Quantitative Phase Imaging of Spreading Fibroblasts Identifies the Role of Focal Adhesion Kinase in the Stabilization of the Cell Rear
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
19-07603Y
Grantová Agentura České Republiky - International
18-11908S
Grantová Agentura České Republiky - International
LM2018129
Ministry of Education, Youth and Science - International
RVO 61388971
The Institutional Research Concept - International
PubMed
32707896
PubMed Central
PMC7463699
DOI
10.3390/biom10081089
PII: biom10081089
Knihovny.cz E-zdroje
- Klíčová slova
- Rack1, cell adhesion, cell dry mass, cell spreading, coherence-controlled holographic microscopy, extracellular matrix, focal adhesion kinase, front–rear polarity, quantitative phase imaging,
- MeSH
- buněčná adheze genetika fyziologie MeSH
- buněčné linie MeSH
- fibroblasty cytologie metabolismus MeSH
- fokální adhezní tyrosinkinasy genetika metabolismus MeSH
- krysa rodu Rattus MeSH
- mikroskopie fázově kontrastní MeSH
- pohyb buněk genetika fyziologie MeSH
- polarita buněk genetika fyziologie MeSH
- receptory pro aktivovanou kinasu C genetika metabolismus MeSH
- RNA interference MeSH
- tvar buňky genetika fyziologie MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- fokální adhezní tyrosinkinasy MeSH
- RACK1 protein, rat MeSH Prohlížeč
- receptory pro aktivovanou kinasu C MeSH
Cells attaching to the extracellular matrix spontaneously acquire front-rear polarity. This self-organization process comprises spatial activation of polarity signaling networks and the establishment of a protruding cell front and a non-protruding cell rear. Cell polarization also involves the reorganization of cell mass, notably the nucleus that is positioned at the cell rear. It remains unclear, however, how these processes are regulated. Here, using coherence-controlled holographic microscopy (CCHM) for non-invasive live-cell quantitative phase imaging (QPI), we examined the role of the focal adhesion kinase (FAK) and its interacting partner Rack1 in dry mass distribution in spreading Rat2 fibroblasts. We found that FAK-depleted cells adopt an elongated, bipolar phenotype with a high central body mass that gradually decreases toward the ends of the elongated processes. Further characterization of spreading cells showed that FAK-depleted cells are incapable of forming a stable rear; rather, they form two distally positioned protruding regions. Continuous protrusions at opposite sides results in an elongated cell shape. In contrast, Rack1-depleted cells are round and large with the cell mass sharply dropping from the nuclear area towards the basal side. We propose that FAK and Rack1 act differently yet coordinately to establish front-rear polarity in spreading cells.
Zobrazit více v PubMed
Ridley A.J., Schwartz M.A., Burridge K., Firtel R.A., Ginsberg M.H., Borisy G., Parsons J.T., Horwitz A.R. Cell Migration: Integrating Signals from Front to Back. Science. 2003;302:1704–1709. doi: 10.1126/science.1092053. PubMed DOI
Parsons J.T., Horwitz A.R., Schwartz M.A. Cell adhesion: Integrating cytoskeletal dynamics and cellular tension. Nat. Rev. Mol. Cell Biol. 2010;11:633–643. doi: 10.1038/nrm2957. PubMed DOI PMC
Kraynov V.S., Chamberlain C., Bokoch G.M., Schwartz M.A., Slabaugh S., Hahn K.M. Localized Rac activation dynamics visualized in living cells. Science. 2000;290:333–337. doi: 10.1126/science.290.5490.333. PubMed DOI
Martin K., Reimann A., Fritz R.D., Ryu H., Jeon N.L., Pertz O. Spatio-temporal co-ordination of RhoA, Rac1 and Cdc42 activation during prototypical edge protrusion and retraction dynamics. Sci. Rep. 2016;6:1–14. doi: 10.1038/srep21901. PubMed DOI PMC
Isogai T., Danuser G. Discovery of functional interactions among actin regulators by analysis of image fluctuations in an unperturbed motile cell system. Philos. Trans. R. Soc. B Biol. Sci. 2018;373:20170110. doi: 10.1098/rstb.2017.0110. PubMed DOI PMC
Pollard T.D. Regulation of actin filament assembly by Arp2/3 complex and formins. Annu. Rev. Biophys. Biomol. Struct. 2007;36:451–477. doi: 10.1146/annurev.biophys.35.040405.101936. PubMed DOI
Ridley A.J. Rho GTPase signalling in cell migration. Curr. Opin. Cell Biol. 2015;36:103–112. doi: 10.1016/j.ceb.2015.08.005. PubMed DOI PMC
Gardel M.L., Schneider I.C., Aratyn-Schaus Y., Waterman C.M. Mechanical Integration of Actin and Adhesion Dynamics in Cell Migration. Annu. Rev. Cell Dev. Biol. 2010;26:315–333. doi: 10.1146/annurev.cellbio.011209.122036. PubMed DOI PMC
Beningo K.A., Dembo M., Kaverina I., Small J.V., Wang Y.L. Nascent focal adhesions are responsible for the generation of strong propulsive forces in migrating fibroblasts. J. Cell Biol. 2001;153:881–887. doi: 10.1083/jcb.153.4.881. PubMed DOI PMC
Hotulainen P., Lappalainen P. Stress fibers are generated by two distinct actin assembly mechanisms in motile cells. J. Cell Biol. 2006;173:383–394. doi: 10.1083/jcb.200511093. PubMed DOI PMC
Khatau S.B., Hale C.M., Stewart-Hutchinson P.J., Patel M.S., Stewart C.L., Searson P.C., Hodzic D., Wirtz D. A perinuclear actin cap regulates nuclear shape. Proc. Natl. Acad. Sci. USA. 2009;106:19017–19022. doi: 10.1073/pnas.0908686106. PubMed DOI PMC
Maninová M., Vomastek T. Dorsal stress fibers, transverse actin arcs, and perinuclear actin fibers form an interconnected network that induces nuclear movement in polarizing fibroblasts. FEBS J. 2016;283:3676–3693. doi: 10.1111/febs.13836. PubMed DOI
Rid R., Schiefermeier N., Grigoriev I., Small J.V., Kaverina I. The last but not the least: The origin and significance of trailing adhesions in fibroblastic cells. Cell Motil. Cytoskeleton. 2005;61:161–171. doi: 10.1002/cm.20076. PubMed DOI
Prager-Khoutorsky M., Lichtenstein A., Krishnan R., Rajendran K., Mayo A., Kam Z., Geiger B., Bershadsky A.D. Fibroblast polarization is a matrix-rigidity-dependent process controlled by focal adhesion mechanosensing. Nat. Cell Biol. 2011;13:1457–1465. doi: 10.1038/ncb2370. PubMed DOI
Ladoux B., Mège R.M., Trepat X. Front-Rear Polarization by Mechanical Cues: From Single Cells to Tissues. Trends Cell Biol. 2016;26:420–433. doi: 10.1016/j.tcb.2016.02.002. PubMed DOI PMC
Kumar S., Maxwell I.Z., Heisterkamp A., Polte T.R., Lele T.P., Salanga M., Mazur E., Ingber D.E. Viscoelastic retraction of single living stress fibers and its impact on cell shape, cytoskeletal organization, and extracellular matrix mechanics. Biophys. J. 2006;90:3762–3773. doi: 10.1529/biophysj.105.071506. PubMed DOI PMC
Tanner K., Boudreau A., Bissell M.J., Kumar S. Dissecting regional variations in stress fiber mechanics in living cells with laser nanosurgery. Biophys. J. 2010;99:2775–2783. doi: 10.1016/j.bpj.2010.08.071. PubMed DOI PMC
Maninova M., Caslavsky J., Vomastek T. The assembly and function of perinuclear actin cap in migrating cells. Protoplasma. 2017;254:1207–1218. doi: 10.1007/s00709-017-1077-0. PubMed DOI
Theisen U., Straube E., Straube A. Directional Persistence of Migrating Cells Requires Kif1C-Mediated Stabilization of Trailing Adhesions. Dev. Cell. 2012;23:1153–1166. doi: 10.1016/j.devcel.2012.11.005. PubMed DOI
Vicente-Manzanares M., Webb D.J., Horwitz A.R. Cell migration at a glance. J. Cell Sci. 2005;118:4917–4919. doi: 10.1242/jcs.02662. PubMed DOI
Huttenlocher A., Horwitz A.R. Integrins in cell migration. Cold Spring Harb. Perspect. Biol. 2011;3:a005074. doi: 10.1101/cshperspect.a005074. PubMed DOI PMC
Smilenov L.B., Mikhailov A., Pelham R.J., Marcantonio E.E., Gundersen G.G. Focal Adhesion Motility Revealed in Stationary Fibroblasts. Science. 1999;286:1172–1174. doi: 10.1126/science.286.5442.1172. PubMed DOI
Ballestrem C., Hinz B., Imhof B.A., Wehrle-Haller B. Marching at the front and dragging behind: Differential αVβ3-integrin turnover regulates focal adhesion behavior. J. Cell Biol. 2001;155:1319–1332. doi: 10.1083/jcb.200107107. PubMed DOI PMC
Iwanicki M.P., Vomastek T., Tilghman R.W., Martin K.H., Banerjee J., Wedegaertner P.B., Parsons J.T. FAK, PDZ-RhoGEF and ROCKII cooperate to regulate adhesion movement and trailing-edge retraction in fibroblasts. J. Cell Sci. 2008;121:895–905. doi: 10.1242/jcs.020941. PubMed DOI
Goldyn A.M., Rioja B.A., Spatz J.P., Ballestrem C., Kemkemer R. Force-induced cell polarisation is linked to RhoA-driven microtubule-independent focal-adhesion sliding. J. Cell Sci. 2009;122:3644–3651. doi: 10.1242/jcs.054866. PubMed DOI PMC
Blanchoin L., Boujemaa-Paterski R., Sykes C., Plastino J. Actin dynamics, architecture, and mechanics in cell motility. Physiol. Rev. 2014;94:235–263. doi: 10.1152/physrev.00018.2013. PubMed DOI
Gomes E.R., Jani S., Gundersen G.G. Nuclear movement regulated by Cdc42, MRCK, myosin, and actin flow establishes MTOC polarization in migrating cells. Cell. 2005;121:451–463. doi: 10.1016/j.cell.2005.02.022. PubMed DOI
Luxton G.W.G., Gomes E.R., Folker E.S., Vintinner E., Gundersen G.G. Linear arrays of nuclear envelope proteins harness retrograde actin flow for nuclear movement. Science. 2010;329:956–959. doi: 10.1126/science.1189072. PubMed DOI PMC
Maninová M., Klímová Z., Parsons J.T., Weber M.J., Iwanicki M.P., Vomastek T. The reorientation of cell nucleus promotes the establishment of front-rear polarity in migrating fibroblasts. J. Mol. Biol. 2013;425:2039–2055. doi: 10.1016/j.jmb.2013.02.034. PubMed DOI
Dupin I., Sakamoto Y., Etienne-Manneville S. Cytoplasmic intermediate filaments mediate actin-driven positioning of the nucleus. J. Cell Sci. 2011;124:865–872. doi: 10.1242/jcs.076356. PubMed DOI
Zhu R., Liu C., Gundersen G.G. Nuclear positioning in migrating fibroblasts. Semin. Cell Dev. Biol. 2018;82:41–50. doi: 10.1016/j.semcdb.2017.11.006. PubMed DOI PMC
Calero-Cuenca F.J., Janota C.S., Gomes E.R. Dealing with the nucleus during cell migration. Curr. Opin. Cell Biol. 2018;50:35–41. doi: 10.1016/j.ceb.2018.01.014. PubMed DOI
Luxton G.W.G., Gundersen G.G. Orientation and function of the nuclear-centrosomal axis during cell migration. Curr. Opin. Cell Biol. 2011;23:579–588. doi: 10.1016/j.ceb.2011.08.001. PubMed DOI PMC
Seetharaman S., Etienne-Manneville S. Microtubules at focal adhesions—A double-edged sword. J. Cell Sci. 2019;132 doi: 10.1242/jcs.232843. PubMed DOI
Meiring J.C.M., Shneyer B.I., Akhmanova A. Generation and regulation of microtubule network asymmetry to drive cell polarity. Curr. Opin. Cell Biol. 2020;62:86–95. doi: 10.1016/j.ceb.2019.10.004. PubMed DOI
Mseka T., Bamburg J.R., Cramer L.P. ADF/cofilin family proteins control formation of oriented actin-filament bundles in the cell body to trigger fibroblast polarization. J. Cell Sci. 2007;120:4332–4344. doi: 10.1242/jcs.017640. PubMed DOI
Yam P.T., Wilson C.A., Ji L., Hebert B., Barnhart E.L., Dye N.A., Wiseman P.W., Danuser G., Theriot J.A. Actin-myosin network reorganization breaks symmetry at the cell rear to spontaneously initiate polarized cell motility. J. Cell Biol. 2007;178:1207–1221. doi: 10.1083/jcb.200706012. PubMed DOI PMC
Vicente-Manzanares M., Koach M.A., Whitmore L., Lamers M.L., Horwitz A.F. Segregation and activation of myosin IIB creates a rear in migrating cells. J. Cell Biol. 2008;183:543–554. doi: 10.1083/jcb.200806030. PubMed DOI PMC
Vicente-Manzanares M., Newell-Litwa K., Bachir A.I., Whitmore L.A., Horwitz A.R. Myosin IIA/IIB restrict adhesive and protrusive signaling to generate front-back polarity in migrating cells. J. Cell Biol. 2011;193:381–396. doi: 10.1083/jcb.201012159. PubMed DOI PMC
Klímová Z., Bráborec V., Maninová M., Čáslavský J., Weber M.J., Vomastek T. Symmetry breaking in spreading RAT2 fibroblasts requires the MAPK/ERK pathway scaffold RACK1 that integrates FAK, p190A-RhoGAP and ERK2 signaling. Biochim. Biophys. Acta Mol. Cell Res. 2016;1863 doi: 10.1016/j.bbamcr.2016.05.013. PubMed DOI
Suraneni P., Fogelson B., Rubinstein B., Noguera P., Volkmann N., Hanein D., Mogilner A., Li R. A mechanism of leading-edge protrusion in the absence of Arp2/3 complex. Mol. Biol. Cell. 2015;26:901–912. doi: 10.1091/mbc.E14-07-1250. PubMed DOI PMC
Hennig K., Wang I., Moreau P., Valon L., DeBeco S., Coppey M., Miroshnikova Y.A., Albiges-Rizo C., Favard C., Voituriez R., et al. Stick-slip dynamics of cell adhesion triggers spontaneous symmetry breaking and directional migration of mesenchymal cells on one-dimensional lines. Sci. Adv. 2020;6:eaau5670. doi: 10.1126/sciadv.aau5670. PubMed DOI PMC
Mitra S.K., Schlaepfer D.D. Integrin-regulated FAK-Src signaling in normal and cancer cells. Curr. Opin. Cell Biol. 2006;18:516–523. doi: 10.1016/j.ceb.2006.08.011. PubMed DOI
Parsons J.T. Focal adhesion kinase: The first ten years. J. Cell Sci. 2003;116:1409–1416. doi: 10.1242/jcs.00373. PubMed DOI
Tomar A., Schlaepfer D.D. Focal adhesion kinase: Switching between GAPs and GEFs in the regulation of cell motility. Curr. Opin. Cell Biol. 2009;21:676–683. doi: 10.1016/j.ceb.2009.05.006. PubMed DOI PMC
Webb D.J., Donais K., Whitmore L.A., Thomas S.M., Turner C.E., Parsons J.T., Horwitz A.F. FAK-Src signalling through paxillin, ERK and MLCK regulates adhesion disassembly. Nat. Cell Biol. 2004;6:154–161. doi: 10.1038/ncb1094. PubMed DOI
Vomastek T., Iwanicki M.P., Schaeffer H.-J., Tarcsafalvi A., Parsons J.T., Weber M.J. RACK1 targets the extracellular signal-regulated kinase/mitogen-activated protein kinase pathway to link integrin engagement with focal adhesion disassembly and cell motility. Mol. Cell. Biol. 2007;27:8296–8305. doi: 10.1128/MCB.00598-07. PubMed DOI PMC
Hu Y.L., Lu S., Szeto K.W., Sun J., Wang Y., Lasheras J.C., Chien S. FAK and paxillin dynamics at focal adhesions in the protrusions of migrating cells. Sci. Rep. 2014;4:6024. doi: 10.1038/srep06024. PubMed DOI PMC
Tilghman R.W., Slack-Davis J.K., Sergina N., Martin K.H., Iwanicki M., Hershey E.D., Beggs H.E., Reichardt L.F., Parsons J.T. Focal adhesion kinase is required for the spatial organization of the leading edge in migrating cells. J. Cell Sci. 2005;118:2613–2623. doi: 10.1242/jcs.02380. PubMed DOI
Tomar A., Lim S.T., Lim Y., Schlaepfer D.D. A FAK-p120RasGAP-p190RhoGAP complex regulates polarity in migrating cells. J. Cell Sci. 2009;122:1852–1862. doi: 10.1242/jcs.046870. PubMed DOI PMC
Dubois F., Alpha K., Turner C.E. Paxillin regulates cell polarization and anterograde vesicle trafficking during cell migration. Mol. Biol. Cell. 2017;28:3815–3831. doi: 10.1091/mbc.e17-08-0488. PubMed DOI PMC
Fructuoso M., Legrand M., Mousson A., Steffan T., Vauchelles R., De Mey J., Sick E., Rondé P., Dujardin D. FAK regulates dynein localisation and cell polarity in migrating mouse fibroblasts. Biol. Cell. 2020;112:53–72. doi: 10.1111/boc.201900041. PubMed DOI
Cox E.A., Bennin D., Doan A.T., O’Toole T., Huttenlocher A. RACK1 regulates integrin-mediated adhesion, protrusion, and chemotactic cell migration via its Src-binding site. Mol. Biol. Cell. 2003;14:658–669. doi: 10.1091/mbc.e02-03-0142. PubMed DOI PMC
Serrels B., Sandilands E., Serrels A., Baillie G., Houslay M.D., Brunton V.G., Canel M., MacHesky L.M., Anderson K.I., Frame M.C. A complex between FAK, RACK1, and PDE4D5 controls spreading initiation and cancer cell polarity. Curr. Biol. 2010;20:1086–1092. doi: 10.1016/j.cub.2010.04.042. PubMed DOI
Duff D., Long A. Roles for RACK1 in cancer cell migration and invasion. Cell. Signal. 2017;35:250–255. doi: 10.1016/j.cellsig.2017.03.005. PubMed DOI
Yarwood S.J., Parnell E., Bird R.J. The cyclic AMP phosphodiesterase 4D5 (PDE4D5)/receptor for activated C-kinase 1 (RACK1) signalling complex as a sensor of the extracellular nano-environment. Cell. Signal. 2017;35:282–289. doi: 10.1016/j.cellsig.2017.01.013. PubMed DOI
Popescu G., Park Y.K., Lue N., Best-Popescu C., Deflores L., Dasari R.R., Feld M.S., Badizadegan K. Optical imaging of cell mass and growth dynamics. Am. J. Physiol. Cell Physiol. 2008;295:C538–C544. doi: 10.1152/ajpcell.00121.2008. PubMed DOI PMC
Strbkova L., Zicha D., Vesely P., Chmelik R. Automated classification of cell morphology by coherence-controlled holographic microscopy. J. Biomed. Opt. 2017;22:086008. doi: 10.1117/1.JBO.22.8.086008. PubMed DOI
Tyson R.A., Epstein D.B.A., Anderson K.I., Bretschneider T. High resolution tracking of cell membrane dynamics in moving cells: An electrifying approach. Math. Model. Nat. Phenom. 2010;5:34–55. doi: 10.1051/mmnp/20105102. DOI
Tyson R.A., Zatulovskiy E., Kay R.R., Bretschneider T. How blebs and pseudopods cooperate during chemotaxis. Proc. Natl. Acad. Sci. USA. 2014;111:11703–11708. doi: 10.1073/pnas.1322291111. PubMed DOI PMC
Baniukiewicz P., Collier S., Bretschneider T. QuimP: Analyzing transmembrane signalling in highly deformable cells. Bioinformatics. 2018;34:2695–2697. doi: 10.1093/bioinformatics/bty169. PubMed DOI PMC
Tolde O., Gandalovičová A., Křížová A., Veselý P., Chmelík R., Rosel D., Brábek J. Quantitative phase imaging unravels new insight into dynamics of mesenchymal and amoeboid cancer cell invasion. Sci. Rep. 2018;8:12020. doi: 10.1038/s41598-018-30408-7. PubMed DOI PMC
Ladwein M., Rottner K. On the Rho’d: The regulation of membrane protrusions by Rho-GTPases. FEBS Lett. 2008;582:2066–2074. doi: 10.1016/j.febslet.2008.04.033. PubMed DOI
Ren X.D., Kiosses W.B., Sieg D.J., Otey C.A., Schlaepfer D.D., Schwartz M.A. Focal adhesion kinase suppresses Rho activity to promote focal adhesion turnover. J. Cell Sci. 2000;113:3673–3678. PubMed
Pastorek L., Venit T., Hozák P. Holography microscopy as an artifact-free alternative to phase-contrast. Histochem. Cell Biol. 2018;149:179–186. doi: 10.1007/s00418-017-1610-4. PubMed DOI
Kolman P., Chmelík R. Coherence-controlled holographic microscope. Opt. Express. 2010;18:21990. doi: 10.1364/OE.18.021990. PubMed DOI
Zlotek-Zlotkiewicz E., Monnier S., Cappello G., Le Berre M., Piel M. Optical volume and mass measurements show that mammalian cells swell during mitosis. J. Cell Biol. 2015;211:765–774. doi: 10.1083/jcb.201505056. PubMed DOI PMC
Sandoz P.A., Tremblay C., van der Goot F.G., Frechin M. Image-based analysis of living mammalian cells using label-free 3D refractive index maps reveals new organelle dynamics and dry mass flux. PLoS Biol. 2019;17:e3000553. doi: 10.1371/journal.pbio.3000553. PubMed DOI PMC
Zangle T.A., Teitell M.A. Live-cell mass profiling: An emerging approach in quantitative biophysics. Nat. Methods. 2014;11:1221–1228. doi: 10.1038/nmeth.3175. PubMed DOI PMC
Schaller M.D. Cellular functions of FAK kinases: Insight into molecular mechanisms and novel functions. J. Cell Sci. 2010;123:1007–1013. doi: 10.1242/jcs.045112. PubMed DOI
Dubin-Thaler B.J., Hofman J.M., Cai Y., Xenias H., Spielman I., Shneidman A.V., David L.A., Döbereiner H.-G., Wiggins C.H., Sheetz M.P. Quantification of Cell Edge Velocities and Traction Forces Reveals Distinct Motility Modules during Cell Spreading. PLoS ONE. 2008;3:e3735. doi: 10.1371/journal.pone.0003735. PubMed DOI PMC
Wedlich-Soldner R., Li R. Spontaneous cell polarization: Undermining determinism. Nat. Cell Biol. 2003;5:267–270. doi: 10.1038/ncb0403-267. PubMed DOI
Ren X.-D., Kiosses W.B., Alexander Schwartz M. Regulation of the small GTP-binding protein Rho by cell adhesion and the cytoskeleton. EMBO J. 1999;18:578–585. doi: 10.1093/emboj/18.3.578. PubMed DOI PMC
Arthur W.T., Burridge K. RhoA inactivation by p190RhoGAP regulates cell spreading and migration by promoting membrane protrusion and polarity. Mol. Biol. Cell. 2001;12:2711–2720. doi: 10.1091/mbc.12.9.2711. PubMed DOI PMC
Price L.S., Leng J., Schwartz M.A., Bokoch G.M. Activation of Rac and Cdc42 by integrins mediates cell spreading. Mol. Biol. Cell. 1998;9:1863–1871. doi: 10.1091/mbc.9.7.1863. PubMed DOI PMC
Lawson C.D., Burridge K. The on-off relationship of Rho and Rac during integrin-mediated adhesion and cell migration. Small GTPases. 2014;5 doi: 10.4161/sgtp.27958. PubMed DOI PMC
Byrne K.M., Monsefi N., Dawson J.C., Degasperi A., Bukowski-Wills J.C., Volinsky N., Dobrzyński M., Birtwistle M.R., Tsyganov M.A., Kiyatkin A., et al. Bistability in the Rac1, PAK, and RhoA Signaling Network Drives Actin Cytoskeleton Dynamics and Cell Motility Switches. Cell Syst. 2016;2:38–48. doi: 10.1016/j.cels.2016.01.003. PubMed DOI PMC
Nguyen L.K., Kholodenko B.N., von Kriegsheim A. Rac1 and RhoA: Networks, loops and bistability. Small GTPases. 2018;9:316–321. doi: 10.1080/21541248.2016.1224399. PubMed DOI PMC
Steffen A., Ladwein M., Dimchev G.A., Hein A., Schwenkmezger L., Arens S., Ladwein K.I., Holleboom J.M., Schur F., Small J.V., et al. Rac function is crucial for cell migration but is not required for spreading and focal adhesion formation. J. Cell Sci. 2013;126:4572–4588. doi: 10.1242/jcs.118232. PubMed DOI PMC
Nicholson-Dykstra S.M., Higgs H.N. Arp2 depletion inhibits sheet-like protrusions but not linear protrusions of fibroblasts and lymphocytes. Cell Motil. Cytoskeleton. 2008;65:904–922. doi: 10.1002/cm.20312. PubMed DOI PMC
Suraneni P., Rubinstein B., Unruh J.R., Durnin M., Hanein D., Li R. The Arp2/3 complex is required for lamellipodia extension and directional fibroblast cell migration. J. Cell Biol. 2012;197:239–251. doi: 10.1083/jcb.201112113. PubMed DOI PMC
Pertz O., Hodgson L., Klemke R.L., Hahn K.M. Spatiotemporal dynamics of RhoA activity in migrating cells. Nature. 2006;440:1069–1072. doi: 10.1038/nature04665. PubMed DOI
Machacek M., Hodgson L., Welch C., Elliott H., Pertz O., Nalbant P., Abell A., Johnson G.L., Hahn K.M., Danuser G. Coordination of Rho GTPase activities during cell protrusion. Nature. 2009;461:99–103. doi: 10.1038/nature08242. PubMed DOI PMC
Mehidi A., Rossier O., Schaks M., Chazeau A., Binamé F., Remorino A., Coppey M., Karatas Z., Sibarita J.B., Rottner K., et al. Transient Activations of Rac1 at the Lamellipodium Tip Trigger Membrane Protrusion. Curr. Biol. 2019;29:2852–2866. doi: 10.1016/j.cub.2019.07.035. PubMed DOI
Le S., Yu M., Bershadsky A., Yan J. Mechanical regulation of formin-dependent actin polymerization. Semin. Cell Dev. Biol. 2020;102:73–80. doi: 10.1016/j.semcdb.2019.11.016. PubMed DOI
Isogai T., van der Kammen R., Leyton-Puig D., Kedziora K.M., Jalink K., Innocenti M. Initiation of lamellipodia and ruffles involves cooperation between mDia1 and the Arp2/3 complex. J. Cell Sci. 2015;128:3796–3810. doi: 10.1242/jcs.176768. PubMed DOI
Katsumi A., Milanini J., Kiosses W.B., Del Pozo M.A., Kaunas R., Chien S., Hahn K.M., Schwartz M.A. Effects of cell tension on the small GTPase Rac. J. Cell Biol. 2002;158:153–164. doi: 10.1083/jcb.200201105. PubMed DOI PMC
Dubash A.D., Wennerberg K., García-Mata R., Menold M.M., Arthur W.T., Burridge K. A novel role for Lsc/p115 RhoGEF and LARG in regulating RhoA activity downstream of adhesion to fibronectin. J. Cell Sci. 2007;120:3989–3998. doi: 10.1242/jcs.003806. PubMed DOI
Lim Y., Lim S.T., Tomar A., Gardel M., Bernard-Trifilo J.A., Xiao L.C., Uryu S.A., Canete-Soler R., Zhai J., Lin H., et al. PyK2 and FAK connections to p190Rho guanine nucleotide exchange factor regulate RhoA activity, focal adhesion formation, and cell motility. J. Cell Biol. 2008;180:187–203. doi: 10.1083/jcb.200708194. PubMed DOI PMC
Dwane S., Durack E., O’Connor R., Kiely P.A. RACK1 promotes neurite outgrowth by scaffolding AGAP2 to FAK. Cell. Signal. 2014;26:9–18. doi: 10.1016/j.cellsig.2013.08.036. PubMed DOI