Pulmonary function testing in children's interstitial lung disease

. 2020 Sep 30 ; 29 (157) : . [epub] 20200721

Jazyk angličtina Země Anglie, Velká Británie Médium electronic-print

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid32699025

The use of pulmonary function tests (PFTs) has been widely described in airway diseases like asthma and cystic fibrosis, but for children's interstitial lung disease (chILD), which encompasses a broad spectrum of pathologies, the usefulness of PFTs is still undetermined, despite widespread use in adult interstitial lung disease. A literature review was initiated by the COST/Enter chILD working group aiming to describe published studies, to identify gaps in knowledge and to propose future research goals in regard to spirometry, whole-body plethysmography, infant and pre-school PFTs, measurement of diffusing capacity, multiple breath washout and cardiopulmonary exercise tests in chILD. The search revealed a limited number of papers published in the past three decades, of which the majority were descriptive and did not report pulmonary function as the main outcome.PFTs may be useful in different stages of management of children with suspected or confirmed chILD, but the chILD spectrum is diverse and includes a heterogeneous patient group in all ages. Research studies in well-defined patient cohorts are needed to establish which PFT and outcomes are most relevant for diagnosis, evaluation of disease severity and course, and monitoring individual conditions both for improvement in clinical care and as end-points in future randomised controlled trials.

Zobrazit více v PubMed

Deutsch GH, Young LR, Deterding RR, et al. . Diffuse lung disease in young children: application of a novel classification scheme. Am J Respir Crit Care Med 2007; 176: 1120–1128. doi:10.1164/rccm.200703-393OC PubMed DOI PMC

Griese M, Irnstetter A, Hengst M, et al. . Categorizing diffuse parenchymal lung disease in children. Orphanet J Rare Dis 2015; 10: 122. doi:10.1186/s13023-015-0339-1 PubMed DOI PMC

Bush A, Cunningham S, de Blic J, et al. . European protocols for the diagnosis and initial treatment of interstitial lung disease in children. Thorax 2015; 70: 1078–1084. doi:10.1136/thoraxjnl-2015-207349 PubMed DOI

Clement A, Eber E. Interstitial lung diseases in infants and children. Eur Respir J 2008; 31: 658–666. doi:10.1183/09031936.00004707 PubMed DOI

Stocks J, Godfrey S, Beardsmore C, et al. . Plethysmographic measurements of lung volume and airway resistance. ERS/ATS Task Force on Standards for Infant Respiratory Function Testing. European Respiratory Society/American Thoracic Society. Eur Respir J 2001; 17: 302–312. doi:10.1183/09031936.01.17203020 PubMed DOI

Nguyen TT, Hoo AF, Lum S, et al. . New reference equations to improve interpretation of infant lung function. Pediatr Pulmonol 2013; 48: 370–380. doi:10.1002/ppul.22656 PubMed DOI

Hulskamp G, Hoo AF, Ljungberg H, et al. . Progressive decline in plethysmographic lung volumes in infants: physiology or technology? Am J Respir Crit Care Med 2003; 168: 1003–1009. doi:10.1164/rccm.200303-460OC PubMed DOI

Gappa M, Colin AA, Goetz I, et al. . Passive respiratory mechanics: the occlusion techniques. Eur Respir J 2001; 17: 141–148. doi:10.1183/09031936.01.17101410 PubMed DOI

Hanrahan JP, Brown RW, Carey VJ, et al. . Passive respiratory mechanics in healthy infants. Effects of growth, gender, and smoking. Am J Respir Crit Care Med 1996; 154: 670–680. doi:10.1164/ajrccm.154.3.8810604 PubMed DOI

The raised volume rapid thoracoabdominal compression technique. The Joint American Thoracic Society/European Respiratory Society Working Group on Infant Lung Function. Am J Respir Crit Care Med 2000; 161: 1760–1762. doi:10.1164/ajrccm.161.5.ats700 PubMed DOI

Sly PD, Tepper R, Henschen M, et al. . Tidal forced expirations. ERS/ATS Task Force on Standards for Infant Respiratory Function Testing. European Respiratory Society/American Thoracic Society. Eur Respir J 2000; 16: 741–748. doi:10.1034/j.1399-3003.2000.16d29.x PubMed DOI

Jones M, Castile R, Davis S, et al. . Forced expiratory flows and volumes in infants. Normative data and lung growth. Am J Respir Crit Care Med 2000; 161: 353–359. doi:10.1164/ajrccm.161.2.9903026 PubMed DOI

Castile R, Filbrun D, Flucke R, et al. . Adult-type pulmonary function tests in infants without respiratory disease. Pediatr Pulmonol 2000; 30: 215–227. doi:10.1002/1099-0496(200009)30:3<215::AID-PPUL6>3.0.CO;2-V PubMed DOI

von Ungern-Sternberg BS, Trachsel D, Erb TO, et al. . Forced expiratory flows and volumes in intubated and paralyzed infants and children: normative data up to 5 years of age. J Appl Physiol 2009; 107: 105–111. doi:10.1152/japplphysiol.91649.2008 PubMed DOI

Beydon N, Davis SD, Lombardi E, et al. . An official American Thoracic Society/European Respiratory Society statement: pulmonary function testing in preschool children. Am J Respir Crit Care Med 2007; 175: 1304–1345. doi:10.1164/rccm.200605-642ST PubMed DOI

Gaultier C, Perret L, Boule M, et al. . Occlusion pressure and breathing pattern in healthy children. Respir Physiol 1981; 46: 71–80. doi:10.1016/0034-5687(81)90069-4 PubMed DOI

Carlsen KH, Lodrup Carlsen KC. Tidal breathing analysis and response to salbutamol in awake young children with and without asthma. Eur Respir J 1994; 7: 2154–2159. doi:10.1183/09031936.94.07122154 PubMed DOI

Merkus PJ, Stocks J, Beydon N, et al. . Reference ranges for interrupter resistance technique: the Asthma UK Initiative. Eur Respir J 2010; 36: 157–163. doi:10.1183/09031936.00125009 PubMed DOI

Oostveen E, MacLeod D, Lorino H, et al. . The forced oscillation technique in clinical practice: methodology, recommendations and future developments. Eur Respir J 2003; 22: 1026–1041. doi:10.1183/09031936.03.00089403 PubMed DOI

Bickel S, Popler J, Lesnick B, et al. . Impulse oscillometry: interpretation and practical applications. Chest 2014; 146: 841–847. doi:10.1378/chest.13-1875 PubMed DOI

Wanger J, Clausen JL, Coates A, et al. . Standardisation of the measurement of lung volumes. Eur Respir J 2005; 26: 511–522. doi:10.1183/09031936.05.00035005 PubMed DOI

Kirkby J, Stanojevic S, Welsh L, et al. . Reference equations for specific airway resistance in children: the Asthma UK initiative. Eur Respir J 2010; 36: 622–629. doi:10.1183/09031936.00135909 PubMed DOI

Zapletal A,Samanek M, Paul T. Lung function in children and adolescents: methods, reference values. Basel, Karger, 1987.

Polgar G, Promadhat V. Pulmonary function testing in children: techniques and standards. Philadelphia, Saunders, 1971.

Miller MR, Hankinson J, Brusasco V, et al. . Standardisation of spirometry. Eur Respir J 2005; 26: 319–338. doi:10.1183/09031936.05.00034805 PubMed DOI

Rosenthal M, Bain SH, Cramer D, et al. . Lung function in white children aged 4 to 19 years: I –Spirometry. Thorax 1993; 48: 794–802. doi:10.1136/thx.48.8.794 PubMed DOI PMC

Hankinson JL, Odencrantz JR, Fedan KB. Spirometric reference values from a sample of the general U.S. population. Am J Respir Crit Care Med 1999; 159: 179–187. doi:10.1164/ajrccm.159.1.9712108 PubMed DOI

Quanjer PH, Stanojevic S, Cole TJ, et al. . Multi-ethnic reference values for spirometry for the 3–95-yr age range: the global lung function 2012 equations. Eur Respir J 2012; 40: 1324–1343. doi:10.1183/09031936.00080312 PubMed DOI PMC

Praca ELL, Tiller CJ, Kisling JA, et al. . An alternative method to measure the diffusing capacity of the lung for carbon monoxide in infants. Pediatr Pulmonol 2018; 53: 332–336. doi:10.1002/ppul.23926 PubMed DOI

Graham BL, Brusasco V, Burgos F, et al. . 2017 ERS/ATS standards for single-breath carbon monoxide uptake in the lung. Eur Respir J 2017; 49: 1600016. doi:10.1183/13993003.00016-2016 PubMed DOI

Koopman M, Zanen P, Kruitwagen CL, et al. . Reference values for paediatric pulmonary function testing: the Utrecht dataset. Respir Med 2011; 105: 15–23. doi:10.1016/j.rmed.2010.07.020 PubMed DOI

Cotes JE, Chinn DJ, Quanjer PH, et al. . Standardization of the measurement of transfer factor (diffusing capacity). Eur Respir J 1993; 6: Suppl. 16, 41–52. doi:10.1183/09041950.041s1693 PubMed DOI

Rosenthal M, Cramer D, Bain SH, et al. . Lung function in white children aged 4 to 19 years: II –Single breath analysis and plethysmography. Thorax 1993; 48: 803–808. doi:10.1136/thx.48.8.803 PubMed DOI PMC

Stam H, Beek AV, Grunberg K, et al. . A rebreathing method to determine carbon monoxide diffusing capacity in children: reference values for 6- to 18-year-olds [corrected] and validation in adult volunteers. Pediatr Pulmonol 1998; 25: 205–212. doi:10.1002/(SICI)1099-0496(199803)25:3<205::AID-PPUL11>3.0.CO;2-A PubMed DOI

Stanojevic S, Graham BL, Cooper BG, et al. . Official ERS technical standards: Global Lung Function Initiative reference values for the carbon monoxide transfer factor for Caucasians. Eur Respir J 2017; 50: 1700010 . PubMed

Robinson PD, Goldman MD, Gustafsson PM. Inert gas washout: theoretical background and clinical utility in respiratory disease. Respiration 2009; 78: 339–355. doi:10.1159/000225373 PubMed DOI

Robinson PD, Latzin P, Ramsey KA, et al. . Preschool multiple-breath washout testing. An Official American Thoracic Society Technical Statement. Am J Respir Crit Care Med 2018; 197: e1–e19. doi:10.1164/rccm.201801-0074ST PubMed DOI

Fuchs SI, Eder J, Ellemunter H, et al. . Lung clearance index: normal values, repeatability, and reproducibility in healthy children and adolescents. Pediatr Pulmonol 2009; 44: 1180–1185. doi:10.1002/ppul.21093 PubMed DOI

Anagnostopoulou P, Latzin P, Jensen R, et al. . Normative data for multiple breath washout outcomes in school-aged Caucasian children. Eur Respir J 2020; 55: 1901302. doi:10.1183/09031936.00125510 PubMed DOI

Lum S, Stocks J, Stanojevic S, et al. . Age and height dependence of lung clearance index and functional residual capacity. Eur Respir J 2013; 41: 1371–1377. doi:10.1183/09031936.00005512 PubMed DOI

Narang I, Pike S, Rosenthal M, et al. . Three-minute step test to assess exercise capacity in children with cystic fibrosis with mild lung disease. Pediatr Pulmonol 2003; 35: 108–113. doi:10.1002/ppul.10213 PubMed DOI

Jalili M, Nazem F, Sazvar A, et al. . Prediction of maximal oxygen uptake by six-minute walk test and body mass index in healthy boys. J Pediatr 2018; 200: 155–159. doi:10.1016/j.jpeds.2018.04.026 PubMed DOI

Nixon PA, Orenstein DM, Kelsey SF, et al. . The prognostic value of exercise testing in patients with cystic fibrosis. N Engl J Med 1992; 327: 1785–1788. doi:10.1056/NEJM199212173272504 PubMed DOI

Bruce RA, Blackmon JR, Jones JW, et al. . Exercising testing in adult normal subjects and cardiac patients. Pediatrics 1963; 32: 742–756. PubMed

Turner DJ, Stick SM, Lesouef KL, et al. . A new technique to generate and assess forced expiration from raised lung volume in infants. Am J Respir Crit Care Med 1995; 151: 1441–1450. doi:10.1164/ajrccm.151.5.7735598 PubMed DOI

Turner DJ, Lanteri CJ, LeSouef PN, et al. . Improved detection of abnormal respiratory function using forced expiration from raised lung volume in infants with cystic fibrosis. Eur Respir J 1994; 7: 1995–1999. PubMed

Katier N, Uiterwaal CS, de Jong BM, et al. . Passive respiratory mechanics measured during natural sleep in healthy term neonates and infants up to 8 weeks of life. Pediatr Pulmonol 2006; 41: 1058–1064. doi:10.1002/ppul.20492 PubMed DOI

Bates JH, Schmalisch G, Filbrun D, et al. . Tidal breath analysis for infant pulmonary function testing. ERS/ATS Task Force on Standards for Infant Respiratory Function Testing. European Respiratory Society/American Thoracic Society. Eur Respir J 2000; 16: 1180–1192. doi:10.1034/j.1399-3003.2000.16f26.x PubMed DOI

Ranganathan SC, Goetz I, Hoo AF, et al. . Assessment of tidal breathing parameters in infants with cystic fibrosis. Eur Respir J 2003; 22: 761–766. doi:10.1183/09031936.03.00024703 PubMed DOI

Hulskamp G, Pillow JJ, Dinger J, et al. . Lung function tests in neonates and infants with chronic lung disease of infancy: functional residual capacity. Pediatr Pulmonol 2006; 41: 1–22. doi:10.1002/ppul.20318 PubMed DOI

Lum S, Hulskamp G, Merkus P, et al. . Lung function tests in neonates and infants with chronic lung disease: forced expiratory maneuvers. Pediatr Pulmonol 2006; 41: 199–214. doi:10.1002/ppul.20320 PubMed DOI

Gappa M, Pillow JJ, Allen J, et al. . Lung function tests in neonates and infants with chronic lung disease: lung and chest-wall mechanics. Pediatr Pulmonol 2006; 41: 291–317. doi:10.1002/ppul.20380 PubMed DOI

Linnane BM, Hall GL, Nolan G, et al. . Lung function in infants with cystic fibrosis diagnosed by newborn screening. Am J Respir Crit Care Med 2008; 178: 1238–1244. doi:10.1164/rccm.200804-551OC PubMed DOI

Nguyen TT, Thia LP, Hoo AF, et al. . Evolution of lung function during the first year of life in newborn screened cystic fibrosis infants. Thorax 2014; 69: 910–917. doi:10.1136/thoraxjnl-2013-204023 PubMed DOI PMC

Ranganathan SC, Stocks J, Dezateux C, et al. . The evolution of airway function in early childhood following clinical diagnosis of cystic fibrosis. Am J Respir Crit Care Med 2004; 169: 928–933. doi:10.1164/rccm.200309-1344OC PubMed DOI

van der Gugten AC, Uiterwaal CS, van Putte-Katier N, et al. . Reduced neonatal lung function and wheezing illnesses during the first 5 years of life. Eur Respir J 2013; 42: 107–115. doi:10.1183/09031936.00214711 PubMed DOI

Lombardi E, Sly PD, Concutelli G, et al. . Reference values of interrupter respiratory resistance in healthy preschool white children. Thorax 2001; 56: 691–695. doi:10.1136/thorax.56.9.691 PubMed DOI PMC

Merkus PJ, Arets HG, Joosten T, et al. . Measurements of interrupter resistance: reference values for children 3–13 yrs of age. Eur Respir J 2002; 20: 907–911. doi:10.1183/09031936.02.01262001 PubMed DOI

McKenzie SA, Chan E, Dundas I, et al. . Airway resistance measured by the interrupter technique: normative data for 2–10 year olds of three ethnicities. Arch Dis Child 2002; 87: 248–251. doi:10.1136/adc.87.3.248 PubMed DOI PMC

Schwartz DA, Van Fossen DS, Davis CS, et al. . Determinants of progression in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 1994; 149: 444–449. doi:10.1164/ajrccm.149.2.8306043 PubMed DOI

Clark EH, Woods RL, Hughes JM. Effect of blood transfusion on the carbon monoxide transfer factor of the lung in man. Clin Sci Mol Med 1978; 54: 627–631. PubMed

Graham BL, Mink JT, Cotton DJ. Effects of increasing carboxyhemoglobin on the single breath carbon monoxide diffusing capacity. Am J Respir Crit Care Med 2002; 165: 1504–1510. doi:10.1164/rccm.2108071 PubMed DOI

Greening AP, Hughes JM. Serial estimations of carbon monoxide diffusing capacity in intrapulmonary haemorrhage. Clin Sci 1981; 60: 507–512. doi:10.1042/cs0600507 PubMed DOI

Collard P, Njinou B, Nejadnik B, et al. . Single breath diffusing capacity for carbon monoxide in stable asthma. Chest 1994; 105: 1426–1429. doi:10.1378/chest.105.5.1426 PubMed DOI

Stewart RI. Carbon monoxide diffusing capacity in asthmatic patients with mild airflow limitation. Chest 1988; 94: 332–336. doi:10.1378/chest.94.2.332 PubMed DOI

Fitting JW. Transfer factor for carbon monoxide: a glance behind the scene. Swiss Med Wkly 2004; 134: 413–418. PubMed

Castillo A, Llapur CJ, Martinez T, et al. . Measurement of single breath-hold carbon monoxide diffusing capacity in healthy infants and toddlers. Pediatr Pulmonol 2006; 41: 544–550. doi:10.1002/ppul.20403 PubMed DOI

Robinson PD, Latzin P, Verbanck S, et al. . Consensus statement for inert gas washout measurement using multiple- and single-breath tests. Eur Respir J 2013; 41: 507–522. doi:10.1183/09031936.00069712 PubMed DOI

Davies G, Aurora P. The use of multiple breath washout for assessing cystic fibrosis in infants. Expert Rev Respir Med 2017; 11: 21–28. doi:10.1080/17476348.2017.1269604 PubMed DOI

Horsley A, Wild JM. Ventilation heterogeneity and the benefits and challenges of multiple breath washout testing in patients with cystic fibrosis. Paediatr Respir Rev 2015; 16: Suppl. 1, 15–18. PubMed

Gustafsson PM, De Jong PA, Tiddens HA, et al. . Multiple-breath inert gas washout and spirometry versus structural lung disease in cystic fibrosis. Thorax 2008; 63: 129–134. doi:10.1136/thx.2007.077784 PubMed DOI

ATS statement: guidelines for the six-minute walk test. Am J Respir Crit Care Med 2002; 166: 111–117. doi:10.1164/ajrccm.166.1.at1102 PubMed DOI

Geiger R, Strasak A, Treml B, et al. . Six-minute walk test in children and adolescents. J Pediatr 2007; 150: 395–399. doi:10.1016/j.jpeds.2006.12.052 PubMed DOI

ERS Task Force on Standardization of Clinical Exercise Testing . Clinical exercise testing with reference to lung diseases: indications, standardization and interpretation strategies. Eur Respir J 1997; 10: 2662–2689. doi:10.1183/09031936.97.10112662 PubMed DOI

ATS/ACCP . ATS/ACCP Statement on cardiopulmonary exercise testing. Am J Respir Crit Care Med 2003; 167: 211–277. doi:10.1164/rccm.167.2.211 PubMed DOI

Godfrey S. Methods of measuring the response to exercise in children. Exercise testing in children: applications in health and disease. London, W.B. Saunders Company Ltd, 1974.

Takken T, Bongers BC, van Brussel M, et al. . Cardiopulmonary exercise testing in pediatrics. Ann Am Thorac Soc 2017; 14: Suppl. 1, S123–S128. doi:10.1513/AnnalsATS.201611-912FR PubMed DOI

Ten Harkel AD, Takken T, Van Osch-Gevers M, et al. . Normal values for cardiopulmonary exercise testing in children. Eur J Cardiovasc Prev Rehabil 2011; 18: 48–54. doi:10.1097/HJR.0b013e32833cca4d PubMed DOI

Hevroni A, Goldman A, Springer C. Infant pulmonary function testing in chronic pneumonitis of infancy due to surfactant protein C mutation. Pediatr Pulmonol 2015; 50: E17–E23. doi:10.1002/ppul.23166 PubMed DOI

Avital A, Godfrey S, Maayan C, et al. . Chloroquine treatment of interstitial lung disease in children. Pediatr Pulmonol 1994; 18: 356–360. doi:10.1002/ppul.1950180603 PubMed DOI

Avital A, Hevroni A, Godfrey S, et al. . Natural history of five children with surfactant protein C mutations and interstitial lung disease. Pediatr Pulmonol 2014; 49: 1097–1105. doi:10.1002/ppul.22971 PubMed DOI

Doan ML, Guillerman RP, Dishop MK, et al. . Clinical, radiological and pathological features of ABCA3 mutations in children. Thorax 2008; 63: 366–373. doi:10.1136/thx.2007.083766 PubMed DOI

Ehsan Z, Montgomery GS, Tiller C, et al. . An infant with pulmonary interstitial glycogenosis: clinical improvement is associated with improvement in the pulmonary diffusion capacity. Pediatr Pulmonol 2014; 49: E17–E20. doi:10.1002/ppul.22738 PubMed DOI

Young LR, Brody AS, Inge TH, et al. . Neuroendocrine cell distribution and frequency distinguish neuroendocrine cell hyperplasia of infancy from other pulmonary disorders. Chest 2011; 139: 1060–1071. doi:10.1378/chest.10-1304 PubMed DOI

Lukkarinen H, Pelkonen A, Lohi J, et al. . Neuroendocrine cell hyperplasia of infancy: a prospective follow-up of nine children. Arch Dis Child 2013; 98: 141–144. doi:10.1136/archdischild-2012-302115 PubMed DOI

Kerby GS, Wagner BD, Popler J, et al. . Abnormal infant pulmonary function in young children with neuroendocrine cell hyperplasia of infancy. Pediatr Pulmonol 2013; 48: 1008–1015. doi:10.1002/ppul.22718 PubMed DOI

Buchvald F, Petersen BL, Damgaard K, et al. . Frequency, treatment, and functional outcome in children with hypersensitivity pneumonitis. Pediatr Pulmonol 2011; 46: 1098–1107. doi:10.1002/ppul.21479 PubMed DOI

Sisman Y, Buchvald F, Blyme AK, et al. . Pulmonary function and fitness years after treatment for hypersensitivity pneumonitis during childhood. Pediatr Pulmonol 2016; 51: 830–837. doi:10.1002/ppul.23360 PubMed DOI

Griese M, Haug M, Hartl D, et al. . Hypersensitivity pneumonitis: lessons for diagnosis and treatment of a rare entity in children. Orphanet J Rare Dis 2013; 8: 121. doi:10.1186/1750-1172-8-121 PubMed DOI PMC

McGovern MM, Wasserstein MP, Giugliani R, et al. . A prospective, cross-sectional survey study of the natural history of Niemann–Pick disease type B. Pediatrics 2008; 122: e341–e349. doi:10.1542/peds.2007-3016 PubMed DOI PMC

Ha YJ, Lee YJ, Kang EH. Lung involvements in rheumatic diseases: update on the epidemiology, pathogenesis, clinical features, and treatment. Biomed Res Int 2018; 2018: 6930297. PubMed PMC

Abdulla E, Al-Zakwani I, Baddar S, et al. . Extent of subclinical pulmonary involvement in childhood onset systemic lupus erythematosus in the Sultanate of Oman. Oman Med J 2012; 27: 36–39. doi:10.5001/omj.2012.07 PubMed DOI PMC

Trapani S, Camiciottoli G, Ermini M, et al. . Pulmonary involvement in juvenile systemic lupus erythematosus: a study on lung function in patients asymptomatic for respiratory disease. Lupus 1998; 7: 545–550. doi:10.1191/096120398678920631 PubMed DOI

Cerveri I, Fanfulla F, Ravelli A, et al. . Pulmonary function in children with systemic lupus erythematosus. Thorax 1996; 51: 424–428. doi:10.1136/thx.51.4.424 PubMed DOI PMC

Al-Abbad AJ, Cabral DA, Sanatani S, et al. . Echocardiography and pulmonary function testing in childhood onset systemic lupus erythematosus. Lupus 2001; 10: 32–37. doi:10.1191/096120301669980721 PubMed DOI

Delgado EA, Malleson PN, Pirie GE, et al. . The pulmonary manifestations of childhood onset systemic lupus erythematosus. Semin Arthritis Rheum 1990; 19: 285–293. doi:10.1016/0049-0172(90)90051-G PubMed DOI

Veiga CS, Coutinho DS, Nakaie CM, et al. . Subclinical pulmonary abnormalities in childhood-onset systemic lupus erythematosus patients. Lupus 2016; 25: 645–651. doi:10.1177/0961203316629554 PubMed DOI

Sule S, Fontaine K. Abnormal body composition, cardiovascular endurance, and muscle strength in pediatric SLE. Pediatr Rheumatol Online J 2016; 14: 50. doi:10.1186/s12969-016-0110-8 PubMed DOI PMC

Trapani S, Camiciottoli G, Vierucci A, et al. . Pulmonary involvement in juvenile dermatomyositis: a two-year longitudinal study. Rheumatology (Oxford) 2001; 40: 216–220. doi:10.1093/rheumatology/40.2.216 PubMed DOI

Panigada S, Ravelli A, Silvestri M, et al. . HRCT and pulmonary function tests in monitoring of lung involvement in juvenile systemic sclerosis. Pediatr Pulmonol 2009; 44: 1226–1234. doi:10.1002/ppul.21141 PubMed DOI

Garty BZ, Athreya BH, Wilmott R, et al. . Pulmonary functions in children with progressive systemic sclerosis. Pediatrics 1991; 88: 1161–1167. PubMed

Cerveri I, Bruschi C, Ravelli A, et al. . Pulmonary function in childhood connective tissue diseases. Eur Respir J 1992; 5: 733–738. PubMed

Mathiesen PR, Buchvald F, Nielsen KG, et al. . Pulmonary function and autoantibodies in a long-term follow-up of juvenile dermatomyositis patients. Rheumatology (Oxford) 2014; 53: 644–649. doi:10.1093/rheumatology/ket380 PubMed DOI

Koker O, Adrovic A, Sahin S, et al. . Evaluation of six-minute walk test in juvenile systemic sclerosis. Rheumatol Int 2019; 39: 293–300. doi:10.1007/s00296-018-4185-z PubMed DOI

Mattiello R, Vidal PC, Sarria EE, et al. . Evaluating bronchodilator response in pediatric patients with post-infectious bronchiolitis obliterans: use of different criteria for identifying airway reversibility. J Bras Pneumol 2016; 42: 174–178. doi:10.1590/S1806-37562015000000065 PubMed DOI PMC

Colom AJ, Maffey A, Garcia Bournissen F, et al. . Pulmonary function of a paediatric cohort of patients with postinfectious bronchiolitis obliterans. A long term follow-up. Thorax 2015; 70: 169–174. doi:10.1136/thoraxjnl-2014-205328 PubMed DOI

Cazzato S, Poletti V, Bernardi F, et al. . Airway inflammation and lung function decline in childhood post-infectious bronchiolitis obliterans. Pediatr Pulmonol 2008; 43: 381–390. doi:10.1002/ppul.20784 PubMed DOI

Mattiello R, Mallol J, Fischer GB, et al. . Pulmonary function in children and adolescents with postinfectious bronchiolitis obliterans. J Bras Pneumol 2010; 36: 453–459. doi:10.1590/S1806-37132010000400010 PubMed DOI

Lee E, Yoon J, Cho HJ, et al. . Respiratory reactance in children aged three to five years with postinfectious bronchiolitis obliterans is higher than in those with asthma. Acta Paediatr 2017; 106: 81–86. doi:10.1111/apa.13632 PubMed DOI

Gur M, Yaacoby-Bianu K, Ilivitzki A, et al. . Lung Clearance Index (LCI) in patients with bronchiolitis obliterans: a preliminary report and comparison to cystic fibrosis patients. Lung 2016; 194: 1007–1013. doi:10.1007/s00408-016-9934-8 PubMed DOI

Sisman Y, Buchvald FF, Ring AM, et al. . Long-term lung function and exercise capacity in postinfectious chILD. Pediatr Allergy Immunol Pulmonol 2019; 32: 4–11. doi:10.1089/ped.2018.0973 PubMed DOI PMC

Mattiello R, Sarria EE, Stein R, et al. . Functional capacity assessment in children and adolescents with post-infectious bronchiolitis obliterans. J Pediatr 2008; 84: 337–343. PubMed

Frohlich LF, Vieira PJ, Teixeira PJ, et al. . Exercise capacity in adolescent and adult patients with post infectious bronchiolitis obliterans. Pediatr Pulmonol 2014; 49: 911–918. doi:10.1002/ppul.22929 PubMed DOI

Sileo C, Epaud R, Mahloul M, et al. . Sarcoidosis in children: HRCT findings and correlation with pulmonary function tests. Pediatr Pulmonol 2014; 49: 1223–1233. doi:10.1002/ppul.22956 PubMed DOI

Hoffmann AL, Milman N, Byg KE. Childhood sarcoidosis in Denmark 1979–1994: incidence, clinical features and laboratory results at presentation in 48 children. Acta Paediatr 2004; 93: 30–36. doi:10.1111/j.1651-2227.2004.tb00670.x PubMed DOI

Baculard A, Blanc N, Boule M, et al. . Pulmonary sarcoidosis in children: a follow-up study. Eur Respir J 2001; 17: 628–635. doi:10.1183/09031936.01.17406280 PubMed DOI

Ha SY, Helms P, Fletcher M, et al. . Lung involvement in Langerhans’ cell histiocytosis: prevalence, clinical features, and outcome. Pediatrics 1992; 89: 466–469. PubMed

Khirani S, Nathan N, Ramirez A, et al. . Work of breathing in children with diffuse parenchymal lung disease. Respir Physiol Neurobiol 2015; 206: 45–52. doi:10.1016/j.resp.2014.11.015 PubMed DOI

Gaultier C, Perret L, Boule M, et al. . Control of breathing in children with interstitial lung disease. Pediatr Res 1982; 16: 779–783. doi:10.1203/00006450-198209000-00015 PubMed DOI

Perrem L, Rayment JH, Ratjen F. The lung clearance index as a monitoring tool in cystic fibrosis: ready for the clinic? Curr Opin Pulm Med 2018; 24: 579–585. doi:10.1097/MCP.0000000000000515 PubMed DOI

Douwes JM, Hegeman AK, van der Krieke MB, et al. . Six-minute walking distance and decrease in oxygen saturation during the six-minute walk test in pediatric pulmonary arterial hypertension. Int J Cardiol 2016; 202: 34–39. doi:10.1016/j.ijcard.2015.08.155 PubMed DOI

Yimlamai D, Freiberger DA, Gould A, et al. . Pretransplant six-minute walk test predicts peri- and post-operative outcomes after pediatric lung transplantation. Pediatr Transplant 2013; 17: 34–40. doi:10.1111/petr.12010 PubMed DOI

Lederer DJ, Arcasoy SM, Wilt JS, et al. . Six-minute-walk distance predicts waiting list survival in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 2006; 174: 659–664. doi:10.1164/rccm.200604-520OC PubMed DOI PMC

Zavorsky GS, van der Lee I. Can the measurement of pulmonary diffusing capacity for nitric oxide replace the measurement of pulmonary diffusing capacity for carbon monoxide? Respir Physiol Neurobiol 2017; 241: 9–16. doi:10.1016/j.resp.2016.11.008 PubMed DOI

Thomas A, Hanel B, Marott JL, et al. . The single-breath diffusing capacity of CO and NO in healthy children of European descent. PLoS One 2014; 9: e113177. doi:10.1371/journal.pone.0113177 PubMed DOI PMC

Munkholm M, Marott JL, Bjerre-Kristensen L, et al. . Reference equations for pulmonary diffusing capacity of carbon monoxide and nitric oxide in adult Caucasians. Eur Respir J 2018; 52: 1500677. doi:10.1183/13993003.00677-2015 PubMed DOI

Balfour-Lynn IM. Hypoxic challenge test for airflight in children with respiratory disease. Paediatr Respir Rev 2017; 21: 62–64. PubMed

Kobbernagel HE, Nielsen KG, Hanel B. Hypoxic challenge test applied to healthy children: influence of body positions and exertion on pulse oximetric saturation. Arch Dis Child 2013; 98: 602–606. doi:10.1136/archdischild-2012-302763 PubMed DOI

Kurland G, Deterding RR, Hagood JS, et al. . An official American Thoracic Society clinical practice guideline: classification, evaluation, and management of childhood interstitial lung disease in infancy. Am J Respir Crit Care Med 2013; 188: 376–394. doi:10.1164/rccm.201305-0923ST PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Diffuse alveolar haemorrhage in children: an international multicentre study

. 2023 Mar ; 9 (2) : . [epub] 20230424

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...