An update on diagnosis and treatments of childhood interstitial lung diseases
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
40365093
PubMed Central
PMC12070201
DOI
10.1183/20734735.0004-2025
PII: EDU-0004-2025
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Childhood interstitial lung diseases (chILDs) are rare and heterogeneous disorders associated with significant morbidity and mortality. The clinical presentation of chILD typically includes chronic or recurrent respiratory signs and symptoms with diffuse radiographic abnormalities on chest imaging. Diagnosis requires a structured, multi-step approach. Treatment options are limited, with disease-specific therapies available only in selected cases and management relying primarily on supportive care. Awareness of chILDs has been steadily increasing. New diagnoses, advanced diagnostic tests, and novel treatments are emerging each year, highlighting the importance of collaborative, multidisciplinary teams in providing comprehensive care for children and families affected by these complex conditions. On behalf of the European Respiratory Society Clinical Research Collaboration for chILD (ERS CRC chILD-EU), this review provides an updated overview of the diagnostic approach and management strategies for chILDs.
Centro de Investigación Biomédica en Red de Enfermedades Raras Madrid Spain
Clinic for Pediatric Pneumology Hannover Medical School Hannover Germany
Department of Pediatric Pneumology and Allergy Medical University of Warsaw Warsaw Poland
Department of Pediatric Pulmonology Hacettepe University Faculty of Medicine Ankara Turkey
Division of Respiratory Medicine University Children's Hospital Zurich Zurich Switzerland
Institute of Population Health University of Liverpool Liverpool UK
Zobrazit více v PubMed
Nathan N, Griese M, Michel K, et al. . Diagnostic workup of childhood interstitial lung disease. Eur Respir Rev 2023; 32: 220188. doi:10.1183/16000617.0188-2022 PubMed DOI PMC
Clement A, Eber E. Interstitial lung diseases in infants and children. Eur Respir J 2008; 31: 658–666. doi:10.1183/09031936.00004707 PubMed DOI
Kurland G, Deterding RR, Hagood JS, et al. . An official American Thoracic Society clinical practice guideline: classification, evaluation, and management of childhood interstitial lung disease in infancy. Am J Respir Crit Care Med 2013; 188: 376–394. doi:10.1164/rccm.201305-0923ST PubMed DOI PMC
Griese M. Chronic interstitial lung disease in children. Eur Respir Rev 2018; 27: 170100. doi:10.1183/16000617.0100-2017 PubMed DOI PMC
Deutsch GH, Young LR, Deterding RR, et al. . Diffuse lung disease in young children: application of a novel classification scheme. Am J Respir Crit Care Med 2007; 176: 1120–1128. doi:10.1164/rccm.200703-393OC PubMed DOI PMC
Fletcher C, Hadchouel A, Thumerelle C, et al. . Epidemiology of childhood interstitial lung disease in France: the RespiRare cohort. Thorax 2024; 79: 842–852. doi:10.1136/thorax-2023-221325 PubMed DOI
Torrent-Vernetta A, Gaboli M, Castillo-Corullón S, et al. . Incidence and prevalence of children's diffuse lung disease in Spain. Arch Bronconeumol 2022; 58: 22–29. doi:10.1016/j.arbres.2021.06.001 PubMed DOI
Nevel RJ, Deutsch GH, Craven D, et al. . The US national registry for childhood interstitial and diffuse lung disease: report of study design and initial enrollment cohort. Pediatr Pulmonol 2024; 59: 2236–2246. doi:10.1002/ppul.26568 PubMed DOI PMC
Nathan N. Childhood interstitial lung diseases (chILD) recognition: when epidemiology increases a rare disease incidence. Arch Bronconeumol 2022; 58: 217–218. doi:10.1016/j.arbres.2022.01.009 PubMed DOI
Fan LL, Dishop MK, Galambos C, et al. . Diffuse lung disease in biopsied children 2 to 18 years of age application of the chILD classification scheme. Ann Am Thorac Soc 2015; 12: 1498–1505. doi:10.1513/AnnalsATS.201501-064OC PubMed DOI PMC
Thacker PG, Vargas SO, Fishman MP, et al. . Current update on interstitial lung disease of infancy: new classification system, diagnostic evaluation, imaging algorithms, imaging findings, and prognosis. Radiol Clin North Am 2016; 54: 1065–1076. doi:10.1016/j.rcl.2016.05.012 PubMed DOI
Griese M, Irnstetter A, Hengst M, et al. . Categorizing diffuse parenchymal lung disease in children. Orphanet J Rare Dis 2015; 10: 122. doi:10.1186/s13023-015-0339-1 PubMed DOI PMC
Clement A, Allen J, Corrin B, et al. . Task force on chronic interstitial lung disease in immunocompetent children. Eur Respir J 2004; 24: 686–697. doi:10.1183/09031936.04.00089803 PubMed DOI
Griese M, Haug M, Brasch F, et al. . Incidence and classification of pediatric diffuse parenchymal lung diseases in Germany. Orphanet J Rare Dis 2009; 4: 26. doi:10.1186/1750-1172-4-26 PubMed DOI PMC
Saddi V, Beggs S, Bennetts B, et al. . Childhood interstitial lung diseases in immunocompetent children in Australia and New Zealand: a decade's experience. Orphanet J Rare Dis 2017; 12: 133. doi:10.1186/s13023-017-0637-x PubMed DOI PMC
Casamento K, Laverty A, Wilsher M, et al. . Assessing the feasibility of a web-based registry for multiple orphan lung diseases: The Australasian Registry Network for Orphan Lung Disease (ARNOLD) experience. Orphanet J Rare Dis 2016; 11: 42. doi:10.1186/s13023-016-0389-z PubMed DOI PMC
Tang X, Li H, Liu H, et al. . Etiologic spectrum of interstitial lung diseases in Chinese children older than 2 years of age. Orphanet J Rare Dis 2020; 15: 25. doi:10.1186/s13023-019-1270-7 PubMed DOI PMC
Kornum JB, Christensen S, Grijota M, et al. . The incidence of interstitial lung disease 1995–2005: A Danish nationwide population-based study. BMC Pulm Med 2008; 8: 24. doi:10.1186/1471-2466-8-24 PubMed DOI PMC
Griese M, Seidl E, Hengst M, et al. . International management platform for children's interstitial lung disease (chILD-EU). Thorax 2018; 73: 231–239. doi:10.1136/thoraxjnl-2017-210519 PubMed DOI
Nathan N, Taam RA, Epaud R, et al. . A national internet-linked based database for pediatric interstitial lung diseases: The French network. Orphanet J Rare Dis 2012; 7: 40. doi:10.1186/1750-1172-7-40 PubMed DOI PMC
Nayır-Büyükşahin H, Emiralioğlu N, Kılınç AA, et al. . Childhood interstitial lung disease in Turkey: first data from the national registry. Eur J Pediatr 2024; 183; 295–304. doi:10.1007/s00431-023-05290-9 PubMed DOI
Soares JJ, Deutsch GH, Moore PE, et al. . Childhood interstitial lung diseases: an 18-year retrospective analysis. Pediatrics 2013; 132: 684–691. doi:10.1542/peds.2013-1780 PubMed DOI PMC
Young L, Nevel R, Casey A, et al. . A national registry for childhood interstitial and diffuse lung diseases in the United States. Eur Respir J 2018; 52: Suppl. 62, OA3786. doi:10.1183/13993003.congress-2018.OA3786 DOI
Feld L, Voss L, Li ZN, et al. . Clinical scope and healthcare utilization in childhood interstitial lung disease at a tertiary center. Pediatr Pulmonol 2024; 59: 2247–2256. doi:10.1002/ppul.26600 PubMed DOI PMC
Bush A, Cunningham S, De Blic J, et al. . European protocols for the diagnosis and initial treatment of interstitial lung disease in children. Thorax 2015; 70: 1078–1084. doi:10.1136/thoraxjnl-2015-207349 PubMed DOI
Nathan N, Berdah L, Delestrain C, et al. . Interstitial lung diseases in children. Presse Med 2020; 49: 103909. doi:10.1016/j.lpm.2019.06.007 PubMed DOI
Spagnolo P, Bush A. Interstitial lung disease in children younger than 2 years. Pediatrics 2016; 137: e20152725. doi:10.1542/peds.2015-2725 PubMed DOI
Bush A. Interstitial lung disease in infancy and early childhood: clinical approach. Pediatr Pulmonol 2025; 60: Suppl. 1, S24–S26. doi:10.1002/ppul.27254 PubMed DOI PMC
Vece TJ, Fan LL. Interstitial lung disease in children older than 2 years. Pediatr Allergy Immunol Pulmonol 2010; 23: 33–41. doi:10.1089/ped.2010.0008 PubMed DOI PMC
Griese M. Etiologic classification of diffuse parenchymal (interstitial) lung diseases. J Clin Med 2022; 11: 1747. doi:10.3390/jcm11061747 PubMed DOI PMC
Brudon A, Legendre M, Mageau A, et al. . High risk of lung cancer in surfactant-related gene variant carriers. Eur Respir J 2024; 63: 2301809. doi:10.1183/13993003.01809-2023 PubMed DOI PMC
Kurdyś-Bykowska P, Kośmider L, Bykowski W, et al. . Epidemiology of traditional cigarette and e-cigarette use among adolescents in Poland: analysis of sociodemographic risk factors. Int J Environ Res Public Health 2024; 21: 1493. doi:10.3390/ijerph21111493 PubMed DOI PMC
Shinbashi M, Rubin BK. Electronic cigarettes and e-cigarette/vaping product use associated lung injury (EVALI). Paediatr Respir Rev 2020; 36: 87–91. doi:10.1016/j.prrv.2020.06.003 PubMed DOI
Spielberg DR, Weinman J, DeBoer EM. Advancements in imaging in chILD. Pediatr Pulmonol 2024; 59: 2276–2285. doi:10.1002/ppul.26487 PubMed DOI
Miraftabi P, Kirjavainen T, Suominen JS, et al. . Children's interstitial lung disease: multidetector computed tomography patterns and correlations between imaging and histopathology. Eur J Radiol 2023; 165: 110886. doi:10.1016/j.ejrad.2023.110886 PubMed DOI
Brody AS, Guillerman RP. Ten rules for ordering chest CTs. Pediatr Pulmonol 2021; 56: 1868–1871. doi:10.1002/ppul.25399 PubMed DOI
Brody AS, Guillerman RP, Hay TC, et al. . Neuroendocrine cell hyperplasia of infancy: diagnosis with high-resolution CT. AJR Am J Roentgenol 2010; 194: 238–244. doi:10.2214/AJR.09.2743 PubMed DOI PMC
Griese M. Pulmonary alveolar proteinosis: a comprehensive clinical perspective. Pediatrics 2017; 140: e20170610. doi:10.1542/peds.2017-0610 PubMed DOI
Bhalla D, Jana M, Naranje P, et al. . Fibrosing interstitial lung disease in children: an HRCT-based analysis. Indian J Pediatr 2023; 90: 153–159. doi:10.1007/s12098-021-04004-z PubMed DOI
Liu J, Lovrenski J, Feletti F. Editorial: Application of lung ultrasound in the management of pediatric lung diseases. Front Pediatr 2023; 11: 1140403.doi:10.3389/fped.2023.1140403 PubMed DOI PMC
Vicente-Rabaneda EF, Bong DA, Busquets-Pérez N, et al. . Ultrasound evaluation of interstitial lung disease in rheumatoid arthritis and autoimmune diseases. Eur J Rheumatol 2024; 11: S316–S322. doi:10.5152/eurjrheum.2024.20120 PubMed DOI PMC
Godoy-Navarrete F, Jiménez-Núñez FG, Mena-Vázquez N, et al. . FRI0039 Lung ultrasound utility in interstitial lung disease detection in rheumatoid arthritis. Ann Rheum Dis 2020; 79: Suppl. 1, 594. doi:10.1136/annrheumdis-2020-eular.5404 DOI
Urbankowska E, Urbankowski T, Drobczyński Ł, et al. . Lung ultrasound—a new diagnostic modality in persistent tachypnea of infancy. Pediatr Pulmonol 2020; 55: 1028–1036. doi:10.1002/ppul.24654 PubMed DOI
Sodhi KS, Sharma M, Lee EY, et al. . Diagnostic utility of 3T lung MRI in children with interstitial lung disease: a prospective pilot study. Acad Radiol 2018; 25: 380–386. doi:10.1016/j.acra.2017.09.013 PubMed DOI
Flanagan F, Casey A, Reyes-Múgica M, et al. . Post-infectious bronchiolitis obliterans in children. Paediatr Respir Rev 2022; 42: 69–78. doi:10.1016/j.prrv.2022.01.007 PubMed DOI
Houin PR, Deterding RR, Young LR. Exacerbations in neuroendocrine cell hyperplasia of infancy are characterized by increased air trapping. Pediatr Pulmonol 2016; 51: E9–E12. doi:10.1002/ppul.23347 PubMed DOI
Ring AM, Carlens J, Bush A, et al. . Pulmonary function testing in children's interstitial lung disease. Eur Respir Rev 2020; 29: 200019. doi:10.1183/16000617.0019-2020 PubMed DOI PMC
Kavaliunaite E, Aurora P. Diagnosing and managing bronchiolitis obliterans in children. Expert Rev Respir Med 2019; 13: 481–488. doi:10.1080/17476348.2019.1586537 PubMed DOI
Marczak H, Peradzyńska J, Lange J, et al. . Pulmonary function in children with persistent tachypnea of infancy. Pediatr Pulmonol 2023; 58: 81–87. doi:10.1002/ppul.26162 PubMed DOI
Kerby GS, Wagner BD, Popler J, et al. . Abnormal infant pulmonary function in young children with neuroendocrine cell hyperplasia of infancy. Pediatr Pulmonol 2013; 48: 1008–1015. doi:10.1002/ppul.22718 PubMed DOI
Breuer O, Cohen-Cymberknoh M, Picard E, et al. . The use of infant pulmonary function tests in the diagnosis of neuroendocrine cell hyperplasia of infancy. Chest 2021; 160: 1397–1405. doi:10.1016/j.chest.2021.05.032 PubMed DOI
Hevroni A, Goldman A, Springer C. Infant pulmonary function testing in chronic pneumonitis of infancy due to surfactant protein C mutation. Pediatr Pulmonol 2015; 50: E17–E23. doi:10.1002/ppul.23166 PubMed DOI
Ljungberg H, Gustafsson PM. Infant lung function testing: available and useful methods. Breathe 2004; 1: 13–23. doi:10.1183/18106838.0101.13 DOI
Long FR, Castile RG. Technique and clinical applications of full-inflation and end-exhalation controlled-ventilation chest CT in infants and young children. Pediatr Radiol 2001; 31: 413–422. doi:10.1007/s002470100462 PubMed DOI
Nathan N, Borensztajn K, Clement A. Genetic causes and clinical management of pediatric interstitial lung diseases. Curr Opin Pulm Med 2018; 24: 253–259. doi:10.1097/MCP.0000000000000471 PubMed DOI
Hamvas A, Chaudhari BP, Nogee LM. Genetic testing for diffuse lung diseases in children. Pediatr Pulmonol 2024; 59: 2286–2297. doi:10.1002/ppul.26447 PubMed DOI
Fleury M, Delestrain C, Roditis L, et al. . Surfactant protein B deficiency: the RespiRare cohort. Thorax 2025; 80: 109–112. doi:10.1136/thorax-2024-221947 PubMed DOI
Krauss E, Tello S, Naumann J, et al. . Protocol and research program of the European registry and biobank for interstitial lung diseases (eurILDreg). BMC Pulm Med 2024; 24: 572. doi:10.1186/s12890-024-03389-9 PubMed DOI PMC
Nikolic RPA, Moran Toro C. Childhood-onset COPA syndrome recognized retrospectively in the context of polyarticular juvenile idiopathic arthritis and rheumatoid arthritis. Case Rep Rheumatol 2023; 2023: 3240245. doi:10.1155/2023/3240245 PubMed DOI PMC
Rapp CK, Van Dijck I, Laugwitz L, et al. . Expanding the phenotypic spectrum of FINCA (fibrosis, neurodegeneration, and cerebral angiomatosis) syndrome beyond infancy. Clin Genet 2021; 100: 453–461. doi:10.1111/cge.14016 PubMed DOI
Bradford L, Ross MK, Minso J, et al. . Interstitial lung disease in children with Rubinstein-Taybi syndrome. Pediatr Pulmonol 2022; 57: 264–272. doi:10.1002/ppul.25709 PubMed DOI
Raible SE, Mehta D, Bettale C, et al. . Clinical and molecular spectrum of CHOPS syndrome. Am J Med Genet A 2019; 179: 1126–1138. doi:10.1002/ajmg.a.61174 PubMed DOI PMC
Benslimane Z, Yavuz S, Francis N. A rare presentation of childhood interstitial lung disease attributed to KDM3B gene mutation: a case report. Pan Afr Med J 2023; 46: 84. doi:10.11604/pamj.2023.46.84.41457 PubMed DOI PMC
Magg T, Okano T, Koenig LM, et al. . Heterozygous OAS1 gain-of-function variants cause an autoinflammatory immunodeficiency. Sci Immunol 2021; 6: eabf9564. doi:10.1126/sciimmunol.abf9564 PubMed DOI PMC
Neehus AL, Carey B, Landekic M, et al. . Human inherited CCR2 deficiency underlies progressive polycystic lung disease. Cell 2024; 187: 390–408.e23. doi:10.1016/j.cell.2023.11.036 PubMed DOI PMC
Nayır Büyükşahin H, Emiralioğlu N, Yalçın E, et al. . Two cases with undefined childhood interstitial lung disease: can it be related to telomere variants? J Paediatr Child Health 2024; 60: 754–756. doi:10.1111/jpc.16666 PubMed DOI
Xu J, Xu L, Sui P, et al. . Excess neuropeptides in lung signal through endothelial cells to impair gas exchange. Dev Cell 2022; 57: 839–853.e6. doi:10.1016/j.devcel.2022.02.023 PubMed DOI PMC
Marczak H, Peradzyńska J, Paplińska-Goryca M, et al. . Serum biomarkers in neuroendocrine cell hyperplasia of infancy. Pediatr Pulmonol 2024; 59: 2885–2890. doi:10.1002/ppul.27148 PubMed DOI
Al-Salmi QA, Walter JN, Colasurdo GN, et al. . Serum KL-6 and surfactant proteins A and D in pediatric interstitial lung disease. Chest 2005; 127: 403–407. doi:10.1378/chest.127.1.403 PubMed DOI
Kilinc AA, Arslan A, Yildiz M, et al. . Serum KL-6 level as a biomarker of interstitial lung disease in childhood connective tissue diseases: a pilot study. Rheumatol Int 2020; 40: 1701–1706. doi:10.1007/s00296-019-04485-4 PubMed DOI
Lee JS, Lee EY, Ha YJ, et al. . Serum KL-6 levels reflect the severity of interstitial lung disease associated with connective tissue disease. Arthritis Res Ther 2019; 21: 58. doi:10.1186/s13075-019-1835-9 PubMed DOI PMC
Otsubo Y, Fujita Y, Ando Y, et al. . Elevated serum TARC/CCL17 levels associated with childhood interstitial lung disease with SFTPC gene mutation. Pediatr Pulmonol 2022; 57: 1820–1822. doi:10.1002/ppul.25950 PubMed DOI
Rice GI, Melki I, Frémond ML, et al. . Assessment of type I interferon signaling in pediatric inflammatory disease. J Clin Immunol 2017; 37: 123–132. doi:10.1007/s10875-016-0359-1 PubMed DOI PMC
Lepelley A, Martin-Niclós MJ, Le Bihan M, et al. . Mutations in COPA lead to abnormal trafficking of STING to the Golgi and interferon signaling. J Exp Med 2020; 217: e20200600. doi:10.1084/jem.20200600 PubMed DOI PMC
Ladoux C, Pasquet M, Crow YJ, et al. . STING-associated vasculopathy with onset in infancy (SAVI) presenting as massive intra alveolar hemorrhage. J Clin Immunol 2023; 43: 699–702. doi:10.1007/s10875-023-01431-9 PubMed DOI
Chaya S, Schütz K, Kaiser H, et al. . The diagnostic utility of BAL in children with interstitial lung disease. Eur Respir J 2024; 64: Suppl. 68, OA4695. doi:10.1183/13993003.congress-2024.OA4695 DOI
Canakis AM, Cutz E, Manson D, et al. . Pulmonary interstitial glycogenosis: a new variant of neonatal interstitial lung disease. Am J Respir Crit Care Med 2002; 165: 1557–1565. doi:10.1164/rccm.2105139 PubMed DOI
Chan CD, Niyogi A, Jaffray B, et al. . Lung biopsy in children: when is it useful? Arch Dis Child 2021; 106: 291–293. doi:10.1136/archdischild-2019-318443 PubMed DOI
Deutsch GH, Young LR. Lung biopsy in the diagnosis and management of chILD. Pediatr Pulmonol 2024; 59: 2298–2312. doi:10.1002/ppul.26454 PubMed DOI
Griese M, Seidl E. Persistent tachypnea of infancy, neuroendocrine cell hyperplasia of infancy, and pulmonary interstitial glycogenosis: “A3-Specific conditions of undefined etiology”. Pediatr Pulmonol 2024; 59: 2702–2707. doi:10.1002/ppul.27102 PubMed DOI
Miraftabi P, Kirjavainen T, Lohi J, et al. . The original histopathologic description of neuroendocrine cell hyperplasia of infancy is not applicable to every patient with the disease. Pediatr Pulmonol 2024; 59: 3016–3019. doi:10.1002/ppul.27118 PubMed DOI
Levy Y, Bitton L, Sileo C, et al. . Lung biopsies in infants and children in critical care situation. Pediatr Pulmonol 2024; 59: 907–914. doi:10.1002/ppul.26845 PubMed DOI
Wee WB, Shapera S, To T, et al. . Mortality of pediatric surgical lung biopsies in Ontario, Canada, 2000–2019. Ann Am Thorac Soc 2024; 21: 767–773. doi:10.1513/AnnalsATS.202304-306OC PubMed DOI
Rodrigues I, Gomes RE, Coutinho LM, et al. . Diagnostic yield and safety of transbronchial lung cryobiopsy and surgical lung biopsy in interstitial lung diseases: a systematic review and meta-analysis. Eur Respir Rev 2022; 31: 210280. doi:10.1183/16000617.0280-2021 PubMed DOI PMC
Joseph T, Agrawal S, Nair S, et al. . Novel technique of performing transbronchial lung cryobiopsy (TBLC) for diagnosing diffuse parenchymal lung diseases (DPLD) in infants. Respirol Case Rep 2023; 11: e01096. doi:10.1002/rcr2.1096 PubMed DOI PMC
Chandra T, Srikanta JT, Madhusudan M, et al. . Safety, utility and clinical efficacy of cryobiopsy of lung in paediatric population–A single centre experience. Lung India 2023; 40: 418–422. doi:10.4103/lungindia.lungindia_217_23 PubMed DOI PMC
Visner GA, Faro A, Zander DS. Role of transbronchial biopsies in pediatric lung diseases. Chest 2004; 126: 273–280. doi:10.1378/chest.126.1.273 PubMed DOI
Korevaar DA, Colella S, Fally M, et al. . European Respiratory Society guidelines on transbronchial lung cryobiopsy in the diagnosis of interstitial lung diseases. Eur Respir J 2022; 60: 2200425. doi:10.1183/13993003.00425-2022 PubMed DOI
Dhochak N, Mittal S, Mohan A, et al. . Transbronchial lung cryobiopsy for diffuse lung diseases in children: a case series. Pediatr Pulmonol 2022; 57: 2851–2854. doi:10.1002/ppul.26074 PubMed DOI
Srikanta JT, Swarna S, Shylendra DS, et al. . Transbronchial lung cryobiopsy for diagnosis of pediatric interstitial lung disease. Indian Pediatr 2018; 55: 519–520. doi:10.1007/s13312-018-1344-y PubMed DOI
Schramm D, Vicencio A. Pediatric cryobiopsy. Pediatr Pulmonol 2023; 58: 16–17. doi:10.1002/ppul.26186 PubMed DOI
Bush A. Learning from cystic fibrosis: how can we start to personalise treatment of children's interstitial lung disease (chILD)? Paediatr Respir Rev 2024; 50: 46–53. doi:10.1016/j.prrv.2023.11.001 PubMed DOI
Hurley K, Ozaki M, Philippot Q, et al. . A roadmap to precision treatments for familial pulmonary fibrosis. EBioMedicine 2024; 104: 105135. doi:10.1016/j.ebiom.2024.105135 PubMed DOI PMC
del Álamo M, Bührer C, Fisher D, et al. . Identifying obstacles hindering the conduct of academic-sponsored trials for drug repurposing on rare-diseases: an analysis of six use cases. Trials 2022; 23: 783. doi:10.1186/s13063-022-06713-y PubMed DOI PMC
Desmarquest P, Tamalet A, Fauroux B, et al. . Chronic interstitial lung disease in children: response to high-dose intravenous methylprednisolone pulses. Pediatr Pulmonol 1998; 26: 332–338. doi:10.1002/(SICI)1099-0496(199811)26:5<332::AID-PPUL5>3.0.CO;2-Q PubMed DOI
De Benedictis FM, Bush A. Corticosteroids in respiratory diseases in children. Am J Respir Crit Care Med 2012; 185: 12–23. doi:10.1164/rccm.201107-1174CI PubMed DOI
Breuer O, Schultz A. Side effects of medications used to treat childhood interstitial lung disease. Paediatr Respir Rev 2018; 28: 68–79. doi:10.1016/j.prrv.2018.03.002 PubMed DOI
Braun S, Ferner M, Kronfeld K, et al. . Hydroxychloroquine in children with interstitial (diffuse parenchymal) lung diseases. Pediatr Pulmonol 2015; 50: 410–419. doi:10.1002/ppul.23133 PubMed DOI
Modjtahedi BS, Movassagh N, Gandhi N, et al. . Screening for hydroxychloroquine toxicity in children. Cutan Ocul Toxicol 2013; 32: 344. doi:10.3109/15569527.2013.781619 PubMed DOI
Griese M, Köhler M, Witt S, et al. . Prospective evaluation of hydroxychloroquine in pediatric interstitial lung diseases: study protocol for an investigator-initiated, randomized controlled, parallel-group clinical trial. Trials 2020; 21: 307. doi:10.1186/s13063-020-4188-4 PubMed DOI PMC
Griese M, Kappler M, Stehling F, et al. . Randomized controlled phase 2 trial of hydroxychloroquine in childhood interstitial lung disease. Orphanet J Rare Dis 2022; 17: 289. doi:10.1186/s13023-022-02399-2 PubMed DOI PMC
Li Y, Seidl E, Knoflach K, et al. . ABCA3-related interstitial lung disease beyond infancy. Thorax 2023; 78; 587–595. doi:10.1136/thorax-2022-219434 PubMed DOI PMC
Alysandratos KD, Russo SJ, Petcherski A, et al. . Patient-specific iPSCs carrying an SFTPC mutation reveal the intrinsic alveolar epithelial dysfunction at the inception of interstitial lung disease. Cell Rep 2021; 36: 109636. doi:10.1016/j.celrep.2021.109636 PubMed DOI PMC
Thouvenin G, Nathan N, Epaud R, et al. . Diffuse parenchymal lung disease caused by surfactant deficiency: dramatic improvement by azithromycin. BMJ Case Rep 2013; 2013: bcr2013009988. doi:10.1136/bcr-2013-009988 PubMed DOI PMC
Bush A. Azithromycin is the answer in paediatric respiratory medicine, but what was the question? Paediatr Respir Rev 2020; 34: 67–74. doi:10.1016/j.prrv.2019.07.002 PubMed DOI
Ring AM, Schwerk N, Kiper N, et al. . Diffuse alveolar haemorrhage in children: an international multicentre study. ERJ Open Res 2023; 9: 00733-2022. doi:10.1183/23120541.00733-2022 PubMed DOI PMC
Nathan N, Sileo C, Calender A, et al. . Paediatric sarcoidosis. Paediatr Respir Rev 2019; 29: 53–59. doi:10.1016/j.prrv.2018.05.003 PubMed DOI
Forstner M, Lin S, Yang X, et al. . High-content screening identifies cyclosporin a as a novel ABCA3-specific molecular corrector. Am J Respir Cell Mol Biol 2022; 66: 382–390. doi:10.1165/rcmb.2021-0223OC PubMed DOI
Yang X, Forstner M, Rothenaigner I, et al. . Cyclosporine A in children with ABCA3 deficiency. Pediatr Pulmonol 2024; 1: 3221.–. doi:10.1002/ppul.27178 PubMed DOI PMC
Deterding R, Young LR, DeBoer EM, et al. . Nintedanib in children and adolescents with fibrosing interstitial lung diseases. Eur Respir J 2023; 61: 2201512. doi:10.1183/13993003.01512-2022 PubMed DOI PMC
Gozal D, Kolb M. Nintedanib in chILD: a small step, yes… but at least a step forward in a marathon! Eur Respir J 2023; 61: 2201797. doi:10.1183/13993003.01797-2022 PubMed DOI
Hadjadj J, Frémond ML, Neven B. Emerging place of JAK inhibitors in the treatment of inborn errors of immunity. Front Immunol 2021; 12: 717388. doi:10.3389/fimmu.2021.717388 PubMed DOI PMC
Crow YJ, Neven B, Frémond ML. JAK inhibition in the type I interferonopathies. J Allergy Clin Immunol 2021; 148: 991–993. doi:10.1016/j.jaci.2021.07.028 PubMed DOI
Kanazawa N, Ishii T, Takita Y, et al. . Efficacy and safety of baricitinib in Japanese patients with autoinflammatory type I interferonopathies (NNS/CANDLE, SAVI, And AGS). Pediatr Rheumatol 2023; 21: 38. doi:10.1186/s12969-023-00817-8 PubMed DOI PMC
Krutzke S, Rietschel C, Horneff G. Baricitinib in therapy of COPA syndrome in a 15-year-old girl. Eur J Rheumatol 2020; 7: Suppl. 1, S78–S81. doi:10.5152/eurjrheum.2019.18177 PubMed DOI PMC
Frémond ML, Nathan N. COPA syndrome, 5 years after: where are we? Joint Bone Spine 2021; 88: 105070. doi:10.1016/j.jbspin.2020.09.002 PubMed DOI
Frémond ML, Legendre M, Fayon M, et al. . Use of ruxolitinib in COPA syndrome manifesting as life-threatening alveolar haemorrhage. Thorax 2020; 75: 92–95. doi:10.1136/thoraxjnl-2019-213892 PubMed DOI
Charbit-Henrion F, Goguyer-Deschaumes R, Borensztajn K, et al. . Systemic inflammatory syndrome in children with FARSA deficiency. Clin Genet 2022; 101: 552–558. doi:10.1111/cge.14120 PubMed DOI PMC
Deyà-Martínez A, Rivière JG, Roxo-Junior P, et al. . Impact of JAK inhibitors in pediatric patients with STAT1 gain of function (GOF) mutations—10 children and review of the literature. J Clin Immunol 2022; 42: 1071–1082. doi:10.1007/s10875-022-01257-x PubMed DOI PMC
Atschekzei F, Traidl S, Carlens J, et al. . JAK inhibitors to treat STAT3 gain-of-function: a single-center report and literature review. Front Immunol 2024; 15: 1400348. doi:10.3389/fimmu.2024.1400348 PubMed DOI PMC
Hadchouel A, Drummond D, Pontoizeau C, et al. . Methionine supplementation for multi-organ dysfunction in MetRS-related pulmonary alveolar proteinosis. Eur Respir J 2022; 59: 2101554. doi:10.1183/13993003.01554-2021 PubMed DOI
Hadchouel A, Wieland T, Griese M, et al. . Biallelic mutations of methionyl-tRNA synthetase cause a specific type of pulmonary alveolar proteinosis prevalent on Réunion Island. Am J Hum Genet 2015; 96: 826–831. doi:10.1016/j.ajhg.2015.03.010 PubMed DOI PMC
Lenz D, Stahl M, Seidl E, et al. . Rescue of respiratory failure in pulmonary alveolar proteinosis due to pathogenic MARS1 variants. Pediatr Pulmonol 2020; 55: 3057–3066. doi:10.1002/ppul.25031 PubMed DOI
Reiter K, Schoen C, Griese M, et al. . Whole-lung lavage in infants and children with pulmonary alveolar proteinosis. Paediatr Anaesth 2010; 20: 1118–1123. doi:10.1111/j.1460-9592.2010.03442.x PubMed DOI
Tazawa R, Ueda T, Abe M, et al. . Inhaled GM-CSF for pulmonary alveolar proteinosis. N Engl J Med 2019; 381: 923–932. doi:10.1056/NEJMoa1816216 PubMed DOI
Nayır Büyükşahin H, Yalçın E, Özdemir A, et al. . Successful atorvastatin treatment of pulmonary alveolar proteinosis in a child with GM-CSF receptor deficiency. Pediatr Pulmonol 2024; 59: 1777–1780. doi:10.1056/NEJMoa1816216 PubMed DOI
McCarthy C, Bonella F, O'Callaghan M, et al. . European Respiratory Society guidelines for the diagnosis and management of pulmonary alveolar proteinosis. Eur Respir J 2024; 64: 2400725. doi:10.1183/13993003.00725-2024 PubMed DOI
Can Oksay S, Onay ZR, Bilgin G, et al. . Inhaled treatment for dyspnea in a rare childhood disease. Pediatr Pulmonol 2024; 59: 3692–3698. doi:10.1002/ppul.27208 PubMed DOI PMC
Regard L, Martin C, Da Silva J, et al. . CFTR modulators: current status and evolving knowledge. Semin Respir Crit Care Med 2023; 44: 186–195. doi:10.1055/s-0042-1758851 PubMed DOI
Kinting S, Höppner S, Schindlbeck U, et al. . Functional rescue of misfolding ABCA3 mutations by small molecular correctors. Hum Mol Genet 2018; 27: 943–953. doi:10.1093/hmg/ddy011 PubMed DOI
Kinting S, Li Y, Forstner M, et al. . Potentiation of ABCA3 lipid transport function by ivacaftor and genistein. J Cell Mol Med 2019; 23: 5225–5234. doi:10.1111/jcmm.14397 PubMed DOI PMC
Le Brun M, Nathan N, Louvrier C, et al. . Efficacy and safety of CFTR modulators in patients with interstitial lung disease caused by ABCA3 transporter deficiency. ERJ Open Res 2024; 10: 00701-2024. doi:10.1183/23120541.00701-2024 PubMed DOI PMC
Cooney AL, Wambach JA, Sinn PL, et al. . Gene therapy potential for genetic disorders of surfactant dysfunction. Front Genome Ed 2021; 3: 785829. doi:10.3389/fgeed.2021.785829 PubMed DOI PMC
Mahiny AJ, Dewerth A, Mays LE, et al. . In vivo genome editing using nuclease-encoding mRNA corrects SP-B deficiency. Nat Biotechnol 2015; 33: 584–586. doi:10.1038/nbt.3241 PubMed DOI
Kang MH, van Lieshout LP, Xu L, et al. . A lung tropic AAV vector improves survival in a mouse model of surfactant B deficiency. Nat Commun 2020; 11: 3929. doi:10.1038/s41467-020-17577-8 PubMed DOI PMC
Munis AM, Hyde SC, Gill DR. A human surfactant B deficiency air–liquid interface cell culture model suitable for gene therapy applications. Mol Ther Methods Clin Dev 2021; 20: 237–246. doi:10.1016/j.omtm.2020.11.013 PubMed DOI PMC
Hetzel M, Suzuki T, Hashtchin AR, et al. . Function and safety of lentivirus-mediated gene transfer for CSF2RA-deficiency. Hum Gene Ther Methods 2017; 28: 318–329. doi:10.1089/hgtb.2017.092 PubMed DOI PMC
Pelizzo G, Silvestro S, Avanzini MA, et al. . Mesenchymal stromal cells for the treatment of interstitial lung disease in children: A look from pediatric and pediatric surgeon viewpoints. Cells 2021; 10: 3270. doi:10.3390/cells10123270 PubMed DOI PMC
Mucci A, Lopez-Rodriguez E, Hetzel M, et al. . iPSC-Derived macrophages effectively treat pulmonary alveolar proteinosis in Csf2rb-deficient mice. Stem Cell Reports 2018; 11: 696–710. doi:10.1016/j.stemcr.2018.07.006 PubMed DOI PMC
Ahn SY, Chang YS, Lee MH, et al. . Stem cells for bronchopulmonary dysplasia in preterm infants: a randomized controlled phase II trial. Stem Cells Transl Med 2021; 10: 1129–1137. doi:10.1002/sctm.20-0330 PubMed DOI PMC
Kuklinski CA, Blatter JA. Interstitial lung disease as an indication for pediatric lung transplant. Pediatr Pulmonol 2024; 59: 2313–2320. doi:10.1002/ppul.26812 PubMed DOI
Carlens J, Schwerk N, Müller C, et al. . Paediatric lung transplantation for children with interstitial lung disease: A 12-year single-center analysis of underlying ChILD diagnoses and outcome. Eur Respir J 2023; 62: Suppl. 67, OA2508. doi:10.1183/13993003.congress-2023.OA2508 DOI
Schneider H, Länger F, Ius F, et al. . Paediatric lung transplantation for childhood interstitial lung disease shows favorable outcome compared with LuTx for cystic fibrosis or pulmonary hypertension. J Heart Lung Transplant 2024; 43: Suppl., S626. doi:10.1016/j.healun.2024.02.977 DOI
Eldridge WB, Zhang Q, Faro A, et al. . Outcomes of lung transplantation for infants and children with genetic disorders of surfactant metabolism. J Pediatr 2017; 184: 157–164.e2. doi:10.1016/j.jpeds.2017.01.017 PubMed DOI PMC
Hayes D, Wilson KC, Krivchenia K, et al. . Home oxygen therapy for children an official American Thoracic Society clinical practice guideline. Am J Respir Crit Care Med 2019; 199: e5–e23. doi:10.1164/rccm.201812-2276ST PubMed DOI PMC
Balfour-Lynn IM, Field DJ, Gringras P, et al. . BTS guidelines for home oxygen in children. Thorax 2009; 64: Suppl. 2, ii1–ii26. doi:10.1136/thx.2009.116020 PubMed DOI
Dziekiewicz M, Marczak H, Banasiuk M, et al. . Characteristics of gastroesophageal reflux disease in children with interstitial lung disease. Pediatr Pulmonol 2023; 58: 171–177. doi:10.1002/ppul.26176 PubMed DOI
Ring AM, Buchvald FF, Main KM, et al. . Long-term effects of high-dose systemic corticosteroids on growth and bone mineral density in patients treated for childhood interstitial lung disease (chILD). Pediatr Pulmonol 2024; 59: 964–973. doi:10.1002/ppul.26858 PubMed DOI
Emiralioglu N, Kiper N. Do we neglect nutrition in childhood interstitial lung disease? Eur J Clin Nutr 2024; 78: 1023–1024. doi:10.1038/s41430-024-01485-x PubMed DOI PMC
Boesing M, Albrich W, Bridevaux PO, et al. . Vaccination in adult patients with chronic lung diseases. Praxis (Bern 1994) 2024; 113: 297–305. doi:10.23785/PRAXIS.2024.11.003 PubMed DOI
Seidl E, Niemitz M, Stöhr S, et al. . Health related quality of life in childhood interstitial lung disease – an ERS Clinical Research Collaboration. Eur Respir J 2023; 62: Suppl. 67, PA424. doi:10.1183/13993003.congress-2023.PA424 DOI
Nathan N, Lauby C, Taam RA, et al. . Health-related quality of life in children interstitial lung disease (abstract). Eur Respir J 2019; 54: Suppl. 63, PA5184. doi:10.1183/13993003.congress-2019.PA5184 DOI
Clement A, De Blic J, Epaud R, et al. . Management of children with interstitial lung diseases: the difficult issue of acute exacerbations. Eur Respir J 2016; 48: 1559–1563. doi:10.1183/13993003.01900-2016 PubMed DOI
Seidl E, Schwerk N, Carlens J, et al. . Acute exacerbations in children's interstitial lung disease. Thorax 2022; 77: 799–804. doi:10.1136/thoraxjnl-2021-217941 PubMed DOI
Griese M, Schwerk N, Carlens J, et al. . Minimal important difference in childhood interstitial lung diseases. Thorax 2023; 78: 476–483. doi:10.1136/thorax-2022-219206 PubMed DOI PMC
Cho JG, Thakkar D, Buchanan P, et al. . ABCA3 deficiency from birth to adulthood presenting as paediatric interstitial lung disease. Respirol Case Rep 2020; 8: e00633. doi:10.1002/rcr2.633 PubMed DOI PMC
Manali ED, Griese M, Nathan N, et al. . Childhood interstitial lung disease survivors in adulthood: a European collaborative study. Eur Respir J 2025; 65: 2400680. doi:10.1183/13993003.00680-2024 PubMed DOI
Gilbert C, Bennett KM, Brown C, et al. . Experiences of UK-based adult transition services for interstitial lung disease in childhood: “There's a lot less cushioning.”. Pediatr Pulmonol 2023; 58: 1993–1999. doi:10.1002/ppul.26423 PubMed DOI
Pohunek P, Manali E, Vijverberg S, et al. . ERS statement on transition of care in childhood interstitial lung diseases. Eur Respir J 2024; 64: 2302160. doi:10.1183/13993003.02160-2023 PubMed DOI
Cassibba J, Epaud R, Berteloot L, et al. . The significance of multidisciplinary team meetings in diagnosing and managing childhood interstitial lung disease within the RespiRare network. Pediatr Pulmonol 2024; 59: 417–425. doi:10.1002/ppul.26765 PubMed DOI
McKnight L, Schultz A, Vidic N, et al. . Learning to make a difference for chILD: value creation through network collaboration and team science. Pediatr Pulmonol 2024; 59: 2257–2266. doi:10.1002/ppul.26377 PubMed DOI