• This record comes from PubMed

Nonequilibrium sub-10 nm spin-wave soliton formation in FePt nanoparticles

. 2022 Apr ; 8 (13) : eabn0523. [epub] 20220401

Status PubMed-not-MEDLINE Language English Country United States Media print-electronic

Document type Journal Article

Magnetic nanoparticles such as FePt in the L10 phase are the bedrock of our current data storage technology. As the grains become smaller to keep up with technological demands, the superparamagnetic limit calls for materials with higher magnetocrystalline anisotropy. This, in turn, reduces the magnetic exchange length to just a few nanometers, enabling magnetic structures to be induced within the nanoparticles. Here, we describe the existence of spin-wave solitons, dynamic localized bound states of spin-wave excitations, in FePt nanoparticles. We show with time-resolved x-ray diffraction and micromagnetic modeling that spin-wave solitons of sub-10 nm sizes form out of the demagnetized state following femtosecond laser excitation. The measured soliton spin precession frequency of 0.1 THz positions this system as a platform to develop novel miniature devices.

Center for Magnetism and Magnetic Materials University of Colorado Colorado Springs Colorado Springs CO 80918 USA

Center for Memory and Recording Research University of California San Diego 9500 Gilman Drive La Jolla CA 92093 0401 USA

Complex Matter Department Jožef Stefan Institute Ljubljana Slovenia

Department of Mathematics Physics and Electrical Engineering Northumbria University Newcastle upon Tyne NE1 8ST UK

Department of Molecular Sciences and Nanosystems Ca' Foscari University of Venice 30172 Venice Italy

Department of Physics and Astronomy Uppsala University 751 20 Uppsala Sweden

Department of Physics Stockholm University 106 91 Stockholm Sweden

Deutsches Elektronen Synchrotron 22607 Hamburg Germany

Dipartimento di Elettronica Informazione e Bioingegneria Politecnico di Milano Milano Italy

European XFEL GmbH Holzkoppel 4 22869 Schenefeld Germany

Faculty of Mathematics and Physics Department of Condensed Matter Physics Charles University Ke Karlovu 5 121 16 Prague Czech Republic

Institut für Optik und Atomare Physik Technische Universität Berlin Berlin Germany

Institute of Experimental Physics Technische Universität Bergakademie Freiberg 09599 Freiberg Germany

Istituto Nazionale di Fisica Nucleare Sezione di Milano Milano Italy

Magnet Materials Unit National Institute for Materials Science Tsukuba 305 0047 Japan

Max Born Institut Berlin Germany

SLAC National Accelerator Laboratory 2575 Sand Hill Road Menlo Park CA 94025 USA

Sorbonne Université CNRS Laboratoire de Chimie Physique Matière et Rayonnement 75005 Paris France

See more in PubMed

Dahm T., Hinkov V., Borisenko S. V., Kordyuk A. A., Zabolotnyy V. B., Fink J., Büchner B., Scalapino D. J., Hanke W., Keimer B., Strength of the spin-fluctuation-mediated pairing interaction in a high-temperature superconductor. Nat. Phys. 5, 217–221 (2009).

Chumak A., Vasyuchka V., Serga A., Hillebrands B., Magnon spintronics. Nat. Phys. 11, 453–461 (2015).

Neusser S., Grundler D., Magnonics: Spin waves on the nanoscale. Adv. Mater. 21, 2927–2932 (2009).

Lenk B., Ulrichs H., Garbs F., Münzenberg M., The building blocks of magnonics. Phys. Rep. 507, 107–136 (2011).

Slavin A., Tiberkevich V., Spin wave mode excited by spin-polarized current in a magnetic nanocontact is a standing self-localized wave bullet. Phys. Rev. Lett. 95, 237201 (2005). PubMed

Bonetti S., Tiberkevich V., Consolo G., Finocchio G., Muduli P., Mancoff F., Slavin A., Åkerman J., Experimental evidence of self-localized and propagating spin wave modes in obliquely magnetized current-driven nanocontacts. Phys. Rev. Lett. 105, 217204 (2010). PubMed

Hoefer M. A., Silva T. J., Keller M. W., Theory for a dissipative droplet soliton excited by a spin torque nanocontact. Phys. Rev. B 82, 054432 (2010).

Kosevich A. M., Ivanov B. A., Kovalev A. S., Magnetic solitons. Phys. Rep. 194, 117–238 (1990).

Mohseni S. M., Sani S. R., Persson J., Anh Nguyen T. N., Chung S., Pogorylov Y., Muduli P. K., Iaccoca E., Eklund A., Dumas R. K., Bonetti S., Deac A., Hoefer M. A., Åkermann J., Spin torque–generated magnetic droplet solitons. Science 339, 1295–1298 (2013). PubMed

Iacocca E., Liu T.-M., Reid A. H., Fu Z., Ruta S., Granitzka P. W., Jal E., Bonetti S., Gray A. X., Graves C. E., Kukreja R., Chen Z., Higley D. J., Chase T., Le Guyader L., Hirsch K., Ohldag H., Schlotter W. F., Dakovski G. L., Coslovich G., Hoffmann M. C., Carron S., Tsukamoto A., Savoini M., Kirilyuk A., Kimel A. V., Rasing T., Stöhr J., Evans R. F. L., Ostler T., Chantrell R. W., Hoefer M. A., Silva T. J., Dürr H. A., Spin-current-mediated rapid magnon localisation and coalescence after ultrafast optical pumping of ferrimagnetic alloys. Nat. Commun. 10, 1756 (2019). PubMed PMC

Je S.-G., Vallobra P., Srivastava T., Rojas-Sańchez J.-C., Pham T. H., Hehn M., Malinowski G., Baraduc C., Auffret S., Gaudin G., Mangin S., Beá H., Boulle O., Creation of magnetic skyrmion bubble lattices by ultrafast laser in ultrathin films. Nano Lett. 18, 7362–7371 (2018). PubMed

Finazzi M., Savoini M., Khorsand A. R., Tsukamoto A., Itoh A., Duo L., Kirilyuk A., Rasing T., Ezawa M., Laser-induced magnetic nanostructures with tunable topological properties. Phys. Rev. Lett. 110, 177205 (2013). PubMed

Büttner F., Pfau B., Böttcher M., Schneider M., Mercurio G., Günther C. M., Hessing P., Klose C., Wittmann A., Gerlinger K., Kern L.-M., Strüber C., von Korff Schmising C., Fuchs J., Engel D., Churikova A., Huang S., Suzuki D., Lemesh I., Huang M., Caretta L., Weder D., Gaida J. H., Möller M., Harvey T. R., Zayko S., Bagschik K., Carley R., Mercadier L., Schlappa J., Yaroslavtsev A., Le Guyarder L., Gerasimova N., Scherz A., Deiter C., Gort R., Hickin D., Zhu J., Turcato M., Lomidze D., Erdinger F., Castoldi A., Maffessanti S., Porro M., Samartsev A., Sinova J., Ropers C., Mentink J. H., Dupé B., Beach G. S. D., Eisebitt S., Observation of fluctuation-mediated picosecond nucleation of a topological phase. Nat. Mater. 20, 30–37 (2021). PubMed

Backes D., Macià F., Bonetti S., Kukreja R., Ohldag H., Kent A. D., Direct observation of a localized magnetic soliton in a spin-transfer nanocontact. Phys. Rev. Lett. 115, 127205 (2015). PubMed

Bonetti S., Kukreja R., Chen Z., Macia F., Hernandez J. M., Eklund A., Backes D., Frisch J., Katine J., Malm G., Urazhdin S., Kent A. D., Stöhr J., Ohldag H., Dürr H. A., Direct observation and imaging of a spin-wave soliton with p−like symmetry. Nat. Commun. 6, 8889 (2015). PubMed PMC

Chung S., Le Q. T., Ahlberg M., Awad A. A., Weigand M., Bykova I., Khymyn R., Dvornik M., Mazraati H., Houshang A., Jiang S., Nguyen T. N. A., Goering E., Schütz G., Gräfe J., Åkerman J., Direct observation of Zhang-Li torque expansion of magnetic droplet solitons. Phys. Rev. Lett. 120, 217204 (2018). PubMed

Piao K., Li D., Wei D., The role of short exchange length in the magnetization processes of L10-ordered FePt perpendicular media. J. Magn. Magn. Mater. 303, e39 (2006).

A. Hubert, R. Schäfer, Magnetic Domains: The Analysis of Magnetic Microstructures (Springer, 2009).

Romera M., Talatchian P., Tsunegi S., Araujo F. A., Cros V., Bortolotti P., Trastoy J., Yakushiji K., Fukushima A., Kubota H., Yuasa J., Ernoult M., Vodenicarevic D., Hirtzlin T., Locatelli N., Querlioz D., Grollier J., Vowel recognition with four coupled spin-torque nano-oscillators. Nature 563, 230–234 (2018). PubMed

Rumpf B., Newell A. C., Coherent structures and entropy in constrained, modulationally unstable, nonintegrable systems. Phys. Rev. Lett. 87, 054102 (2001). PubMed

Iacocca E., Dumas R. K., Bookman L., Mohseni M. M., Chung S., Hoefer M. A., Åkerman J., Confined dissipative droplet solitons in spin-valve nanowires with perpendicular magnetic anisotropy. Phys. Rev. Lett. 112, 047201 (2014). PubMed

Xiao D., Tiberkevich V., Liu Y. H., Liu Y. W., Mohseni S. M., Chung S., Ahlberg M., Slavin A. N., Åkerman J., Zhou Y., Parametric autoexcitation of magnetic droplet soliton perimeter modes. Phys. Rev. B 95, 024106 (2017).

Fischer P., Frontiers in imaging magnetism with polarized x-rays. Front. Phys. 2, 82 (2015).

Reid A. H., Shen X., Maldonado P., Chase T., Jal E., Granitzka P. W., Carva K., Li R. K., Li J., Wu L., Vecchione T., Liu T., Chen Z., Higley D. J., Hartmann N., Coffee R., Wu J., Dakovski G. L., Schlotter W. F., Ohldag H., Takahashi Y. K., Mehta V., Hellwig O., Fry A., Zhu Y., Cao J., Fullerton E. E., Stöhr J., Oppeneer P. M., Wang X. J., Dürr H. A., Beyond a phenomenological description of magnetostriction. Nat. Commun. 9, 388 (2018). PubMed PMC

von Reppert A., Willig L., Pudell J.-E., Zeuschner S. P., Sellge G., Ganss F., Hellwig O., Arregi J. A., Uhlír V., Crut A., Bargheer M., Spin stress contribution to the lattice dynamics of FePt. Sci. Adv. 6, eaba1142 (2020). PubMed PMC

Henighan T., Trigo M., Bonetti S., Granitzka P., Chen Z., Jiang M., Kukreja R., Higley D., Gray A., Reid A. H., Jal E., Hoffmann M., Kozina M. E., Song S., Chollet M., Zhu D., Xu P. F., Jeong J., Carva K., Maldonado P., Oppeneer P. M., Samant M. G., Parkin S. S. P., Reis D., Dürr H. A., Generation mechanism of THz coherent acoustic phonons in Fe. Phys. Rev. B 93, 220301(R) (2016).

Dornes C., Acremann Y., Savoini M., Kubli M., Neugebauer M. J., Abreu E., Huber L., Lantz G., Vaz C. A. F., Lemke H., Bothschafter E. M., Porer M., Esposito V., Rettig L., Buzzi M., Alberca A., Windsor Y. M., Beaud P., Staub U., Zhu D., Song S., Glownia J. M., Johnson S. L., The ultrafast Einstein–de Haas effect. Nature 565, 209–212 (2019). PubMed

Dreher L., Weiler M., Pernpeintner M., Huebl H., Gross R., Brandt M. S., Goennenwein S. T. B., Surface acoustic wave driven ferromagnetic resonance in nickel thin films: Theory and experiment. Phys. Rev. B 86, 134415 (2012).

Stupakiewicz A., Davies C. S., Szerenos K., Afanasiev D., Rabinovich K. S., Boris A. V., Caviglia A., Kimel A. V., Kirilyuk A., Ultrafast phononic switching of magnetization. Nat. Phys. 17, 489–492 (2021).

Becker J., Mosendz O., Weller D., Kirilyuk A., Maan J. C., Christianen P. C. M., Rasing T., Kimel A., Laser induced spin precession in highly anisotropic granular L10FePt. Appl. Phys. Lett. 104, 152412 (2014).

Atxitia U., Hinzke D., Chubykalo-Fesenko O., Nowak U., Kachkachi H., Mryasov O. N., Evans R. F., Chantrell R. W., Multiscale modeling of magnetic materials: Temperature dependence of the exchange stiffness. Phys. Rev. B 82, 134440 (2010).

Poluektov M., Eriksson O., Kreiss G., Coupling atomistic and continuum modelling of magnetism. Comput. Methods Appl. Mech. Eng. 329, 219–253 (2018).

Varaprasad B. S. D. C. S., Wang J., Shiroyama T., Takahashi Y. K., Hono K., Columnar structure in fept-c granular media for heat-assisted magnetic recording. IEEE Trans. Magn. 51, 3200904 (2015).

Porro M., Andricek L., Aschauer S., Castoldi A., Donato M., Engelke J., Erdinger F., Fiorini C., Fischer P., Graafsma H., Grande A., Guazzoni C., Hansen K., Hauf S., Kalavakuru P., Klaer H., Tangl M., Kugel A., Kuster M., Lechner P., Lomidze D., Maffessanti S., Manghisoni M., Nidhi S., Okrent F., Re V., Reckleben C., Riceputi E., Richter R., Samartsev A., Schlee S., Soldat J., Strüder L., Szymanski J., Turcato M., Weidenspointner G., Wunderer C. B., The MiniSDD-based 1-mpixel camera of the DSSC project for the european XFEL. IEEE Trans. Nucl. Sci. 69, 1334–1350 (2021).

Granitzka P. W., Jal E., Le Guyader L., Savoini M., Higley D. J., Liu T., Chen Z., Chase T., Ohldag H., Dakovski G. L., Schlotter W., Carron S., Hoffmann M., Shafer P., Arenholz E., Hellwig O., Mehta V., Takahashi Y. K., Wang J., Fullerton E. E., Stöhr J., Reid A. H., Dürr H. A., Magnetic switching in granular FePt layers promoted by near-field laser enhancement. Nano Lett. 17, 2426–2432 (2017). PubMed

Vansteenkiste A., Leliaert J., Dvornik M., Helsen M., Garcia-Sanchez F., Van Waeyenberge B., The design and verification of MuMax3. AIP Adv. 4, 107133 (2014).

A. G. Gurevich, G. A. Melkov, Magnetization Oscillations and Waves (CRC Press Inc., 1996).

Nieves P., Arpan S., Zhang S. H., Kadzielawa A. P., Zhang R. F., Legut D., MAELAS: Magneto-ELAStic properties calculation via computational high-throughput approach. Comput. Phys. Commun. 264, 107964 (2021).

Fritsch D., Ederer C., First-principles calculation of magnetoelastic coefficients and magnetostriction in the spinel ferrites CoFe2O4 and NiFe2O4. Phys. Rev. B 86, 014406 (2012).

Xu R., Chiang T. C., Determination of phonon dispersion relations by x-ray thermal diffuse scattering. Z. Kristallogr. 220, 1009 (2005).

Scherz A., Schlotter W. F., Chen K., Rick R., Stöhr J., Lüning J., McNulty I., Günther C., Radu F., Eberhardt W., Hellwig O., Eisebitt S., Phase imaging of magnetic nanostructures using resonant soft x-ray holography. Phys. Rev. B 76, 214410 (2007).

Henke B. L., Gullikson E. M., Davis J. C., X-ray interactions: Photoabsorption, scattering, transmission, and reflection at E = 50-30,000 eV, Z = 1-92. At. Data Nucl. Data Tables 54, 181–342 (1993).

Chase T., Trigo M., Reid A. H., Li R., Vecchione T., Shen X., Weathersby S., Coffee R., Hartmann N., Reis D. A., Wang X. J., Dürr H. A., Ultrafast electron diffraction from non-equilibrium phonons in femtosecond laser heated Au films. Appl. Phys. Lett. 108, 041909 (2016).

Maldonado P., Chase T., Reid A. H., Shen X., Li R. K., Carva K., Payer T., Horn von Hoegen M., Sokolowski-Tinten K., Wang X. J., Oppeneer P. M., Dürr H. A., Tracking the ultrafast nonequilibrium energy flow between electronic and lattice degrees of freedom on crystalline nickel. Phys. Rev. B 101, 100302(R) (2020).

I. Turek, V. Drchal, J. Kudrnovský, M. Sob, P. Weinberger, Electronic Structure of Disordered Alloys, Surfaces and Interfaces (Kluwer, 1997).

Vosko S. H., Wilk L., Nusair M., Accurate spin-dependent electron liquid correlation energies for local spin density calculations: A critical analysis. Can. J. Phys. 58, 1200–1211 (1980).

Yamamoto K., Kubota Y., Suzuki M., Hirata Y., Carva K., Berritta M., Takubo K., Uemura Y., Fukaya R., Tanaka K., Nishimura W., Ohkochi T., Katayama T., Togashi T., Tamasaku K., Yabashi T., Tanaka Y., Seki T., Takanashi K., Oppeneer P. M., Wadati H., Ultrafast demagnetization of Pt magnetic moment in L10-FePt probed by magnetic circular dichroism at a hard x-ray free electron laser. New J. Phys. 21, 123010 (2019).

Halilov S. V., Eschrig H., Perlov A. Y., Oppeneer P. M., Adiabatic spin dynamics from spin-density-functional theory: Application to Fe, Co, and Ni. Phys. Rev. B 58, 293–302 (1998).

Liechtenstein A. I., Katsnelson M. I., Antropov V. P., Gubanov V. A., Local spin density functional approach to the theory of exchange interactions in ferromagnetic metals and alloys. J. Magn. Magn. Mater. 67, 65–74 (1987).

Oppeneer P. M., Magneto-optical spectroscopy in the valence-band energy regime: relationship to the magnetocrystalline anisotropy. J. Magn. Magn. Mater. 188, 275–285 (1998).

Khan S. A., Blaha P., Ebert H., Minár J., Šipr O., Magnetocrystalline anisotropy of FePt: A detailed view. Phys. Rev. B 94, 144436 (2016).

Akiyama S., Tsunoda Y., Magnon and magnetic structure of FePt alloy. J. Magn. Magn. Mater. 310, 1844–1846 (2007).

Find record

Citation metrics

Logged in users only

Archiving options

Loading data ...