The Changes in Pharyngeal Constrictor Muscles Related to Head and Neck Radiotherapy: A Systematic Review

. 2020 Jan-Dec ; 19 () : 1533033820945805.

Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu časopisecké články, práce podpořená grantem, systematický přehled

Perzistentní odkaz   https://www.medvik.cz/link/pmid32734851

It is well known that radiation damage of the pharyngeal constrictor muscles, the glottic larynx, and the supraglottic larynx may lead to dysphagia, an unwanted effect of head and neck radiotherapy. The reduction of radiotherapy-induced dysphagia might be achieved by adaptive radiotherapy. Although the number of studies concerning adaptive radiotherapy of head and neck cancer is continuously increasing, there are only a few studies concerning changes in dysphagia-related structures during radiotherapy.The goal of this review is to summarize the current knowledge about volumetric, dosimetric, and other changes of the pharyngeal constrictor muscles associated with head and neck radiotherapy. A literature search was performed in the MEDLINE database according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. The conclusions of 8 studies that passed the criteria indicate a significant increase in the volume and the thickness of the pharyngeal constrictor muscles during radiotherapy. Moreover, the changes in magnetic resonance imaging signal intensity of the pharyngeal constrictor muscles correlate with the absorbed dose (typically higher than 50 Gy) and also with the grade of dysphagia. This systematic review presents 2 variables, which are suitable for estimation of radiotherapy-related pharyngeal constrictor muscles changes-magnetic resonance imaging signal intensity and the thickness. In the case of the thickness, there is no consensus in the level of the measurement-C2 vertebra, C3 vertebra, and the middle of the craniocaudal axis are used. It seems that reference to a position associated with a vertebral body could be more reproducible and beneficial for future research. Although late pharyngeal toxicity remains a challenge in head and neck cancer treatment, better knowledge of radiotherapy-related changes in the pharyngeal constrictor muscles contributes to adaptive radiotherapy development and thus improves the treatment results.

Zobrazit více v PubMed

Rademaker AW, Vonesh EF, Logemann JA, et al. Eating ability in head and neck cancer patients after treatment with chemoradiation: a 12-month follow-up study accounting for dropout. Head Neck. 2003;25(12):1034–1041. doi:10.1002/hed.10317 PubMed

Rosenthal DI, Lewin JS, Eisbruch A. Prevention and treatment of dysphagia and aspiration after chemoradiation for head and neck cancer. J Clin Oncol. 2006;24(17):2636–2643. doi:10.1200/JCO.2006.06.0079 PubMed

Morton RP, Crowder VL, Mawdsley R, Ong E, Izzard M. Elective gastrostomy, nutritional status and quality of life in advanced head and neck cancer patients receiving chemoradiotherapy. ANZ J Surg. 2009;79(10):713–718. doi:10.1111/j.1445-2197.2009.05056.x PubMed

Stenson KM, MacCracken E, List M, et al. Swallowing function in patients with head and neck cancer prior to treatment. Arch Otolaryngol Head Neck Surg. 2000;126(3):371 doi:10.1001/archotol.126.3.371 PubMed

Hunter KU, Schipper M, Feng FY, et al. Toxicities affecting quality of life after chemo-IMRT of oropharyngeal cancer: prospective study of patient-reported, observer-rated, and objective outcomes. Int J Radiat Oncol Biol Phys. 2013;85(4):935–940. doi:10.1016/j.ijrobp.2012.08.030 PubMed PMC

Machtay M, Moughan J, Trotti A, et al. Factors associated with severe late toxicity after concurrent chemoradiation for locally advanced head and neck cancer: an RTOG analysis. J Clin Oncol. 2008;26(21):3582–3589. doi:10.1200/JCO.2007.14.8841 PubMed PMC

Verbakel WFAR, Cuijpers JP, Hoffmans D, Bieker M, Slotman BJ, Senan S. Volumetric intensity-modulated arc therapy vs. conventional IMRT in head-and-neck cancer: a comparative planning and dosimetric study. Int J Radiat Oncol Biol Phys. 2009;74(1):252–259. doi:10.1016/j.ijrobp.2008.12.033 PubMed

Dijkema T, Raaijmakers CPJ, Ten Haken RK, et al. Parotid gland function after radiotherapy: the combined Michigan and Utrecht experience. Int J Radiat Oncol Biol Phys. 2010;78(2):449–453. doi:10.1016/j.ijrobp.2009.07.1708 PubMed PMC

Deasy JO, Moiseenko V, Marks L, Chao KSC, Nam J, Eisbruch A. Radiotherapy dose-volume effects on salivary gland function. Int J Radiat Oncol Biol Phys. 2010;76(3 Suppl):S58–S63. doi:10.1016/j.ijrobp.2009.06.090 PubMed PMC

Lee AWM, Ng WT, Chan LLK, et al. Evolution of treatment for nasopharyngeal cancer--success and setback in the intensity-modulated radiotherapy era. Radiother Oncol. 2014;110(3):377–384. doi:10.1016/j.radonc.2014.02.003 PubMed

Barker JL, Garden AS, Ang KK, et al. Quantification of volumetric and geometric changes occurring during fractionated radiotherapy for head-and-neck cancer using an integrated CT/linear accelerator system. Int J Radiat Oncol Biol Phys. 2004;59(4):960–970. doi:10.1016/j.ijrobp.2003.12.024 PubMed

Nishi T, Nishimura Y, Shibata T, Tamura M, Nishigaito N, Okumura M. Volume and dosimetric changes and initial clinical experience of a two-step adaptive intensity modulated radiation therapy (IMRT) scheme for head and neck cancer. Radiother Oncol. 2013;106(1):85–89. doi:10.1016/j.radonc.2012.11.005 PubMed

Yan D, Liang J. Expected treatment dose construction and adaptive inverse planning optimization: implementation for offline head and neck cancer adaptive radiotherapy. Med Phys. 2013;40(2):021719 doi:10.1118/1.4788659 PubMed

Schwartz DL. Current progress in adaptive radiation therapy for head and neck cancer. Curr Oncol Rep. 2012;14(2):139–147. doi:10.1007/s11912-012-0221-4 PubMed

Grégoire V, Langendijk JA, Nuyts S. Advances in radiotherapy for head and neck cancer. J Clin Oncol. 2015;33(29):3277–3284. doi:10.1200/JCO.2015.61.2994 PubMed

Eisbruch A, Lyden T, Bradford CR, et al. Objective assessment of swallowing dysfunction and aspiration after radiation concurrent with chemotherapy for head-and-neck cancer. Int J Radiat Oncol Biol Phys. 2002;53(1):23–28. doi:10.1016/s0360-3016(02)02712-8 PubMed

Levendag PC, Teguh DN, Voet P, et al. Dysphagia disorders in patients with cancer of the oropharynx are significantly affected by the radiation therapy dose to the superior and middle constrictor muscle: a dose-effect relationship. Radiother Oncol. 2007;85(1):64–73. doi:10.1016/j.radonc.2007.07.009 PubMed

Bhide SA, Gulliford S, Kazi R, et al. Correlation between dose to the pharyngeal constrictors and patient quality of life and late dysphagia following chemo-IMRT for head and neck cancer. Radiother Oncol. 2009;93(3):539–544. doi:10.1016/j.radonc.2009.09.017 PubMed

Mortensen HR, Jensen K, Aksglæde K, Behrens M, Grau C. Late dysphagia after IMRT for head and neck cancer and correlation with dose-volume parameters. Radiother Oncol. 2013;107(3):288–294. doi:10.1016/j.radonc.2013.06.001 PubMed

Deantonio L, Masini L, Brambilla M, Pia F, Krengli M. Dysphagia after definitive radiotherapy for head and neck cancer. Correlation of dose-volume parameters of the pharyngeal constrictor muscles. Strahlenther Onkol. 2013;189(3):230–236. doi:10.1007/s00066-012-0288-8 PubMed

Dirix P, Abbeel S, Vanstraelen B, Hermans R, Nuyts S. Dysphagia after chemoradiotherapy for head-and-neck squamous cell carcinoma: dose-effect relationships for the swallowing structures. Int J Radiat Oncol Biol Phys. 2009;75(2):385–392. doi:10.1016/j.ijrobp.2008.11.041 PubMed

Caudell JJ, Schaner PE, Desmond RA, Meredith RF, Spencer SA, Bonner JA. Dosimetric factors associated with long-term dysphagia after definitive radiotherapy for squamous cell carcinoma of the head and neck. Int J Radiat Oncol Biol Phys. 2010;76(2):403–409. doi:10.1016/j.ijrobp.2009.02.017 PubMed

MD Anderson Head and Neck Cancer Symptom Working Group. Beyond mean pharyngeal constrictor dose for beam path toxicity in non-target swallowing muscles: dose-volume correlates of chronic radiation-associated dysphagia (RAD) after oropharyngeal intensity modulated radiotherapy. Radiother Oncol. 2016;118(2):304–314. doi:10.1016/j.radonc.2016.01.019 PubMed PMC

Caglar HB, Tishler RB, Othus M, et al. Dose to Larynx predicts for swallowing complications after intensity-modulated radiotherapy. Int J Radiat Oncol Biol Phys. 2008;72(4):1110–1118. doi:10.1016/j.ijrobp.2008.02.048 PubMed

Li B, Li D, Lau DH, et al. Clinical-dosimetric analysis of measures of dysphagia including gastrostomy-tube dependence among head and neck cancer patients treated definitively by intensity-modulated radiotherapy with concurrent chemotherapy. Radiat Oncol. 2009;4(1):52 doi:10.1186/1748-717X-4-52 PubMed PMC

Peponi E, Glanzmann C, Willi B, Huber G, Studer G. Dysphagia in head and neck cancer patients following intensity modulated radiotherapy (IMRT). Radiat Oncol. 2011;6(1):1 doi:10.1186/1748-717X-6-1 PubMed PMC

Dornfeld K, Simmons JR, Karnell L, et al. Radiation doses to structures within and adjacent to the larynx are correlated with long-term diet- and speech-related quality of life. Int J Radiat Oncol Biol Phys. 2007;68(3):750–757. doi:10.1016/j.ijrobp.2007.01.047 PubMed

Mazzola R, Ricchetti F, Fiorentino A, et al. Dose–volume-related dysphagia after constrictor muscles definition in head and neck cancer intensity-modulated radiation treatment. BJR. 2014;87(1044):20140543 doi:10.1259/bjr.20140543 PubMed PMC

Feng FY, Kim HM, Lyden TH, et al. Intensity-modulated radiotherapy of head and neck cancer aiming to reduce dysphagia: early dose-effect relationships for the swallowing structures. Int J Radiat Oncol Biol Phys. 2007;68(5):1289–1298. doi:10.1016/j.ijrobp.2007.02.049 PubMed

Duprez F, Madani I, De Potter B, Boterberg T, De Neve W. Systematic review of dose--volume correlates for structures related to late swallowing disturbances after radiotherapy for head and neck cancer. Dysphagia. 2013;28(3):337–349. doi:10.1007/s00455-013-9452-2 PubMed

Petkar I, Rooney K, Roe JWG, et al. DARS: a phase III randomised multicentre study of dysphagia- optimised intensity- modulated radiotherapy (Do-IMRT) versus standard intensity- modulated radiotherapy (S-IMRT) in head and neck cancer. BMC Cancer. 2016;16(1):770 doi:10.1186/s12885-016-2813-0 PubMed PMC

Brouwer CL, Steenbakkers RJHM, Langendijk JA, Sijtsema NM. Identifying patients who may benefit from adaptive radiotherapy: does the literature on anatomic and dosimetric changes in head and neck organs at risk during radiotherapy provide information to help? Radiother Oncol. 2015;115(3):285–294. doi:10.1016/j.radonc.2015.05.018 PubMed

Lee C, Langen KM, Lu W, et al. Assessment of parotid gland dose changes during head and neck cancer radiotherapy using daily megavoltage computed tomography and deformable image registration. Int J Radiat Oncol Biol Phys. 2008;71(5):1563–1571. doi:10.1016/j.ijrobp.2008.04.013 PubMed

Han C, Chen Y-J, Liu A, Schultheiss TE, Wong JYC. Actual dose variation of parotid glands and spinal cord for nasopharyngeal cancer patients during radiotherapy. Int J Radiat Oncol Biol Phys. 2008;70(4):1256–1262. doi:10.1016/j.ijrobp.2007.10.067 PubMed

Robar JL, Day A, Clancey J, et al. Spatial and dosimetric variability of organs at risk in head-and-neck intensity-modulated radiotherapy. Int J Radiat Oncol Biol Phys. 2007;68(4):1121–1130. doi:10.1016/j.ijrobp.2007.01.030 PubMed

Hansen EK, Bucci MK, Quivey JM, Weinberg V, Xia P. Repeat CT imaging and replanning during the course of IMRT for head-and-neck cancer. Int J Radiat Oncol Biol Phys. 2006;64(2):355–362. doi:10.1016/j.ijrobp.2005.07.957 PubMed

Castelli J, Simon A, Lafond C, et al. Adaptive radiotherapy for head and neck cancer. Acta Oncol. 2018;57(10):1284–1292. doi:10.1080/0284186X.2018.1505053 PubMed

Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med. 2009;6(7):e1000097 doi:10.1371/journal.pmed.1000097 PubMed PMC

Higgins JPT, Green S, Cochrane Collaboration, eds. Cochrane Handbook for Systematic Reviews of Interventions. Wiley-Blackwell; 2008.

Ricchetti F, Wu B, McNutt T, et al. Volumetric change of selected organs at risk during IMRT for oropharyngeal cancer. Int J Radiat Oncol Biol Phys. 2011;80(1):161–168. doi:10.1016/j.ijrobp.2010.01.071 PubMed

Kumarasiri A, Liu C, Kamal M, et al. Changes in pharyngeal constrictor volumes during head and neck radiation therapy: Implications for dose delivery. J Cancer Res Ther. 2017;13(2):218–223. doi:10.4103/0973-1482.183176 PubMed

Eisbruch A, Schwartz M, Rasch C, et al. Dysphagia and aspiration after chemoradiotherapy for head-and-neck cancer: which anatomic structures are affected and can they be spared by IMRT?. Int J Radiat Oncol Biol Phys. 2004;60(5):1425–1439. doi:10.1016/j.ijrobp.2004.05.050 PubMed

Popovtzer A, Cao Y, Feng FY, Eisbruch A. Anatomical changes in the pharyngeal constrictors after chemo-irradiation of head and neck cancer and their dose-effect relationships: MRI-based study. Radiother Oncol. 2009;93(3):510–515. doi:10.1016/j.radonc.2009.05.013 PubMed PMC

Duffy O, Forde E, Leech M. The dilemma of parotid gland and pharyngeal constrictor muscles preservation-Is daily online image guidance required? A dosimetric analysis. Med Dosim. 2017;42(1):24–30. doi:10.1016/j.meddos.2016.10.003 PubMed

Meheissen M, Kamal M, Hernandez M, et al. A prospective longitudinal assessment of MRI signal intensity kinetics of non-target muscles in patients with advanced stage oropharyngeal cancer in relationship to radiotherapy dose and post-treatment radiation-associated dysphagia: preliminary findings from a randomized trial. Radiother Oncol. 2019;130:46–55. doi:10.1016/j.radonc.2018.08.010 PubMed PMC

Messer JA, Mohamed ASR, Hutcheson KA, et al. Magnetic resonance imaging of swallowing-related structures in nasopharyngeal carcinoma patients receiving IMRT: Longitudinal dose-response characterization of quantitative signal kinetics. Radiother Oncol. 2016;118(2):315–322. doi:10.1016/j.radonc.2016.01.011 PubMed PMC

Truong MT, Lee R, Saito N, et al. Correlating computed tomography perfusion changes in the pharyngeal constrictor muscles during head-and-neck radiotherapy to dysphagia outcome. Int J Radiat Oncol Biol Phys. 2012;82(2):e119–127. doi:10.1016/j.ijrobp.2011.04.058 PubMed PMC

Fajardo LF, Berthrong M, Anderson RE. Radiation Pathology. Oxford University Press; 2001.

Sonis ST, Peterson RL, Edwards LJ, et al. Defining mechanisms of action of interleukin-11 on the progression of radiation-induced oral mucositis in hamsters. Oral Oncology. 2000;36(4):373–381. doi:10.1016/S1368-8375(00)00012-9 PubMed

Castadot P, Geets X, Lee JA, Grégoire V. Adaptive functional image-guided IMRT in pharyngo-laryngeal squamous cell carcinoma: is the gain in dose distribution worth the effort?. Radiother Oncol. 2011;101(3):343–350. doi:10.1016/j.radonc.2011.06.011 PubMed

Hunter KU, Fernandes LL, Vineberg KA, et al. Parotid glands dose-effect relationships based on their actually delivered doses: implications for adaptive replanning in radiation therapy of head-and-neck cancer. Int J Radiat Oncol Biol Phys. 2013;87(4):676–682. doi:10.1016/j.ijrobp.2013.07.040 PubMed PMC

Zhang P, Simon A, Rigaud B, et al. Optimal adaptive IMRT strategy to spare the parotid glands in oropharyngeal cancer. Radiother Oncol. 2016;120(1):41–47. doi:10.1016/j.radonc.2016.05.028 PubMed

Castelli J, Simon A, Rigaud B, et al. A nomogram to predict parotid gland overdose in head and neck IMRT. Radiat Oncol. 2016;11:79 doi:10.1186/s13014-016-0650-6 PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...