz N. Origin and characteristics of haematogenous periprosthetic joint infection. Clin. Microbiol Infect. 2019;25:845–850. doi: 10.1016/j.cmi.2018.10.010. PubMed DOI

Tomas T. Patient-related risk factors for infected total arthroplasty. Acta Chir. Orthop. Traumatol. Cechoslov. 2008;75:451–456. (In Czech) PubMed

Wouthuyzen-Bakker M., Lora-Tamayo J., Senneville E., Scarbourough M., Ferry T., Uckay I., Salles M.J., O’Connell K., Iribarren J.A., Vigante D., et al. Erysipelas or cellulitis with a prosthetic joint in situ. J. Bone Jt. Infect. 2018;3:222–225. doi: 10.7150/jbji.25519. PubMed DOI PMC

Stevignon T., Mouton A., Meyssonnier V., Kerroumi Y., Yazigi A., Aubert T., Lhotellier L., Le Strat V., Passeron D., Graff W., et al. Haematogenous prosthetic knee infections: Prospective cohort study of 58 patients. Orthop. Traumatol. Surg. Res. 2019;105:647–651. doi: 10.1016/j.otsr.2019.02.022. PubMed DOI

Salt E., Wiggins A.T., Rayens M.K., Morris B.J., Mannino D., Hoellein A., Donegan R.P., Crofford L.J. Moderating effects of immunosuppressive medications and risk factors for post-operative joint infection following total joint arthroplasty in patients with rheumatoid arthritis or osteoarthritis. Semin. Arthritis Rheum. 2017;46:423–429. doi: 10.1016/j.semarthrit.2016.08.011. PubMed DOI PMC

Holzer R.J., Dayton J.D. Registries, risk calculators, and risk-adjusted outcomes: Current usage, limitations, and future prospects. Pediatr. Cardiol. 2020;41:443–458. doi: 10.1007/s00246-020-02300-7. PubMed DOI

Backhouse A., Ogunlayi F. Quality improvement into practice. BMJ. 2020;368:m865. doi: 10.1136/bmj.m865. PubMed DOI PMC

Eckhoff M.D., Bader J.M., Nesti L.J., Dunn J.C. Acute complications in total wrist arthroplasty: A national surgical quality improvement program review. J. Wrist Surg. 2020;9:124–128. doi: 10.1055/s-0039-3400465. PubMed DOI PMC

Childers C.P., Siletz A.E., Singer E.S., Faltermeier C., Hu Q.L., Ko C.Y., Golladay G.J., Kates S.L., Wick E.C., Maggard-Gibbons M. Surgical technical evidence review for elective total joint replacement conducted for the ahrq safety program for improving surgical care and recovery. Geriatr. Orthop. Surg. Rehabil. 2018;9:2151458518754451. doi: 10.1177/2151458518754451. PubMed DOI PMC

Curtin A.G., Anderson V., Brockhus F., Cohen D.R. Novel team-based approach to quality improvement effectively engages staff and reduces adverse events in healthcare settings. BMJ Open Qual. 2020;9:e000741. doi: 10.1136/bmjoq-2019-000741. PubMed DOI PMC

Kunutsor S.K., Beswick A.D., Whitehouse M.R., Blom A.W., Lenguerrand E. Implant fixation and risk of prosthetic joint infection following primary total hip replacement: Meta-analysis of observational cohort and randomised intervention studies. J. Clin. Med. 2019;8:722. doi: 10.3390/jcm8050722. PubMed DOI PMC

Kunutsor S.K., Wylde V., Whitehouse M.R., Beswick A.D., Lenguerrand E., Blom A.W. Influence of fixation methods on prosthetic joint infection following primary total knee replacement: Meta-analysis of observational cohort and randomised intervention studies. J. Clin. Med. 2019;8:828. doi: 10.3390/jcm8060828. PubMed DOI PMC

Lenguerrand E., Whitehouse M.R., Beswick A.D., Kunutsor S.K., Burston B., Porter M., Blom A.W. Risk factors associated with revision for prosthetic joint infection after hip replacement: A prospective observational cohort study. Lancet Infect. Dis. 2018;18:1004–1014. doi: 10.1016/S1473-3099(18)30345-1. PubMed DOI PMC

Lamplot J.D., Luther G., Mawdsley E.L., Luu H.H., Manning D. Modified protocol decreases surgical site infections after total knee arthroplasty. J. Knee Surg. 2015;28:395–403. doi: 10.1055/s-0035-1544974. PubMed DOI

Hwang T.J., Kesselheim A.S., Vokinger K.N. Lifecycle regulation of artificial intelligence- and machine learning-based software devices in medicine. JAMA. 2019;322:2285–2286. doi: 10.1001/jama.2019.16842. PubMed DOI

Loftus T.J., Tighe P.J., Filiberto A.C., Efron P.A., Brakenridge S.C., Mohr A.M., Rashidi P., Upchurch G.R., Jr., Bihorac A. Artificial intelligence and surgical decision-making. JAMA Surg. 2019 doi: 10.1001/jamasurg.2019.1510. PubMed DOI PMC

Greenland P., Hassan S. Precision preventive medicine-ready for prime time? JAMA Intern. Med. 2019;179:605–606. doi: 10.1001/jamainternmed.2019.0142. PubMed DOI

Lenguerrand E., Whitehouse M.R., Beswick A.D., Kunutsor S.K., Foguet P., Porter M., Blom A.W., National Joint Registry for England, Wales, Northern Ireland and the Isle of Man Risk factors associated with revision for prosthetic joint infection following knee replacement: An observational cohort study from england and wales. Lancet Infect. Dis. 2019;19:589–600. doi: 10.1016/S1473-3099(18)30755-2. PubMed DOI PMC

Alamanda V.K., Springer B.D. The prevention of infection: 12 modifiable risk factors. Bone Jt. J. 2019;101-B:3–9. doi: 10.1302/0301-620X.101B1.BJJ-2018-0233.R1. PubMed DOI

Blanco J.F., Diaz A., Melchor F.R., da Casa C., Pescador D. Risk factors for periprosthetic joint infection after total knee arthroplasty. Arch. Orthop. Trauma. Surg. 2020;140:239–245. doi: 10.1007/s00402-019-03304-6. PubMed DOI

Karas V., Kildow B.J., Baumgartner B.T., Green C.L., Attarian D.E., Bolognesi M.P., Seyler T.M. Preoperative patient profile in total hip and knee arthroplasty: Predictive of increased medicare payments in a bundled payment model. J. Arthroplast. 2018;33:2728–2733.E3. doi: 10.1016/j.arth.2018.04.001. PubMed DOI

Mahmoudi E., Kamdar N., Kim N., Gonzales G., Singh K., Waljee A.K. Use of electronic medical records in development and validation of risk prediction models of hospital readmission: Systematic review. BMJ. 2020;369:m958. doi: 10.1136/bmj.m958. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Prosthetic Joint Infection: Updates on Prevention, Diagnosis and Therapy

. 2020 Nov 30 ; 9 (12) : . [epub] 20201130

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...