Nonequilibrium sub-10 nm spin-wave soliton formation in FePt nanoparticles
Status PubMed-not-MEDLINE Language English Country United States Media print-electronic
Document type Journal Article
PubMed
35363518
PubMed Central
PMC10938569
DOI
10.1126/sciadv.abn0523
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
Magnetic nanoparticles such as FePt in the L10 phase are the bedrock of our current data storage technology. As the grains become smaller to keep up with technological demands, the superparamagnetic limit calls for materials with higher magnetocrystalline anisotropy. This, in turn, reduces the magnetic exchange length to just a few nanometers, enabling magnetic structures to be induced within the nanoparticles. Here, we describe the existence of spin-wave solitons, dynamic localized bound states of spin-wave excitations, in FePt nanoparticles. We show with time-resolved x-ray diffraction and micromagnetic modeling that spin-wave solitons of sub-10 nm sizes form out of the demagnetized state following femtosecond laser excitation. The measured soliton spin precession frequency of 0.1 THz positions this system as a platform to develop novel miniature devices.
Complex Matter Department Jožef Stefan Institute Ljubljana Slovenia
Department of Molecular Sciences and Nanosystems Ca' Foscari University of Venice 30172 Venice Italy
Department of Physics and Astronomy Uppsala University 751 20 Uppsala Sweden
Department of Physics Stockholm University 106 91 Stockholm Sweden
Deutsches Elektronen Synchrotron 22607 Hamburg Germany
Dipartimento di Elettronica Informazione e Bioingegneria Politecnico di Milano Milano Italy
European XFEL GmbH Holzkoppel 4 22869 Schenefeld Germany
Institut für Optik und Atomare Physik Technische Universität Berlin Berlin Germany
Istituto Nazionale di Fisica Nucleare Sezione di Milano Milano Italy
Magnet Materials Unit National Institute for Materials Science Tsukuba 305 0047 Japan
Max Born Institut Berlin Germany
SLAC National Accelerator Laboratory 2575 Sand Hill Road Menlo Park CA 94025 USA
Sorbonne Université CNRS Laboratoire de Chimie Physique Matière et Rayonnement 75005 Paris France
See more in PubMed
Dahm T., Hinkov V., Borisenko S. V., Kordyuk A. A., Zabolotnyy V. B., Fink J., Büchner B., Scalapino D. J., Hanke W., Keimer B., Strength of the spin-fluctuation-mediated pairing interaction in a high-temperature superconductor. Nat. Phys. 5, 217–221 (2009).
Chumak A., Vasyuchka V., Serga A., Hillebrands B., Magnon spintronics. Nat. Phys. 11, 453–461 (2015).
Neusser S., Grundler D., Magnonics: Spin waves on the nanoscale. Adv. Mater. 21, 2927–2932 (2009).
Lenk B., Ulrichs H., Garbs F., Münzenberg M., The building blocks of magnonics. Phys. Rep. 507, 107–136 (2011).
Slavin A., Tiberkevich V., Spin wave mode excited by spin-polarized current in a magnetic nanocontact is a standing self-localized wave bullet. Phys. Rev. Lett. 95, 237201 (2005). PubMed
Bonetti S., Tiberkevich V., Consolo G., Finocchio G., Muduli P., Mancoff F., Slavin A., Åkerman J., Experimental evidence of self-localized and propagating spin wave modes in obliquely magnetized current-driven nanocontacts. Phys. Rev. Lett. 105, 217204 (2010). PubMed
Hoefer M. A., Silva T. J., Keller M. W., Theory for a dissipative droplet soliton excited by a spin torque nanocontact. Phys. Rev. B 82, 054432 (2010).
Kosevich A. M., Ivanov B. A., Kovalev A. S., Magnetic solitons. Phys. Rep. 194, 117–238 (1990).
Mohseni S. M., Sani S. R., Persson J., Anh Nguyen T. N., Chung S., Pogorylov Y., Muduli P. K., Iaccoca E., Eklund A., Dumas R. K., Bonetti S., Deac A., Hoefer M. A., Åkermann J., Spin torque–generated magnetic droplet solitons. Science 339, 1295–1298 (2013). PubMed
Iacocca E., Liu T.-M., Reid A. H., Fu Z., Ruta S., Granitzka P. W., Jal E., Bonetti S., Gray A. X., Graves C. E., Kukreja R., Chen Z., Higley D. J., Chase T., Le Guyader L., Hirsch K., Ohldag H., Schlotter W. F., Dakovski G. L., Coslovich G., Hoffmann M. C., Carron S., Tsukamoto A., Savoini M., Kirilyuk A., Kimel A. V., Rasing T., Stöhr J., Evans R. F. L., Ostler T., Chantrell R. W., Hoefer M. A., Silva T. J., Dürr H. A., Spin-current-mediated rapid magnon localisation and coalescence after ultrafast optical pumping of ferrimagnetic alloys. Nat. Commun. 10, 1756 (2019). PubMed PMC
Je S.-G., Vallobra P., Srivastava T., Rojas-Sańchez J.-C., Pham T. H., Hehn M., Malinowski G., Baraduc C., Auffret S., Gaudin G., Mangin S., Beá H., Boulle O., Creation of magnetic skyrmion bubble lattices by ultrafast laser in ultrathin films. Nano Lett. 18, 7362–7371 (2018). PubMed
Finazzi M., Savoini M., Khorsand A. R., Tsukamoto A., Itoh A., Duo L., Kirilyuk A., Rasing T., Ezawa M., Laser-induced magnetic nanostructures with tunable topological properties. Phys. Rev. Lett. 110, 177205 (2013). PubMed
Büttner F., Pfau B., Böttcher M., Schneider M., Mercurio G., Günther C. M., Hessing P., Klose C., Wittmann A., Gerlinger K., Kern L.-M., Strüber C., von Korff Schmising C., Fuchs J., Engel D., Churikova A., Huang S., Suzuki D., Lemesh I., Huang M., Caretta L., Weder D., Gaida J. H., Möller M., Harvey T. R., Zayko S., Bagschik K., Carley R., Mercadier L., Schlappa J., Yaroslavtsev A., Le Guyarder L., Gerasimova N., Scherz A., Deiter C., Gort R., Hickin D., Zhu J., Turcato M., Lomidze D., Erdinger F., Castoldi A., Maffessanti S., Porro M., Samartsev A., Sinova J., Ropers C., Mentink J. H., Dupé B., Beach G. S. D., Eisebitt S., Observation of fluctuation-mediated picosecond nucleation of a topological phase. Nat. Mater. 20, 30–37 (2021). PubMed
Backes D., Macià F., Bonetti S., Kukreja R., Ohldag H., Kent A. D., Direct observation of a localized magnetic soliton in a spin-transfer nanocontact. Phys. Rev. Lett. 115, 127205 (2015). PubMed
Bonetti S., Kukreja R., Chen Z., Macia F., Hernandez J. M., Eklund A., Backes D., Frisch J., Katine J., Malm G., Urazhdin S., Kent A. D., Stöhr J., Ohldag H., Dürr H. A., Direct observation and imaging of a spin-wave soliton with p−like symmetry. Nat. Commun. 6, 8889 (2015). PubMed PMC
Chung S., Le Q. T., Ahlberg M., Awad A. A., Weigand M., Bykova I., Khymyn R., Dvornik M., Mazraati H., Houshang A., Jiang S., Nguyen T. N. A., Goering E., Schütz G., Gräfe J., Åkerman J., Direct observation of Zhang-Li torque expansion of magnetic droplet solitons. Phys. Rev. Lett. 120, 217204 (2018). PubMed
Piao K., Li D., Wei D., The role of short exchange length in the magnetization processes of L10-ordered FePt perpendicular media. J. Magn. Magn. Mater. 303, e39 (2006).
A. Hubert, R. Schäfer, Magnetic Domains: The Analysis of Magnetic Microstructures (Springer, 2009).
Romera M., Talatchian P., Tsunegi S., Araujo F. A., Cros V., Bortolotti P., Trastoy J., Yakushiji K., Fukushima A., Kubota H., Yuasa J., Ernoult M., Vodenicarevic D., Hirtzlin T., Locatelli N., Querlioz D., Grollier J., Vowel recognition with four coupled spin-torque nano-oscillators. Nature 563, 230–234 (2018). PubMed
Rumpf B., Newell A. C., Coherent structures and entropy in constrained, modulationally unstable, nonintegrable systems. Phys. Rev. Lett. 87, 054102 (2001). PubMed
Iacocca E., Dumas R. K., Bookman L., Mohseni M. M., Chung S., Hoefer M. A., Åkerman J., Confined dissipative droplet solitons in spin-valve nanowires with perpendicular magnetic anisotropy. Phys. Rev. Lett. 112, 047201 (2014). PubMed
Xiao D., Tiberkevich V., Liu Y. H., Liu Y. W., Mohseni S. M., Chung S., Ahlberg M., Slavin A. N., Åkerman J., Zhou Y., Parametric autoexcitation of magnetic droplet soliton perimeter modes. Phys. Rev. B 95, 024106 (2017).
Fischer P., Frontiers in imaging magnetism with polarized x-rays. Front. Phys. 2, 82 (2015).
Reid A. H., Shen X., Maldonado P., Chase T., Jal E., Granitzka P. W., Carva K., Li R. K., Li J., Wu L., Vecchione T., Liu T., Chen Z., Higley D. J., Hartmann N., Coffee R., Wu J., Dakovski G. L., Schlotter W. F., Ohldag H., Takahashi Y. K., Mehta V., Hellwig O., Fry A., Zhu Y., Cao J., Fullerton E. E., Stöhr J., Oppeneer P. M., Wang X. J., Dürr H. A., Beyond a phenomenological description of magnetostriction. Nat. Commun. 9, 388 (2018). PubMed PMC
von Reppert A., Willig L., Pudell J.-E., Zeuschner S. P., Sellge G., Ganss F., Hellwig O., Arregi J. A., Uhlír V., Crut A., Bargheer M., Spin stress contribution to the lattice dynamics of FePt. Sci. Adv. 6, eaba1142 (2020). PubMed PMC
Henighan T., Trigo M., Bonetti S., Granitzka P., Chen Z., Jiang M., Kukreja R., Higley D., Gray A., Reid A. H., Jal E., Hoffmann M., Kozina M. E., Song S., Chollet M., Zhu D., Xu P. F., Jeong J., Carva K., Maldonado P., Oppeneer P. M., Samant M. G., Parkin S. S. P., Reis D., Dürr H. A., Generation mechanism of THz coherent acoustic phonons in Fe. Phys. Rev. B 93, 220301(R) (2016).
Dornes C., Acremann Y., Savoini M., Kubli M., Neugebauer M. J., Abreu E., Huber L., Lantz G., Vaz C. A. F., Lemke H., Bothschafter E. M., Porer M., Esposito V., Rettig L., Buzzi M., Alberca A., Windsor Y. M., Beaud P., Staub U., Zhu D., Song S., Glownia J. M., Johnson S. L., The ultrafast Einstein–de Haas effect. Nature 565, 209–212 (2019). PubMed
Dreher L., Weiler M., Pernpeintner M., Huebl H., Gross R., Brandt M. S., Goennenwein S. T. B., Surface acoustic wave driven ferromagnetic resonance in nickel thin films: Theory and experiment. Phys. Rev. B 86, 134415 (2012).
Stupakiewicz A., Davies C. S., Szerenos K., Afanasiev D., Rabinovich K. S., Boris A. V., Caviglia A., Kimel A. V., Kirilyuk A., Ultrafast phononic switching of magnetization. Nat. Phys. 17, 489–492 (2021).
Becker J., Mosendz O., Weller D., Kirilyuk A., Maan J. C., Christianen P. C. M., Rasing T., Kimel A., Laser induced spin precession in highly anisotropic granular L10FePt. Appl. Phys. Lett. 104, 152412 (2014).
Atxitia U., Hinzke D., Chubykalo-Fesenko O., Nowak U., Kachkachi H., Mryasov O. N., Evans R. F., Chantrell R. W., Multiscale modeling of magnetic materials: Temperature dependence of the exchange stiffness. Phys. Rev. B 82, 134440 (2010).
Poluektov M., Eriksson O., Kreiss G., Coupling atomistic and continuum modelling of magnetism. Comput. Methods Appl. Mech. Eng. 329, 219–253 (2018).
Varaprasad B. S. D. C. S., Wang J., Shiroyama T., Takahashi Y. K., Hono K., Columnar structure in fept-c granular media for heat-assisted magnetic recording. IEEE Trans. Magn. 51, 3200904 (2015).
Porro M., Andricek L., Aschauer S., Castoldi A., Donato M., Engelke J., Erdinger F., Fiorini C., Fischer P., Graafsma H., Grande A., Guazzoni C., Hansen K., Hauf S., Kalavakuru P., Klaer H., Tangl M., Kugel A., Kuster M., Lechner P., Lomidze D., Maffessanti S., Manghisoni M., Nidhi S., Okrent F., Re V., Reckleben C., Riceputi E., Richter R., Samartsev A., Schlee S., Soldat J., Strüder L., Szymanski J., Turcato M., Weidenspointner G., Wunderer C. B., The MiniSDD-based 1-mpixel camera of the DSSC project for the european XFEL. IEEE Trans. Nucl. Sci. 69, 1334–1350 (2021).
Granitzka P. W., Jal E., Le Guyader L., Savoini M., Higley D. J., Liu T., Chen Z., Chase T., Ohldag H., Dakovski G. L., Schlotter W., Carron S., Hoffmann M., Shafer P., Arenholz E., Hellwig O., Mehta V., Takahashi Y. K., Wang J., Fullerton E. E., Stöhr J., Reid A. H., Dürr H. A., Magnetic switching in granular FePt layers promoted by near-field laser enhancement. Nano Lett. 17, 2426–2432 (2017). PubMed
Vansteenkiste A., Leliaert J., Dvornik M., Helsen M., Garcia-Sanchez F., Van Waeyenberge B., The design and verification of MuMax3. AIP Adv. 4, 107133 (2014).
A. G. Gurevich, G. A. Melkov, Magnetization Oscillations and Waves (CRC Press Inc., 1996).
Nieves P., Arpan S., Zhang S. H., Kadzielawa A. P., Zhang R. F., Legut D., MAELAS: Magneto-ELAStic properties calculation via computational high-throughput approach. Comput. Phys. Commun. 264, 107964 (2021).
Fritsch D., Ederer C., First-principles calculation of magnetoelastic coefficients and magnetostriction in the spinel ferrites CoFe2O4 and NiFe2O4. Phys. Rev. B 86, 014406 (2012).
Xu R., Chiang T. C., Determination of phonon dispersion relations by x-ray thermal diffuse scattering. Z. Kristallogr. 220, 1009 (2005).
Scherz A., Schlotter W. F., Chen K., Rick R., Stöhr J., Lüning J., McNulty I., Günther C., Radu F., Eberhardt W., Hellwig O., Eisebitt S., Phase imaging of magnetic nanostructures using resonant soft x-ray holography. Phys. Rev. B 76, 214410 (2007).
Henke B. L., Gullikson E. M., Davis J. C., X-ray interactions: Photoabsorption, scattering, transmission, and reflection at E = 50-30,000 eV, Z = 1-92. At. Data Nucl. Data Tables 54, 181–342 (1993).
Chase T., Trigo M., Reid A. H., Li R., Vecchione T., Shen X., Weathersby S., Coffee R., Hartmann N., Reis D. A., Wang X. J., Dürr H. A., Ultrafast electron diffraction from non-equilibrium phonons in femtosecond laser heated Au films. Appl. Phys. Lett. 108, 041909 (2016).
Maldonado P., Chase T., Reid A. H., Shen X., Li R. K., Carva K., Payer T., Horn von Hoegen M., Sokolowski-Tinten K., Wang X. J., Oppeneer P. M., Dürr H. A., Tracking the ultrafast nonequilibrium energy flow between electronic and lattice degrees of freedom on crystalline nickel. Phys. Rev. B 101, 100302(R) (2020).
I. Turek, V. Drchal, J. Kudrnovský, M. Sob, P. Weinberger, Electronic Structure of Disordered Alloys, Surfaces and Interfaces (Kluwer, 1997).
Vosko S. H., Wilk L., Nusair M., Accurate spin-dependent electron liquid correlation energies for local spin density calculations: A critical analysis. Can. J. Phys. 58, 1200–1211 (1980).
Yamamoto K., Kubota Y., Suzuki M., Hirata Y., Carva K., Berritta M., Takubo K., Uemura Y., Fukaya R., Tanaka K., Nishimura W., Ohkochi T., Katayama T., Togashi T., Tamasaku K., Yabashi T., Tanaka Y., Seki T., Takanashi K., Oppeneer P. M., Wadati H., Ultrafast demagnetization of Pt magnetic moment in L10-FePt probed by magnetic circular dichroism at a hard x-ray free electron laser. New J. Phys. 21, 123010 (2019).
Halilov S. V., Eschrig H., Perlov A. Y., Oppeneer P. M., Adiabatic spin dynamics from spin-density-functional theory: Application to Fe, Co, and Ni. Phys. Rev. B 58, 293–302 (1998).
Liechtenstein A. I., Katsnelson M. I., Antropov V. P., Gubanov V. A., Local spin density functional approach to the theory of exchange interactions in ferromagnetic metals and alloys. J. Magn. Magn. Mater. 67, 65–74 (1987).
Oppeneer P. M., Magneto-optical spectroscopy in the valence-band energy regime: relationship to the magnetocrystalline anisotropy. J. Magn. Magn. Mater. 188, 275–285 (1998).
Khan S. A., Blaha P., Ebert H., Minár J., Šipr O., Magnetocrystalline anisotropy of FePt: A detailed view. Phys. Rev. B 94, 144436 (2016).
Akiyama S., Tsunoda Y., Magnon and magnetic structure of FePt alloy. J. Magn. Magn. Mater. 310, 1844–1846 (2007).