• This record comes from PubMed

Beyond a phenomenological description of magnetostriction

. 2018 Jan 26 ; 9 (1) : 388. [epub] 20180126

Status PubMed-not-MEDLINE Language English Country Great Britain, England Media electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Links

PubMed 29374151
PubMed Central PMC5786062
DOI 10.1038/s41467-017-02730-7
PII: 10.1038/s41467-017-02730-7
Knihovny.cz E-resources

Magnetostriction, the strain induced by a change in magnetization, is a universal effect in magnetic materials. Owing to the difficulty in unraveling its microscopic origin, it has been largely treated phenomenologically. Here, we show how the source of magnetostriction-the underlying magnetoelastic stress-can be separated in the time domain, opening the door for an atomistic understanding. X-ray and electron diffraction are used to separate the sub-picosecond spin and lattice responses of FePt nanoparticles. Following excitation with a 50-fs laser pulse, time-resolved X-ray diffraction demonstrates that magnetic order is lost within the nanoparticles with a time constant of 146 fs. Ultrafast electron diffraction reveals that this demagnetization is followed by an anisotropic, three-dimensional lattice motion. Analysis of the size, speed, and symmetry of the lattice motion, together with ab initio calculations accounting for the stresses due to electrons and phonons, allow us to reveal the magnetoelastic stress generated by demagnetization.

Accelerator Division SLAC National Accelerator Laboratory 2575 Sand Hill Road Menlo Park CA 94025 USA

Brookhaven National Laboratory Upton NY 1193 USA

Center for Memory and Recording Research UC San Diego 9500 Gilman Drive La Jolla CA 92093 0401 USA

CNRS Laboratoire de Chimie Physique Matière et Rayonnement Sorbonne Universités UPMC Univ Paris 06 75005 Paris France

Department of Applied Physics Stanford University Stanford CA 94305 USA

Department of Physics and Astronomy Uppsala University P O Box 516 S 75120 Uppsala Sweden

Department of Physics and National High Magnetic Field Laboratory Florida State University Tallahassee FL 32310 USA

Department of Physics Stanford University Stanford CA 94305 USA

Faculty of Mathematics and Physics Department of Condensed Matter Physics Charles University Ke Karlovu 5 CZ 12116 Prague 2 Czech Republic

Institute of Ion Beam Physics and Materials Research Helmholtz Zentrum Dresden Rossendorf 01328 Dresden Germany

Institute of Physics Technische Universität Chemnitz Reichenhainer Straße 70 D 09107 Chemnitz Germany

Linac Coherent Light Source SLAC National Accelerator Laboratory 2575 Sand Hill Road Menlo Park CA 94025 USA

Magnetic Materials Unit National Institute for Materials Science Tsukuba 305 0047 Japan

San Jose Research Center HGST a Western Digital Company 3403 Yerba Buena Road San Jose CA 95135 USA

Stanford Institute for Materials and Energy Sciences SLAC National Accelerator Laboratory 2575 Sand Hill Road Menlo Park CA 94025 USA

Stanford Synchrotron Radiation Laboratory SLAC National Accelerator Laboratory 2575 Sand Hill Road Menlo Park CA 94025 USA

Thomas J Watson Research Center 1101 Kitchawan Road Yorktown Heights NY 10598 USA

Van der Waals Zeeman Institute University of Amsterdam 1018XE Amsterdam The Netherlands

Erratum In

PubMed

See more in PubMed

del Moral, A. Handbook of Magnetism and Advanced Magnetic Materials. Magnetostriction and Magnetoelasticity Theory: A Modern View (John Wiley & Sons, Ltd, Hoboken NJ, 2007).

Pascarelli S, et al. 4f change-density deformation and magnetostrictive bond strain observed in amorphous TbFe2 by x-ray absorption spectroscopy. Phys. Rev. B. 2010;81:020406.

Filippetti A, Hill NA. Magnetic stress as a driving force of structural distortions: the case of CrN. Phys. Rev. Lett. 2000;85:5166–5169. PubMed

Beaurepaire E, Merle JC, Daunois A, Bigot JY. Ultrafast spin dynamics in ferromagnetic nickel. Phys. Rev. Lett. 1996;76:4250. PubMed

Stamm C, et al. Femtosecond modification of electron localization and transfer of angular momentum in nickel. Nat. Mater. 2007;6:740. PubMed

Mendil J, et al. Resolving the role of femtosecond heated electrons in ultrafast spin dynamics. Sci. Rep. 2014;4:3980. PubMed PMC

Iihama S, et al. Ultrafast demagnetization of L10 FePt and FePd ordered alloys. J. Phys. D Appl. Phys. 2016;49:035002.

Rudolf D, et al. Ultrafast magnetization enhancement in metallic multilayers driven by superdiffusive spin current. Nat. Commun. 2012;3:1037. PubMed

Liu ZK, Wang Y, Shang SL. Thermal expansion anomaly regulated by entropy. Sci. Rep. 2014;4:7043. PubMed PMC

von Reppert A, et al. Persistent non equilibrium dynamics of the thermal energies in the spin and phonon systems of an antiferromagnet. Struct. Dyn. 2016;3:054302. PubMed PMC

Stanciu CD, et al. All-optical magnetic recording with circularly polarized light. Phys. Rev. Lett. 2007;99:047601. PubMed

Mangin S, et al. Engineered materials for all-optical helicity-dependent magnetic switching. Nat. Mater. 2014;13:286–292. PubMed

Lambert CH, et al. All-optical control of ferromagnetic thin films and nanostructures. Science. 2014;345:1337–1340. PubMed

John R, et al. Magnetization switching of FePt nanoparticle recording medium by femtosecond laser pulses. Sci. Rep. 2017;7:4114. PubMed PMC

Graves CE, et al. Nanoscale spin reversal by non-local angular momentum transfer following ultrafast laser excitation in ferromagnetic GdFeCo. Nat. Mater. 2013;12:293–298. PubMed

John R, et al. Magnetisation switching of FePt nanoparticle recording medium by femtosecond laser pulses. Sci. Rep. 2017;7:4114. PubMed PMC

Granitzka PW, et al. Magnetic switching in granular FePt layers promoted by near-field laser enhancement. Nano. Lett. 2017;17:2426–2432. PubMed

de Gennes PG. Superconductivity of Metals and Alloys. New York: W.A. Benjamin, Inc; 1966.

Weller D, Mosendz O, Parker G, Pisana S, Santos TS. L10 FePt X-Y media for heat-assisted magnetic recording. Phys. Status Solid A. 2013;210:1245–1260.

Giri A, Hun Wee S, Jain S, Hellwig O, Hopkins PE. Influence of chemical ordering on the thermal conductivity and electronic relaxation in FePt thin films in heat assisted magnetic recording applications. Sci. Rep. 2016;6:32077. PubMed PMC

Tsunoda Y, Kobayashi H. Temperature variation of the tetragonality in ordered PtFe alloy. J. Magn. Magn. Mater. 2004;272-276:776–777.

Kanazawa H, Lauhoff G, Suzuki T. Magnetic and structural properties of (CoxFe100-x)Pt50 alloy thin films. J. Appl. Phys. 2000;87:6143–6145.

Jal E, et al. Structural dynamics during laser-induced ultrafast demagnetization. Phys. Rev. B. 2017;95:184422.

Xu DB, et al. Spatiotemporally separating electron and phonon thermal transport in L10 FePt films for heat assisted magnetic recording. J. Appl. Phys. 2014;115:243907.

Couet S, et al. Anisotropic lattice dynamics of FePt L10 thin films. Phys. Rev. B. 2010;82:094109.

Szilagyi E, et al. Visualization of nanocrystal breathing modes at extreme strains. Nat. Commun. 2015;6:6577. PubMed

Clark JN, et al. Ultrafast three-dimensional imaging of lattice dynamics in individual gold nanocrystals. Science. 2013;341:56–59. PubMed

Varaprasad BSDChS, Wang J, Shiroyama T, Takahashi YK, Hono K. Columnar structure in fept-c granular media for heat-assisted magnetic recording. IEEE Trans. Magn. 2015;51:3200904.

Wang X, et al. Electronic Grüneisen parameter and thermal expansion in ferromagnetic transition metal. Appl. Phys. Lett. 2008;92:121918.

Weathersby SP, et al. Mega-electron-volt ultrafast electron diffraction at SLAC National Accelerator Laboratory. Rev. Sci. Instrum. 2015;86:073702. PubMed

Kimling J, et al. Ultrafast demagnetization of FePt:Cu thin films and the role of heat capacity. Phys. Rev. B. 2014;90:224408.

Carva K, Battiato M, Legut D, Oppeneer PM. Ab initio theory of electron-phonon mediated ultrafast spin relaxation of laser-excited hot electrons in transition-metal ferromagnets. Phys. Rev. B. 2013;87:184425.

Henighan T, et al. Generation mechanism of terahertz coherent acoustic phonons in Fe. Phys. Rev. B. 2016;93:220301.

Chase T, et al. Ultrafast electron diffraction from non-equilibrium phonons in femtosecond laser heated Au flims. Appl. Phys. Lett. 2016;108:041909.

Wang X, et al. Temperature dependence of electron-phonon thermalization and its correlation to ultrafast magnetism. Phys. Rev. B. 2010;81:220301.

Lukashev PV, Horrell N, Sabirianov RF. Tailoring magnetocrystalline anisotropy of FePt by external strain. J. Appl. Phys. 2012;111:07A318.

Maldonado P, Carva K, Flammer M, Oppeneer PM. Theory of out-of-equilibrium ultrafast relaxation dynamics in metals. Phys. Rev. B. 2017;96:174439.

Togo A, Chaput L, Tanaka I. Distributions of phonon lifetimes in Brillouin zones. Phys. Rev. B. 2015;91:094306.

Togo A, Tanaka I. First principles phonon calculations in material science. Scr. Mater. 2015;108:1–5.

Wright OB. Ultrafast nonequilibrium stress generation in gold and silver. Phys. Rev. B. 1994;49:9985. PubMed

Boness DA, Brown JM, McMahan AK. The electronic thermodynamics of iron under Earth core conditions. Phys. Earth Planet Inter. 1986;42:227.

Gonze X, et al. ABINIT: First-principles approach to material and nanosystem properties. Comp. Phys. Comm. 2009;180:2582–2615.

Torrent M, Jollet F, Bottin F, Zerah G, Gonze X. Implementation of the projector augmented-wave method in the ABINIT code: Application to the study of iron under pressure. Comp. Mat. Sci. 2008;42:337–351.

Khmelevskyi S, Turek I, Mohn P. Spontaneous volume magnetostriction and non-Stoner behavior of the valence band in pure hcp Gd. Phys. Rev. B. 2004;70:132401.

Koopmans B, et al. Explaining the paradoxical diversity of ultrafast laser-induced demagnetization. Nat. Mater. 2010;9:259–265. PubMed

Find record

Citation metrics

Logged in users only

Archiving options

Loading data ...