Analytical TCP Model for Millimeter-Wave 5G NR Systems in Dynamic Human Body Blockage Environment

. 2020 Jul 12 ; 20 (14) : . [epub] 20200712

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu dopisy

Perzistentní odkaz   https://www.medvik.cz/link/pmid32664617

Dynamic blockage of radio propagation paths between the user equipment (UE) and the 5G New Radio (NR) Base Station (BS) induces abrupt rate fluctuations that may lead to sub-optimal performance of the Transmission Control Protocol (TCP) protocol. In this work, we characterize the effects of dynamic human blockage on TCP throughput at the 5G NR air interface. To this aim, we develop an analytical model that expresses the TCP throughput as a function of the round-trip time (RTT), environmental, and radio system parameters. Our results indicate that the blockage affects TCP throughput only when the RTT is comparable to the blocked and non-blocked state durations when the frequency of state changes is high. However, such conditions are not typical for dynamic body blockage environments allowing TCP to benefit from the high bandwidth of 5G NR systems fully.

Zobrazit více v PubMed

Bioglio V., Condo C., Land I. Design of Polar Codes in 5G New Radio. IEEE Commun. Surv. Tutor. 2020 doi: 10.1109/COMST.2020.2967127. DOI

Xing Y., Rappaport T.S. Propagation Measurement System and Approach at 140 GHz-moving to 6G and above 100 GHz; Proceedings of the IEEE Global Communications Conference (GLOBECOM); Abu Dhabi, UAE. 9–13 December 2018; pp. 1–6.

Tervo O., Levanen T., Pajukoski K., Hulkkonen J., Wainio P., Valkama M. 5G New Radio Evolution Towards sub-THz Communications; Proceedings of the 2nd 6G Wireless Summit (6G SUMMIT); Kittilä Levi, Finland. 17 March–20 May 2020; pp. 1–6.

Haneda K., Zhang J., Tan L., Liu G., Zheng Y., Asplund H., Li J., Wang Y., Steer D., Li C., et al. 5G 3GPP-like Channel Models for Outdoor Urban Microcellular and Macrocellular Environments; Proceedings of the 83rd Vehicular Technology Conference (VTC Spring); Nanjing, China. 15–18 May 2016; pp. 1–7.

Moltchanov D., Ometov A., Andreev S., Koucheryavy Y. Upper Bound on Capacity of 5G mmWave Cellular with Multi-connectivity Capabilities. Electron. Lett. 2018;54:724–726. doi: 10.1049/el.2018.0497. DOI

Polese M., Giordani M., Mezzavilla M., Rangan S., Zorzi M. Improved Handover Through Dual Connectivity in 5G mmWave Mobile Networks. IEEE J. Sel. Areas Commun. 2017;35:2069–2084. doi: 10.1109/JSAC.2017.2720338. DOI

Samuvlov A., Moltchanov D., Krupko A., Kovalchukov R., Moskaleva F., Gaidamaka Y. Performance Analysis of Mixture of Unicast and Multicast Sessions in 5G NR Systems; Proceedings of the 10th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT); Moscow, Russia. 5–9 November 2018; pp. 1–7.

Mezzavilla M., Zhang M., Polese M., Ford R., Dutta S., Rangan S., Zorzi M. End-to-End Simulation of 5G mmWave Networks. IEEE Commun. Surv. Tutor. 2018;20:2237–2263. doi: 10.1109/COMST.2018.2828880. DOI

Ford R., Zhang M., Mezzavilla M., Dutta S., Rangan S., Zorzi M. Achieving Ultra-low Latency in 5G Millimeter Wave Cellular Networks. IEEE Commun. Mag. 2017;55:196–203. doi: 10.1109/MCOM.2017.1600407CM. DOI

Polese M., Jana R., Zorzi M. TCP in 5G mmWave Networks: Link Level Retransmissions and MP-TCP. arXiv. 20171703.08985

Zhang M., Mezzavilla M., Ford R., Rangan S., Panwar S., Mellios E., Kong D., Nix A., Zorzi M. Transport Layer Performance in 5G mmWave Cellular; Proceedings of the Conference on Computer Communications Workshops (INFOCOM WKSHPS); San Francisco, CA, USA. 10–15 April 2016; pp. 730–735.

3GPP Physical Channels and Modulation (Release 15) 2017. 3GPP TS 38.211 V15.1.0.

3GPP Study on Channel Model for Frequencies from 0.5 to 100 GHz (Release 14) 2017. 3GPP TR 38.901 V14.3.0.

Nain P., Towsley D., Liu B., Liu Z. Properties of Random Direction Models; Proceedings of the 24th Annual Joint Conference of the IEEE Computer and Communications Societies; Miami, FL, USA. 13–17 March 2005; pp. 1897–1907.

Allman M., Paxson V., Blanton E. TCP Congestion Control. [(accessed on 10 June 2020)];2009 Technical Report, RFC 5681. Available online: http://www.rfc-editor.org/rfc/rfc5681.txt.

Richard Stevens W. TCP/IP Illustrated, Volume 1, The Protocols. Addision-Wesley; Reading, MA, USA: 1994.

RIPE . RTT Measurements to Fixed Destinations. RIPE Network Coordination Center; Amsterdam, The Netherlands: 2018. [(accessed on 10 June 2020)]. Available online: https://atlas.ripe.net/results/maps/rtt-fixed/

Mathis M., Semke J., Mahdavi J., Ott T. The Macroscopic Behavior of the TCP Congestion Avoidance Algorithm. ACM SIGCOMM Comput. Commun. Rev. 1997;27:67–82. doi: 10.1145/263932.264023. DOI

Gurtov A., Ludwig R. Responding to Spurious Rimeouts in TCP; Proceedings of the 22nd Annual Joint Conference of the IEEE Computer and Communications Societies (IEEE Cat. No. 03CH37428); San Francisco, CA, USA. 30 March–3 April 2003; pp. 2312–2322.

Gapeyenko M., Samuylov A., Gerasimenko M., Moltchanov D., Singh S., Akdeniz M.R., Aryafar E., Himayat N., Andreev S., Koucheryavy Y. On the Temporal Effects of Mobile Blockers in Urban Millimeter-Wave Cellular Scenarios. IEEE Trans. Veh. Technol. 2017;66:10124–10138. doi: 10.1109/TVT.2017.2754543. DOI

Groenevelt R. Ph.D. Thesis. INRIA Sophia-Antipolis; Valbonne, France: 2005. Stochastic Models for Mobile Ad Hoc Networks.

Mathai A.M. An Introduction to Geometrical Probability: Distributional Aspects with Applications. Volume 1 CRC Press; Boca Raton, FL, USA: 1999.

Guillemin F.M., Mazumdar R.R., Simonian A.D. On Heavy Traffic Approximations for Transient Characteristics of M/M/∞ Queues. J. Appl. Probab. 1996;33:490–506. doi: 10.1017/S0021900200099915. DOI

NYU . MmWave Cellular Network Simulator. NYU Wireless Group; Brooklyn, NY, USA: 2020. [(accessed on 10 June 2020)]. Available online: http://github.com/nyuwireless-unipd/ns3-mmwave.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...