Spin stress contribution to the lattice dynamics of FePt

. 2020 Jul ; 6 (28) : eaba1142. [epub] 20200708

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid32685678

Invar-behavior occurring in many magnetic materials has long been of interest to materials science. Here, we show not only invar behavior of a continuous film of FePt but also even negative thermal expansion of FePt nanograins upon equilibrium heating. Yet, both samples exhibit pronounced transient expansion upon laser heating in femtosecond x-ray diffraction experiments. We show that the granular microstructure is essential to support the contractive out-of-plane stresses originating from in-plane expansion via the Poisson effect that add to the uniaxial contractive stress driven by spin disorder. We prove the spin contribution by saturating the magnetic excitations with a first laser pulse and then detecting the purely expansive response to a second pulse. The contractive spin stress is reestablished on the same 100-ps time scale that we observe for the recovery of the ferromagnetic order. Finite-element modeling of the mechanical response of FePt nanosystems confirms the morphology dependence of the dynamics.

Zobrazit více v PubMed

Wasserman E. F., Invar: Moment-volume instabilities in transition metals and alloys. Handbook Ferromagn. Mater. 5, 237–322 (1990).

Guillaume C. E., Recherches sur les aciers au nickel. Dilatations aux températures élevées; résistance électrique. C. R. Acad. Sci. 125, 18 (1897).

Weiss R. J., The origin of the `Invar’effect. Proc. Phys. Soc. 82, 281 (1963).

Van Schilfgaarde M., Abrikosov I. A., Johansson B., Origin of the invar effect in iron-nickel alloys. Nature 400, 46–49 (1999).

Khmelevskyi S., Turek I., Mohn P., Large negative magnetic contribution to the thermal expansion in iron-platinum alloys: Quantitative theory of the invar effect. Phys. Rev. Lett. 91, 037201 (2003). PubMed

Dornes C., Acremann Y., Savoini M., Kubli M., Neugebauer M. J., Abreu E., Huber L., Lantz G., Vaz C. A. F., Lemke H., Bothschafter E. M., Porer M., Esposito V., Rettig L., Buzzi M., Alberca A., Windsor Y. W., Beaud P., Staub U., Zhu D., Song S., Glownia J. M., Johnson S. L., The ultrafast Einstein–de Haas effect. Nature 565, 209–212 (2019). PubMed

Jal E., López-Flores V., Pontius N., Ferté T., Bergeard N., Boeglin C., Vodungbo B., Lüning J., Jaouen N., Structural dynamics during laser-induced ultrafast demagnetization. Phys. Rev. B. 95, 184422 (2017).

von Reppert A., Pudell J., Koc A., Reinhardt M., Leitenberger W., Dumesnil K., Zamponi F., Bargheer M., Persistent nonequilibrium dynamics of the thermal energies in the spin and phonon systems of an antiferromagnet. Struct. Dyn. 3, 054302 (2016). PubMed PMC

Pudell J., von Reppert A., Schick D., Zamponi F., Rössle M., Herzog M., Zabel H., Bargheer M., Ultrafast negative thermal expansion driven by spin disorder. Phys. Rev. B. 99, 094304 (2019).

von Korff Schmising C., Harpoeth A., Zhavoronkov N., Ansari Z., Aku-Leh C., Woerner M., Elsaesser T., Bargheer M., Schmidbauer M., Vrejoiu I., Hesse D., Alexe M., Ultrafast magnetostriction and phonon-mediated stress in a photoexcited ferromagnet. Phys. Rev. B. 78, 060404 (2008).

Reid A. H., Shen X., Maldonado P., Chase T., Jal E., Granitzka P. W., Carva K., Li R. K., Li J., Wu L., Vecchione T., Liu T., Chen Z., Higley D. J., Hartmann N., Coffee R., Wu J., Dakovski G. L., Schlotter W. F., Ohldag H., Takahashi Y. K., Mehta V., Hellwig O., Fry A., Zhu Y., Cao J., Fullerton E. E., Stöhr J., Oppeneer P. M., Wang X. J., Dürr H. A., Beyond a phenomenological description of magnetostriction. Nat. Commun. 9, 388 (2018). PubMed PMC

Koc A., Reinhardt M., von Reppert A., Rössle M., Leitenberger W., Gleich M., Weinelt M., Zamponi F., Bargheer M., Grueneisen-approach for the experimental determination of transient spin and phonon energies from ultrafast x-ray diffraction data: Gadolinium. J. Phys. Condens. Matter 29, 264001 (2017). PubMed

Beaurepaire E., Merle J.-C., Daunois A., Bigot J.-Y., Ultrafast spin dynamics in ferromagnetic nickel. Phys. Rev. Lett. 76, 4250–4253 (1996). PubMed

Kimling J., Kimling J., Wilson R. B., Hebler B., Albrecht M., Cahill D. G., Ultrafast demagnetization of FePt:Cu thin films and the role of magnetic heat capacity. Phys. Rev. B. 90, 224408 (2014).

Kampfrath T., Sell A., Klatt G., Pashkin A., Mährlein S., Dekorsy T., Wolf M., Fiebig M., Leitenstorfer A., Huber R., Coherent terahertz control of antiferromagnetic spin waves. Nat. Photonics 5, 31–34 (2011).

Hansteen F., Kimel A., Kirilyuk A., Rasing T., Nonthermal ultrafast optical control of the magnetization in garnet films. Phys. Rev. B. 73, 014421 (2006).

Kim J. W., Vomir M., Bigot J. Y., Controlling the spins angular momentum in ferromagnets with sequences of picosecond acoustic pulses. Sci. Rep. 5, 8511 (2014). PubMed PMC

Sander M., Pudell J. E., Herzog M., Bargheer M., Bauer R., Besse V., Temnov V., Gaal P., Quantitative disentanglement of coherent and incoherent laser-induced surface deformations by time-resolved x-ray reflectivity. Appl. Phys. Lett. 111, 261903 (2017).

Heinecke D. C., Kliebisch O., Flock J., Bruchhausen A., Köhler K., Dekorsy T., Selective excitation of zone-folded phonon modes within one triplet in a semiconductor superlattice. Phys. Rev. B 87, 075307 (2013).

Cheng T., Wu J., Liu T., Zou X., Cai J., Chantrell R. W., Xu Y., Dual-pump manipulation of ultrafast demagnetization in TbFeCo. Phys. Rev. B. 93, 064401 (2016).

Bühlmann K., Gort R., Salvatella G., Däster S., Fognini A., Bähler T., Dornes C., Vaz C. A. F., Vaterlaus A., Acremann Y., Ultrafast demagnetization in iron: Separating effects by their nonlinearity. Struct. Dyn. 5, 044502 (2018). PubMed PMC

Shi J. Y., Tang M., Zhang Z., Ma L., Sun L., Zhou C., Hu X. F., Zheng Z., Shen L. Q., Zhou S. M., Wu Y. Z., Chen L. Y., Zhao H. B., Impact of ultrafast demagnetization process on magnetization reversal in L10 FePt revealed using double laser pulse excitation. Appl. Phys. Lett. 112, 082403 (2018).

Barrera G. D., Bruno J. A. O., Barron T. H. K., Allan N. L., Negative thermal expansion. J. Phys. Condens. Matter 17, R217–R252 (2005).

Mosendz O., Pisana S., Reiner J. W., Stipe B., Weller D., Ultra-high coercivity small-grain FePt media for thermally assisted recording (invited). J. Appl. Phys. 111, 07B729 (2012).

Weller D., Parker G., Mosendz O., Lyberatos A., Mitin D., Safonova N. Y., Albrecht M., Review article: FePt heat assisted magnetic recording media. J. Vac. Sci. Technol. 34, 060801 (2016).

Hono K., Takahashi Y. K., Ju G., Thiele J.-U., Ajan A., Yang X., Ruiz R., Wan L., Heat-assisted magnetic recording media materials. MRS Bull. 43, 93–99 (2018).

von Reppert A., Willig L., Pudell J.-E., Rössle M., Leitenberger W., Herzog M., Ganss F., Hellwig O., Bargheer M., Ultrafast laser generated strain in granular and continuous FePt thin films. Appl. Phys. Lett. 113, 123101 (2018).

Sumiyama K., Shiga M., Morioka M., Nakamura Y., Characteristic magnetovolume effects in Invar type Fe-Pt alloys. J. Phys. F Met. Phys. 9, 1665–1677 (1979).

Tsunoda Y., Kobayashi H., Temperature variation of the tetragonality in ordered PtFe alloy. J. Magn. Magn. Mater. 272–276, 776–777 (2004).

Nicula R., Crisan O., Crisan A. D., Mercioniu I., Stir M., Vasiliu F., Thermal stability, thermal expansion and grain-growth in exchange-coupled Fe–Pt–Ag–B bulk nanocomposite magnets. J. Alloys Compd. 622, 865–870 (2015).

Rasmussen P., Rui X., Shield J. E., Texture formation in FePt thin films via thermal stress management. Appl. Phys. Lett. 86, 191915 (2005).

Granitzka P. W., Jal E., Le Guyader L., Savoini M., Higley D. J., Liu T., Chen Z., Chase T., Ohldag H., Dakovski G. L., Schlotter W. F., Carron S., Hoffman M. C., Gray A. X., Shafer P., Arenholz E., Hellwig O., Mehta V., Takahashi Y. K., Wang J., Fullerton E. E., Stöhr J., Reid A. H., Dürr H. A., Magnetic switching in granular FePt layers promoted by near-field laser enhancement. Nano Lett. 17, 2426–2432 (2017). PubMed

Hovorka O., Devos S., Coopman Q., Fan W. J., Aas C. J., Evans R. F. L., Chen X., Ju G., Chantrell R. W., The Curie temperature distribution of FePt granular magnetic recording media. Appl. Phys. Lett. 101, 052406 (2012).

Willig L., Von Reppert A., Deb M., Ganss F., Hellwig O., Bargheer M., Finite-size effects in ultrafast remagnetization dynamics of FePt. Phys. Rev. B. 100, 224408 (2019).

J. M. D. Coey, Magnetism and Magnetic Materials (Cambridge Univ. Press, 2012).

Lyberatos A., Parker G. J., Model of ballistic-diffusive thermal transport in HAMR media. Jpn. J. Appl. Phys. 58, 045002 (2019).

Barron T. H. K., Collins J. G., White G. K., Thermal expansion of solids at low temperatures. Adv. Phys. 29, 609–730 (1980).

Schick D., Bojahr A., Herzog M., von Korff Schmising C., Shayduk R., Leitenberger W., Gaal P., Bargheer M., Normalization schemes for ultrafast x-ray diffraction using a table-top laser-driven plasma source. Rev. Sci. Instrum. 83, 025104 (2012). PubMed

Bargheer M., Zhavoronkov N., Bruch R., Legall H., Stiel H., Woerner M., Elsaesser T., Comparison of focusing optics for femtosecond x-ray diffraction. Appl. Phys. B. 80, 715–719 (2005).

Shima T., Takanashi K., Takahashi Y. K., Hono K., Preparation and magnetic properties of highly coercive FePt films. Appl. Phys. Lett. 81, 1050–1052 (2002).

von Reppert A., Sarhan R. M., Stete F., Pudell J., Del Fatti N., Crut A., Koetz J., Liebig F., Prietzel C., Bargheer M., Watching the vibration and cooling of ultrathin gold nanotriangles by ultrafast x-ray diffraction. J. Phys. Chem. C 120, 28894–28899 (2016).

Tengdin P., You W., Chen C., Shi X., Zusin D., Zhang Y., Gentry C., Blonsky A., Keller M., Oppeneer P. M., Kapteyn H., Tao Z., Murnane M., Critical behavior within 20 fs drives the out-of-equilibrium laser-induced magnetic phase transition in nickel. Sci. Adv. 4, eaap9744 (2018). PubMed PMC

Schick D., Shayduk R., Bojahr A., Herzog M., von Korff Schmising C., Gaal P., Bargheer M., Ultrafast reciprocal-space mapping with a convergent beam. J. Appl. Cryst. 46, 1372–1377 (2013).

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Nonequilibrium sub-10 nm spin-wave soliton formation in FePt nanoparticles

. 2022 Apr ; 8 (13) : eabn0523. [epub] 20220401

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...