Quantitative Phase Imaging of Spreading Fibroblasts Identifies the Role of Focal Adhesion Kinase in the Stabilization of the Cell Rear

. 2020 Jul 22 ; 10 (8) : . [epub] 20200722

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid32707896

Grantová podpora
19-07603Y Grantová Agentura České Republiky - International
18-11908S Grantová Agentura České Republiky - International
LM2018129 Ministry of Education, Youth and Science - International
RVO 61388971 The Institutional Research Concept - International

Cells attaching to the extracellular matrix spontaneously acquire front-rear polarity. This self-organization process comprises spatial activation of polarity signaling networks and the establishment of a protruding cell front and a non-protruding cell rear. Cell polarization also involves the reorganization of cell mass, notably the nucleus that is positioned at the cell rear. It remains unclear, however, how these processes are regulated. Here, using coherence-controlled holographic microscopy (CCHM) for non-invasive live-cell quantitative phase imaging (QPI), we examined the role of the focal adhesion kinase (FAK) and its interacting partner Rack1 in dry mass distribution in spreading Rat2 fibroblasts. We found that FAK-depleted cells adopt an elongated, bipolar phenotype with a high central body mass that gradually decreases toward the ends of the elongated processes. Further characterization of spreading cells showed that FAK-depleted cells are incapable of forming a stable rear; rather, they form two distally positioned protruding regions. Continuous protrusions at opposite sides results in an elongated cell shape. In contrast, Rack1-depleted cells are round and large with the cell mass sharply dropping from the nuclear area towards the basal side. We propose that FAK and Rack1 act differently yet coordinately to establish front-rear polarity in spreading cells.

Zobrazit více v PubMed

Ridley A.J., Schwartz M.A., Burridge K., Firtel R.A., Ginsberg M.H., Borisy G., Parsons J.T., Horwitz A.R. Cell Migration: Integrating Signals from Front to Back. Science. 2003;302:1704–1709. doi: 10.1126/science.1092053. PubMed DOI

Parsons J.T., Horwitz A.R., Schwartz M.A. Cell adhesion: Integrating cytoskeletal dynamics and cellular tension. Nat. Rev. Mol. Cell Biol. 2010;11:633–643. doi: 10.1038/nrm2957. PubMed DOI PMC

Kraynov V.S., Chamberlain C., Bokoch G.M., Schwartz M.A., Slabaugh S., Hahn K.M. Localized Rac activation dynamics visualized in living cells. Science. 2000;290:333–337. doi: 10.1126/science.290.5490.333. PubMed DOI

Martin K., Reimann A., Fritz R.D., Ryu H., Jeon N.L., Pertz O. Spatio-temporal co-ordination of RhoA, Rac1 and Cdc42 activation during prototypical edge protrusion and retraction dynamics. Sci. Rep. 2016;6:1–14. doi: 10.1038/srep21901. PubMed DOI PMC

Isogai T., Danuser G. Discovery of functional interactions among actin regulators by analysis of image fluctuations in an unperturbed motile cell system. Philos. Trans. R. Soc. B Biol. Sci. 2018;373:20170110. doi: 10.1098/rstb.2017.0110. PubMed DOI PMC

Pollard T.D. Regulation of actin filament assembly by Arp2/3 complex and formins. Annu. Rev. Biophys. Biomol. Struct. 2007;36:451–477. doi: 10.1146/annurev.biophys.35.040405.101936. PubMed DOI

Ridley A.J. Rho GTPase signalling in cell migration. Curr. Opin. Cell Biol. 2015;36:103–112. doi: 10.1016/j.ceb.2015.08.005. PubMed DOI PMC

Gardel M.L., Schneider I.C., Aratyn-Schaus Y., Waterman C.M. Mechanical Integration of Actin and Adhesion Dynamics in Cell Migration. Annu. Rev. Cell Dev. Biol. 2010;26:315–333. doi: 10.1146/annurev.cellbio.011209.122036. PubMed DOI PMC

Beningo K.A., Dembo M., Kaverina I., Small J.V., Wang Y.L. Nascent focal adhesions are responsible for the generation of strong propulsive forces in migrating fibroblasts. J. Cell Biol. 2001;153:881–887. doi: 10.1083/jcb.153.4.881. PubMed DOI PMC

Hotulainen P., Lappalainen P. Stress fibers are generated by two distinct actin assembly mechanisms in motile cells. J. Cell Biol. 2006;173:383–394. doi: 10.1083/jcb.200511093. PubMed DOI PMC

Khatau S.B., Hale C.M., Stewart-Hutchinson P.J., Patel M.S., Stewart C.L., Searson P.C., Hodzic D., Wirtz D. A perinuclear actin cap regulates nuclear shape. Proc. Natl. Acad. Sci. USA. 2009;106:19017–19022. doi: 10.1073/pnas.0908686106. PubMed DOI PMC

Maninová M., Vomastek T. Dorsal stress fibers, transverse actin arcs, and perinuclear actin fibers form an interconnected network that induces nuclear movement in polarizing fibroblasts. FEBS J. 2016;283:3676–3693. doi: 10.1111/febs.13836. PubMed DOI

Rid R., Schiefermeier N., Grigoriev I., Small J.V., Kaverina I. The last but not the least: The origin and significance of trailing adhesions in fibroblastic cells. Cell Motil. Cytoskeleton. 2005;61:161–171. doi: 10.1002/cm.20076. PubMed DOI

Prager-Khoutorsky M., Lichtenstein A., Krishnan R., Rajendran K., Mayo A., Kam Z., Geiger B., Bershadsky A.D. Fibroblast polarization is a matrix-rigidity-dependent process controlled by focal adhesion mechanosensing. Nat. Cell Biol. 2011;13:1457–1465. doi: 10.1038/ncb2370. PubMed DOI

Ladoux B., Mège R.M., Trepat X. Front-Rear Polarization by Mechanical Cues: From Single Cells to Tissues. Trends Cell Biol. 2016;26:420–433. doi: 10.1016/j.tcb.2016.02.002. PubMed DOI PMC

Kumar S., Maxwell I.Z., Heisterkamp A., Polte T.R., Lele T.P., Salanga M., Mazur E., Ingber D.E. Viscoelastic retraction of single living stress fibers and its impact on cell shape, cytoskeletal organization, and extracellular matrix mechanics. Biophys. J. 2006;90:3762–3773. doi: 10.1529/biophysj.105.071506. PubMed DOI PMC

Tanner K., Boudreau A., Bissell M.J., Kumar S. Dissecting regional variations in stress fiber mechanics in living cells with laser nanosurgery. Biophys. J. 2010;99:2775–2783. doi: 10.1016/j.bpj.2010.08.071. PubMed DOI PMC

Maninova M., Caslavsky J., Vomastek T. The assembly and function of perinuclear actin cap in migrating cells. Protoplasma. 2017;254:1207–1218. doi: 10.1007/s00709-017-1077-0. PubMed DOI

Theisen U., Straube E., Straube A. Directional Persistence of Migrating Cells Requires Kif1C-Mediated Stabilization of Trailing Adhesions. Dev. Cell. 2012;23:1153–1166. doi: 10.1016/j.devcel.2012.11.005. PubMed DOI

Vicente-Manzanares M., Webb D.J., Horwitz A.R. Cell migration at a glance. J. Cell Sci. 2005;118:4917–4919. doi: 10.1242/jcs.02662. PubMed DOI

Huttenlocher A., Horwitz A.R. Integrins in cell migration. Cold Spring Harb. Perspect. Biol. 2011;3:a005074. doi: 10.1101/cshperspect.a005074. PubMed DOI PMC

Smilenov L.B., Mikhailov A., Pelham R.J., Marcantonio E.E., Gundersen G.G. Focal Adhesion Motility Revealed in Stationary Fibroblasts. Science. 1999;286:1172–1174. doi: 10.1126/science.286.5442.1172. PubMed DOI

Ballestrem C., Hinz B., Imhof B.A., Wehrle-Haller B. Marching at the front and dragging behind: Differential αVβ3-integrin turnover regulates focal adhesion behavior. J. Cell Biol. 2001;155:1319–1332. doi: 10.1083/jcb.200107107. PubMed DOI PMC

Iwanicki M.P., Vomastek T., Tilghman R.W., Martin K.H., Banerjee J., Wedegaertner P.B., Parsons J.T. FAK, PDZ-RhoGEF and ROCKII cooperate to regulate adhesion movement and trailing-edge retraction in fibroblasts. J. Cell Sci. 2008;121:895–905. doi: 10.1242/jcs.020941. PubMed DOI

Goldyn A.M., Rioja B.A., Spatz J.P., Ballestrem C., Kemkemer R. Force-induced cell polarisation is linked to RhoA-driven microtubule-independent focal-adhesion sliding. J. Cell Sci. 2009;122:3644–3651. doi: 10.1242/jcs.054866. PubMed DOI PMC

Blanchoin L., Boujemaa-Paterski R., Sykes C., Plastino J. Actin dynamics, architecture, and mechanics in cell motility. Physiol. Rev. 2014;94:235–263. doi: 10.1152/physrev.00018.2013. PubMed DOI

Gomes E.R., Jani S., Gundersen G.G. Nuclear movement regulated by Cdc42, MRCK, myosin, and actin flow establishes MTOC polarization in migrating cells. Cell. 2005;121:451–463. doi: 10.1016/j.cell.2005.02.022. PubMed DOI

Luxton G.W.G., Gomes E.R., Folker E.S., Vintinner E., Gundersen G.G. Linear arrays of nuclear envelope proteins harness retrograde actin flow for nuclear movement. Science. 2010;329:956–959. doi: 10.1126/science.1189072. PubMed DOI PMC

Maninová M., Klímová Z., Parsons J.T., Weber M.J., Iwanicki M.P., Vomastek T. The reorientation of cell nucleus promotes the establishment of front-rear polarity in migrating fibroblasts. J. Mol. Biol. 2013;425:2039–2055. doi: 10.1016/j.jmb.2013.02.034. PubMed DOI

Dupin I., Sakamoto Y., Etienne-Manneville S. Cytoplasmic intermediate filaments mediate actin-driven positioning of the nucleus. J. Cell Sci. 2011;124:865–872. doi: 10.1242/jcs.076356. PubMed DOI

Zhu R., Liu C., Gundersen G.G. Nuclear positioning in migrating fibroblasts. Semin. Cell Dev. Biol. 2018;82:41–50. doi: 10.1016/j.semcdb.2017.11.006. PubMed DOI PMC

Calero-Cuenca F.J., Janota C.S., Gomes E.R. Dealing with the nucleus during cell migration. Curr. Opin. Cell Biol. 2018;50:35–41. doi: 10.1016/j.ceb.2018.01.014. PubMed DOI

Luxton G.W.G., Gundersen G.G. Orientation and function of the nuclear-centrosomal axis during cell migration. Curr. Opin. Cell Biol. 2011;23:579–588. doi: 10.1016/j.ceb.2011.08.001. PubMed DOI PMC

Seetharaman S., Etienne-Manneville S. Microtubules at focal adhesions—A double-edged sword. J. Cell Sci. 2019;132 doi: 10.1242/jcs.232843. PubMed DOI

Meiring J.C.M., Shneyer B.I., Akhmanova A. Generation and regulation of microtubule network asymmetry to drive cell polarity. Curr. Opin. Cell Biol. 2020;62:86–95. doi: 10.1016/j.ceb.2019.10.004. PubMed DOI

Mseka T., Bamburg J.R., Cramer L.P. ADF/cofilin family proteins control formation of oriented actin-filament bundles in the cell body to trigger fibroblast polarization. J. Cell Sci. 2007;120:4332–4344. doi: 10.1242/jcs.017640. PubMed DOI

Yam P.T., Wilson C.A., Ji L., Hebert B., Barnhart E.L., Dye N.A., Wiseman P.W., Danuser G., Theriot J.A. Actin-myosin network reorganization breaks symmetry at the cell rear to spontaneously initiate polarized cell motility. J. Cell Biol. 2007;178:1207–1221. doi: 10.1083/jcb.200706012. PubMed DOI PMC

Vicente-Manzanares M., Koach M.A., Whitmore L., Lamers M.L., Horwitz A.F. Segregation and activation of myosin IIB creates a rear in migrating cells. J. Cell Biol. 2008;183:543–554. doi: 10.1083/jcb.200806030. PubMed DOI PMC

Vicente-Manzanares M., Newell-Litwa K., Bachir A.I., Whitmore L.A., Horwitz A.R. Myosin IIA/IIB restrict adhesive and protrusive signaling to generate front-back polarity in migrating cells. J. Cell Biol. 2011;193:381–396. doi: 10.1083/jcb.201012159. PubMed DOI PMC

Klímová Z., Bráborec V., Maninová M., Čáslavský J., Weber M.J., Vomastek T. Symmetry breaking in spreading RAT2 fibroblasts requires the MAPK/ERK pathway scaffold RACK1 that integrates FAK, p190A-RhoGAP and ERK2 signaling. Biochim. Biophys. Acta Mol. Cell Res. 2016;1863 doi: 10.1016/j.bbamcr.2016.05.013. PubMed DOI

Suraneni P., Fogelson B., Rubinstein B., Noguera P., Volkmann N., Hanein D., Mogilner A., Li R. A mechanism of leading-edge protrusion in the absence of Arp2/3 complex. Mol. Biol. Cell. 2015;26:901–912. doi: 10.1091/mbc.E14-07-1250. PubMed DOI PMC

Hennig K., Wang I., Moreau P., Valon L., DeBeco S., Coppey M., Miroshnikova Y.A., Albiges-Rizo C., Favard C., Voituriez R., et al. Stick-slip dynamics of cell adhesion triggers spontaneous symmetry breaking and directional migration of mesenchymal cells on one-dimensional lines. Sci. Adv. 2020;6:eaau5670. doi: 10.1126/sciadv.aau5670. PubMed DOI PMC

Mitra S.K., Schlaepfer D.D. Integrin-regulated FAK-Src signaling in normal and cancer cells. Curr. Opin. Cell Biol. 2006;18:516–523. doi: 10.1016/j.ceb.2006.08.011. PubMed DOI

Parsons J.T. Focal adhesion kinase: The first ten years. J. Cell Sci. 2003;116:1409–1416. doi: 10.1242/jcs.00373. PubMed DOI

Tomar A., Schlaepfer D.D. Focal adhesion kinase: Switching between GAPs and GEFs in the regulation of cell motility. Curr. Opin. Cell Biol. 2009;21:676–683. doi: 10.1016/j.ceb.2009.05.006. PubMed DOI PMC

Webb D.J., Donais K., Whitmore L.A., Thomas S.M., Turner C.E., Parsons J.T., Horwitz A.F. FAK-Src signalling through paxillin, ERK and MLCK regulates adhesion disassembly. Nat. Cell Biol. 2004;6:154–161. doi: 10.1038/ncb1094. PubMed DOI

Vomastek T., Iwanicki M.P., Schaeffer H.-J., Tarcsafalvi A., Parsons J.T., Weber M.J. RACK1 targets the extracellular signal-regulated kinase/mitogen-activated protein kinase pathway to link integrin engagement with focal adhesion disassembly and cell motility. Mol. Cell. Biol. 2007;27:8296–8305. doi: 10.1128/MCB.00598-07. PubMed DOI PMC

Hu Y.L., Lu S., Szeto K.W., Sun J., Wang Y., Lasheras J.C., Chien S. FAK and paxillin dynamics at focal adhesions in the protrusions of migrating cells. Sci. Rep. 2014;4:6024. doi: 10.1038/srep06024. PubMed DOI PMC

Tilghman R.W., Slack-Davis J.K., Sergina N., Martin K.H., Iwanicki M., Hershey E.D., Beggs H.E., Reichardt L.F., Parsons J.T. Focal adhesion kinase is required for the spatial organization of the leading edge in migrating cells. J. Cell Sci. 2005;118:2613–2623. doi: 10.1242/jcs.02380. PubMed DOI

Tomar A., Lim S.T., Lim Y., Schlaepfer D.D. A FAK-p120RasGAP-p190RhoGAP complex regulates polarity in migrating cells. J. Cell Sci. 2009;122:1852–1862. doi: 10.1242/jcs.046870. PubMed DOI PMC

Dubois F., Alpha K., Turner C.E. Paxillin regulates cell polarization and anterograde vesicle trafficking during cell migration. Mol. Biol. Cell. 2017;28:3815–3831. doi: 10.1091/mbc.e17-08-0488. PubMed DOI PMC

Fructuoso M., Legrand M., Mousson A., Steffan T., Vauchelles R., De Mey J., Sick E., Rondé P., Dujardin D. FAK regulates dynein localisation and cell polarity in migrating mouse fibroblasts. Biol. Cell. 2020;112:53–72. doi: 10.1111/boc.201900041. PubMed DOI

Cox E.A., Bennin D., Doan A.T., O’Toole T., Huttenlocher A. RACK1 regulates integrin-mediated adhesion, protrusion, and chemotactic cell migration via its Src-binding site. Mol. Biol. Cell. 2003;14:658–669. doi: 10.1091/mbc.e02-03-0142. PubMed DOI PMC

Serrels B., Sandilands E., Serrels A., Baillie G., Houslay M.D., Brunton V.G., Canel M., MacHesky L.M., Anderson K.I., Frame M.C. A complex between FAK, RACK1, and PDE4D5 controls spreading initiation and cancer cell polarity. Curr. Biol. 2010;20:1086–1092. doi: 10.1016/j.cub.2010.04.042. PubMed DOI

Duff D., Long A. Roles for RACK1 in cancer cell migration and invasion. Cell. Signal. 2017;35:250–255. doi: 10.1016/j.cellsig.2017.03.005. PubMed DOI

Yarwood S.J., Parnell E., Bird R.J. The cyclic AMP phosphodiesterase 4D5 (PDE4D5)/receptor for activated C-kinase 1 (RACK1) signalling complex as a sensor of the extracellular nano-environment. Cell. Signal. 2017;35:282–289. doi: 10.1016/j.cellsig.2017.01.013. PubMed DOI

Popescu G., Park Y.K., Lue N., Best-Popescu C., Deflores L., Dasari R.R., Feld M.S., Badizadegan K. Optical imaging of cell mass and growth dynamics. Am. J. Physiol. Cell Physiol. 2008;295:C538–C544. doi: 10.1152/ajpcell.00121.2008. PubMed DOI PMC

Strbkova L., Zicha D., Vesely P., Chmelik R. Automated classification of cell morphology by coherence-controlled holographic microscopy. J. Biomed. Opt. 2017;22:086008. doi: 10.1117/1.JBO.22.8.086008. PubMed DOI

Tyson R.A., Epstein D.B.A., Anderson K.I., Bretschneider T. High resolution tracking of cell membrane dynamics in moving cells: An electrifying approach. Math. Model. Nat. Phenom. 2010;5:34–55. doi: 10.1051/mmnp/20105102. DOI

Tyson R.A., Zatulovskiy E., Kay R.R., Bretschneider T. How blebs and pseudopods cooperate during chemotaxis. Proc. Natl. Acad. Sci. USA. 2014;111:11703–11708. doi: 10.1073/pnas.1322291111. PubMed DOI PMC

Baniukiewicz P., Collier S., Bretschneider T. QuimP: Analyzing transmembrane signalling in highly deformable cells. Bioinformatics. 2018;34:2695–2697. doi: 10.1093/bioinformatics/bty169. PubMed DOI PMC

Tolde O., Gandalovičová A., Křížová A., Veselý P., Chmelík R., Rosel D., Brábek J. Quantitative phase imaging unravels new insight into dynamics of mesenchymal and amoeboid cancer cell invasion. Sci. Rep. 2018;8:12020. doi: 10.1038/s41598-018-30408-7. PubMed DOI PMC

Ladwein M., Rottner K. On the Rho’d: The regulation of membrane protrusions by Rho-GTPases. FEBS Lett. 2008;582:2066–2074. doi: 10.1016/j.febslet.2008.04.033. PubMed DOI

Ren X.D., Kiosses W.B., Sieg D.J., Otey C.A., Schlaepfer D.D., Schwartz M.A. Focal adhesion kinase suppresses Rho activity to promote focal adhesion turnover. J. Cell Sci. 2000;113:3673–3678. PubMed

Pastorek L., Venit T., Hozák P. Holography microscopy as an artifact-free alternative to phase-contrast. Histochem. Cell Biol. 2018;149:179–186. doi: 10.1007/s00418-017-1610-4. PubMed DOI

Kolman P., Chmelík R. Coherence-controlled holographic microscope. Opt. Express. 2010;18:21990. doi: 10.1364/OE.18.021990. PubMed DOI

Zlotek-Zlotkiewicz E., Monnier S., Cappello G., Le Berre M., Piel M. Optical volume and mass measurements show that mammalian cells swell during mitosis. J. Cell Biol. 2015;211:765–774. doi: 10.1083/jcb.201505056. PubMed DOI PMC

Sandoz P.A., Tremblay C., van der Goot F.G., Frechin M. Image-based analysis of living mammalian cells using label-free 3D refractive index maps reveals new organelle dynamics and dry mass flux. PLoS Biol. 2019;17:e3000553. doi: 10.1371/journal.pbio.3000553. PubMed DOI PMC

Zangle T.A., Teitell M.A. Live-cell mass profiling: An emerging approach in quantitative biophysics. Nat. Methods. 2014;11:1221–1228. doi: 10.1038/nmeth.3175. PubMed DOI PMC

Schaller M.D. Cellular functions of FAK kinases: Insight into molecular mechanisms and novel functions. J. Cell Sci. 2010;123:1007–1013. doi: 10.1242/jcs.045112. PubMed DOI

Dubin-Thaler B.J., Hofman J.M., Cai Y., Xenias H., Spielman I., Shneidman A.V., David L.A., Döbereiner H.-G., Wiggins C.H., Sheetz M.P. Quantification of Cell Edge Velocities and Traction Forces Reveals Distinct Motility Modules during Cell Spreading. PLoS ONE. 2008;3:e3735. doi: 10.1371/journal.pone.0003735. PubMed DOI PMC

Wedlich-Soldner R., Li R. Spontaneous cell polarization: Undermining determinism. Nat. Cell Biol. 2003;5:267–270. doi: 10.1038/ncb0403-267. PubMed DOI

Ren X.-D., Kiosses W.B., Alexander Schwartz M. Regulation of the small GTP-binding protein Rho by cell adhesion and the cytoskeleton. EMBO J. 1999;18:578–585. doi: 10.1093/emboj/18.3.578. PubMed DOI PMC

Arthur W.T., Burridge K. RhoA inactivation by p190RhoGAP regulates cell spreading and migration by promoting membrane protrusion and polarity. Mol. Biol. Cell. 2001;12:2711–2720. doi: 10.1091/mbc.12.9.2711. PubMed DOI PMC

Price L.S., Leng J., Schwartz M.A., Bokoch G.M. Activation of Rac and Cdc42 by integrins mediates cell spreading. Mol. Biol. Cell. 1998;9:1863–1871. doi: 10.1091/mbc.9.7.1863. PubMed DOI PMC

Lawson C.D., Burridge K. The on-off relationship of Rho and Rac during integrin-mediated adhesion and cell migration. Small GTPases. 2014;5 doi: 10.4161/sgtp.27958. PubMed DOI PMC

Byrne K.M., Monsefi N., Dawson J.C., Degasperi A., Bukowski-Wills J.C., Volinsky N., Dobrzyński M., Birtwistle M.R., Tsyganov M.A., Kiyatkin A., et al. Bistability in the Rac1, PAK, and RhoA Signaling Network Drives Actin Cytoskeleton Dynamics and Cell Motility Switches. Cell Syst. 2016;2:38–48. doi: 10.1016/j.cels.2016.01.003. PubMed DOI PMC

Nguyen L.K., Kholodenko B.N., von Kriegsheim A. Rac1 and RhoA: Networks, loops and bistability. Small GTPases. 2018;9:316–321. doi: 10.1080/21541248.2016.1224399. PubMed DOI PMC

Steffen A., Ladwein M., Dimchev G.A., Hein A., Schwenkmezger L., Arens S., Ladwein K.I., Holleboom J.M., Schur F., Small J.V., et al. Rac function is crucial for cell migration but is not required for spreading and focal adhesion formation. J. Cell Sci. 2013;126:4572–4588. doi: 10.1242/jcs.118232. PubMed DOI PMC

Nicholson-Dykstra S.M., Higgs H.N. Arp2 depletion inhibits sheet-like protrusions but not linear protrusions of fibroblasts and lymphocytes. Cell Motil. Cytoskeleton. 2008;65:904–922. doi: 10.1002/cm.20312. PubMed DOI PMC

Suraneni P., Rubinstein B., Unruh J.R., Durnin M., Hanein D., Li R. The Arp2/3 complex is required for lamellipodia extension and directional fibroblast cell migration. J. Cell Biol. 2012;197:239–251. doi: 10.1083/jcb.201112113. PubMed DOI PMC

Pertz O., Hodgson L., Klemke R.L., Hahn K.M. Spatiotemporal dynamics of RhoA activity in migrating cells. Nature. 2006;440:1069–1072. doi: 10.1038/nature04665. PubMed DOI

Machacek M., Hodgson L., Welch C., Elliott H., Pertz O., Nalbant P., Abell A., Johnson G.L., Hahn K.M., Danuser G. Coordination of Rho GTPase activities during cell protrusion. Nature. 2009;461:99–103. doi: 10.1038/nature08242. PubMed DOI PMC

Mehidi A., Rossier O., Schaks M., Chazeau A., Binamé F., Remorino A., Coppey M., Karatas Z., Sibarita J.B., Rottner K., et al. Transient Activations of Rac1 at the Lamellipodium Tip Trigger Membrane Protrusion. Curr. Biol. 2019;29:2852–2866. doi: 10.1016/j.cub.2019.07.035. PubMed DOI

Le S., Yu M., Bershadsky A., Yan J. Mechanical regulation of formin-dependent actin polymerization. Semin. Cell Dev. Biol. 2020;102:73–80. doi: 10.1016/j.semcdb.2019.11.016. PubMed DOI

Isogai T., van der Kammen R., Leyton-Puig D., Kedziora K.M., Jalink K., Innocenti M. Initiation of lamellipodia and ruffles involves cooperation between mDia1 and the Arp2/3 complex. J. Cell Sci. 2015;128:3796–3810. doi: 10.1242/jcs.176768. PubMed DOI

Katsumi A., Milanini J., Kiosses W.B., Del Pozo M.A., Kaunas R., Chien S., Hahn K.M., Schwartz M.A. Effects of cell tension on the small GTPase Rac. J. Cell Biol. 2002;158:153–164. doi: 10.1083/jcb.200201105. PubMed DOI PMC

Dubash A.D., Wennerberg K., García-Mata R., Menold M.M., Arthur W.T., Burridge K. A novel role for Lsc/p115 RhoGEF and LARG in regulating RhoA activity downstream of adhesion to fibronectin. J. Cell Sci. 2007;120:3989–3998. doi: 10.1242/jcs.003806. PubMed DOI

Lim Y., Lim S.T., Tomar A., Gardel M., Bernard-Trifilo J.A., Xiao L.C., Uryu S.A., Canete-Soler R., Zhai J., Lin H., et al. PyK2 and FAK connections to p190Rho guanine nucleotide exchange factor regulate RhoA activity, focal adhesion formation, and cell motility. J. Cell Biol. 2008;180:187–203. doi: 10.1083/jcb.200708194. PubMed DOI PMC

Dwane S., Durack E., O’Connor R., Kiely P.A. RACK1 promotes neurite outgrowth by scaffolding AGAP2 to FAK. Cell. Signal. 2014;26:9–18. doi: 10.1016/j.cellsig.2013.08.036. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...