Concurrent TP53 and CDKN2A Gene Aberrations in Newly Diagnosed Mantle Cell Lymphoma Correlate with Chemoresistance and Call for Innovative Upfront Therapy
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
AZV 17-28980A
Ministerstvo Zdravotnictví Ceské Republiky
GA20-25308S
Grantová Agentura České Republiky
UNCE/MED/016
Univerzita Karlova v Praze
PROGRES Q26/LF1
Ministerstvo Školství, Mládeže a Tělovýchovy
PROGRES Q28/LF1
Ministerstvo Školství, Mládeže a Tělovýchovy
RVO-VFN64165
Ministerstvo Zdravotnictví Ceské Republiky
DRO (FNOl, 00098892)
Ministerstvo Zdravotnictví Ceské Republiky
IGA-LF-2019-001
Palacky University
PubMed
32751805
PubMed Central
PMC7466084
DOI
10.3390/cancers12082120
PII: cancers12082120
Knihovny.cz E-zdroje
- Klíčová slova
- CDKN2A, TP53, chemoresistance, mantle cell lymphoma, prognostic markers,
- Publikační typ
- časopisecké články MeSH
Mantle cell lymphoma (MCL) is a subtype of B-cell lymphoma with a large number of recurrent cytogenetic/molecular aberrations. Approximately 5-10% of patients do not respond to frontline immunochemotherapy. Despite many useful prognostic indexes, a reliable marker of chemoresistance is not available. We evaluated the prognostic impact of seven recurrent gene aberrations including tumor suppressor protein P53 (TP53) and cyclin dependent kinase inhibitor 2A (CDKN2A) in the cohort of 126 newly diagnosed consecutive MCL patients with bone marrow involvement ≥5% using fluorescent in-situ hybridization (FISH) and next-generation sequencing (NGS). In contrast to TP53, no pathologic mutations of CDKN2A were detected by NGS. CDKN2A deletions were found exclusively in the context of other gene aberrations suggesting it represents a later event (after translocation t(11;14) and aberrations of TP53, or ataxia telangiectasia mutated (ATM)). Concurrent deletion of CDKN2A and aberration of TP53 (deletion and/or mutation) represented the most significant predictor of short EFS (median 3 months) and OS (median 10 months). Concurrent aberration of TP53 and CDKN2A is a new, simple, and relevant index of chemoresistance in MCL. Patients with concurrent aberration of TP53 and CDKN2A should be offered innovative anti-lymphoma therapy and upfront consolidation with allogeneic stem cell transplantation.
Zobrazit více v PubMed
Klener P. Advances in Molecular Biology and Targeted Therapy of Mantle Cell Lymphoma. Int. J. Mol. Sci. 2019;20:4417. doi: 10.3390/ijms20184417. PubMed DOI PMC
Cheah C.Y., Seymour J.F., Wang M.L. Mantle Cell Lymphoma. J. Clin. Oncol. 2016;34:1256–1269. doi: 10.1200/JCO.2015.63.5904. PubMed DOI
Jain P., Wang M. Mantle cell lymphoma: 2019 update on the diagnosis, pathogenesis, prognostication, and management. Am. J. Hematol. 2019;94:710–725. doi: 10.1002/ajh.25487. PubMed DOI
Maddocks K. Update on mantle cell lymphoma. Blood. 2018;132:1647–1656. doi: 10.1182/blood-2018-03-791392. PubMed DOI
Rule S. The modern approach to mantle cell lymphoma. Hematol. Oncol. 2019;37:66–69. doi: 10.1002/hon.2596. PubMed DOI
Zhang J., Jima D., Moffitt A.B., Liu Q., Czader M., Hsi E.D., Fedoriw Y., Dunphy C.H., Richards K.L., Gill J.I., et al. The genomic landscape of mantle cell lymphoma is related to the epigenetically determined chromatin state of normal B cells. Blood J. Am. Soc. Hematol. 2014;123:2988–2996. doi: 10.1182/blood-2013-07-517177. PubMed DOI PMC
Bea S., Valdes-Mas R., Navarro A., Salaverria I., Martín-Garcia D., Jares P., Giné E., Pinyol M., Royo C., Nadeu F., et al. Landscape of somatic mutations and clonal evolution in mantle cell lymphoma. Proc. Natl. Acad. Sci. USA. 2013;110:18250–18255. doi: 10.1073/pnas.1314608110. PubMed DOI PMC
Yang P., Zhang W., Wang J., Liu Y., An R., Jing H. Genomic landscape and prognostic analysis of mantle cell lymphoma. Cancer Gene Ther. 2018;25:129–140. doi: 10.1038/s41417-018-0022-5. PubMed DOI
Ahmed M., Zhang L., Nomie K., Lam L., Wang M. Gene mutations and actionable genetic lesions in mantle cell lymphoma. Oncotarget. 2016;7:58638–58648. doi: 10.18632/oncotarget.10716. PubMed DOI PMC
Kridel R., Meissner B., Rogic S., Boyle M., Telenius A., Woolcock B., Gunawardana J., Jenkins C., Cochrane C., Ben-Neriah S., et al. Whole transcriptome sequencing reveals recurrent NOTCH1 mutations in mantle cell lymphoma. Blood. 2012;119:1963–1971. doi: 10.1182/blood-2011-11-391474. PubMed DOI
Wang L., Tang G., Medeiros L.J., Xu J., Huang W., Yin C.C., Wang M., Jain P., Lin P., Li S. MYC rearrangement but not extra MYC copies is an independent prognostic factor in patients with mantle cell lymphoma. Haematologica. 2020;105 doi: 10.3324/haematol.2019.243071. PubMed DOI PMC
Ferrero S., Rossi D., Rinaldi A., Bruscaggin A., Spina V., Eskelund C.W., Evangelista A., Moia R., Kwee I., Dahl C. KMT2D mutations and TP53 disruptions are poor prognostic biomarkers in mantle cell lymphoma receiving high-dose therapy: A FIL study. Haematologica. 2020;105:1604–1612. doi: 10.3324/haematol.2018.214056. PubMed DOI PMC
Hill H.A., Qi X., Jain P., Nomie K., Wang Y., Zhou S., Wang M.L. Genetic mutations and features of mantle cell lymphoma: A systematic review and meta-analysis. Blood Adv. 2020;4:2927–2938. doi: 10.1182/bloodadvances.2019001350. PubMed DOI PMC
Hoster E., Dreyling M., Klapper W., Gisselbrecht C., Van Hoof A., Kluin-Nelemans H.C., Pfreundschuh M., Reiser M., Metzner B., Einsele H., et al. A new prognostic index (MIPI) for patients with advanced-stage mantle cell lymphoma. Blood. 2008;111:558–565. doi: 10.1182/blood-2007-06-095331. PubMed DOI
Hoster E., Rosenwald A., Berger F., Bernd H.W., Hartmann S., Loddenkemper C., Barth T.F., Brousse N., Pileri S., Rymkiewicz G., et al. Prognostic Value of Ki-67 Index, Cytology, and Growth Pattern in Mantle-Cell Lymphoma: Results from Randomized Trials of the European Mantle Cell Lymphoma Network. J. Clin. Oncol. 2016;34:1386–1394. doi: 10.1200/JCO.2015.63.8387. PubMed DOI
Eskelund C.W., Dahl C., Hansen J.W., Westman M., Kolstad A., Pedersen L.B., Montano-Almendras C.P., Husby S., Freiburghaus C., Ek S., et al. TP53 mutations identify younger mantle cell lymphoma patients who do not benefit from intensive chemoimmunotherapy. Blood J. Am. Soc. Hematol. 2017;130:1903–1910. doi: 10.1182/blood-2017-04-779736. PubMed DOI
Clot G., Jares P., Gine E., Navarro A., Royo C., Pinyol M., Martín-Garcia D., Demajo S., Espinet B., Salar A., et al. A gene signature that distinguishes conventional and leukemic nonnodal mantle cell lymphoma helps predict outcome. Blood. 2018;132:413–422. doi: 10.1182/blood-2018-03-838136. PubMed DOI PMC
Delfau-Larue M.H., Klapper W., Berger F., Jardin F., Briere J., Salles G., Casasnovas O., Feugier P., Haioun C., Ribrag V., et al. High-Dose cytarabine does not overcome the adverse prognostic value of CDKN2A and TP53 deletions in mantle cell lymphoma. Blood J. Am. Soc. Hematol. 2015;126:604–611. doi: 10.1182/blood-2015-02-628792. PubMed DOI
Obr A., Prochazka V., Jirkuvova A., Urbánková H., Kriegova E., Schneiderová P., Vatolíková M., Papajík T. TP53 Mutation and Complex Karyotype Portends a Dismal Prognosis in Patients with Mantle Cell Lymphoma. Clin. Lymphoma Myeloma Leuk. 2018;18:762–768. doi: 10.1016/j.clml.2018.07.282. PubMed DOI
Petrackova A., Vasinek M., Sedlarikova L., Dyskova T., Schneiderova P., Novosad T., Papajik T., Kriegova E. Standardization of Sequencing Coverage Depth in NGS: Recommendation for Detection of Clonal and Subclonal Mutations in Cancer Diagnostics. Front. Oncol. 2019;9:851. doi: 10.3389/fonc.2019.00851. PubMed DOI PMC
Ishwaran H., Lu M. Standard errors and confidence intervals for variable importance in random forest regression, classification, and survival. Stat. Med. 2019;38:558–582. doi: 10.1002/sim.7803. PubMed DOI PMC
Cheson B.D., Horning S.J., Coiffier B., Shipp M.A., Fisher R.I., Connors J.M., Lister T.A., Vose J., Grillo-López A., Hagenbeek A., et al. Report of an international workshop to standardize response criteria for non-Hodgkin’s lymphomas. NCI Sponsored International Working Group. J. Clin. Oncol. 1999;17:1244. doi: 10.1200/JCO.1999.17.4.1244. PubMed DOI
Zenz T., Krober A., Scherer K., Häbe S., Bühler A., Benner A., Denzel T., Winkler D., Edelmann J., Schwänen C., et al. Monoallelic TP53 inactivation is associated with poor prognosis in chronic lymphocytic leukemia: Results from a detailed genetic characterization with long-term follow-up. Blood J. Am. Soc. Hematol. 2008;112:3322–3329. doi: 10.1182/blood-2008-04-154070. PubMed DOI
Streich L., Sukhanova M., Lu X., Chen Y.H., Venkataraman G., Mathews S., Zhang S., Kelemen K., Segal J., Gao J., et al. Aggressive morphologic variants of mantle cell lymphoma characterized with high genomic instability showing frequent chromothripsis, CDKN2A/B loss, and TP53 mutations: A multi-institutional study. Genes Chromosomes Cancer. 2020;59:484–494. doi: 10.1002/gcc.22849. PubMed DOI
Sanchez-Beato M., Saez A.I., Navas I.C., Algara P., Mateo M.S., Villuendas R., Camacho F., Sánchez-Aguilera A., Sánchez E., Piris M.A. Overall survival in aggressive B-Cell lymphomas is dependent on the accumulation of alterations in p53, p16, and p27. Am. J. Pathol. 2001;159:205–213. doi: 10.1016/S0002-9440(10)61686-0. PubMed DOI PMC
Lopez C., Kleinheinz K., Aukema S.M., Rohde M., Bernhart S.H., Hübschmann D., Wagener R., Toprak U.H., Raimondi F., Kreuz M., et al. Genomic and transcriptomic changes complement each other in the pathogenesis of sporadic Burkitt lymphoma. Nat. Commun. 2019;10:1459. doi: 10.1038/s41467-019-08578-3. PubMed DOI PMC
Bolen C.R., Klanova M., Trneny M., Sehn L.H., He J., Tong J., Paulson J.N., Kim E., Vitolo U., Di Rocco A., et al. Prognostic impact of somatic mutations in diffuse large B-Cell lymphoma and relationship to cell-of-origin: Data from the phase III GOYA study. Haematologica. 2019;105:227892. doi: 10.3324/haematol.2019.227892. PubMed DOI PMC
Rossi D., Spina V., Gaidano G. Biology and treatment of Richter syndrome. Blood. 2018;131:2761–2772. doi: 10.1182/blood-2018-01-791376. PubMed DOI
Chigrinova E., Rinaldi A., Kwee I., Rossi D., Rancoita P.M., Strefford J.C., Oscier D., Stamatopoulos K., Papadaki T., Berger F., et al. Two main genetic pathways lead to the transformation of chronic lymphocytic leukemia to Richter syndrome. Blood J. Am. Soc. Hematol. 2013;122:2673–2682. doi: 10.1182/blood-2013-03-489518. PubMed DOI
Kwiecinska A., Ichimura K., Berglund M., Dinets A., Sulaiman L., Collins V.P., Larsson C., Porwit A., Lagercrantz S.B. Amplification of 2p as a genomic marker for transformation in lymphoma. Genes Chromosomes Cancer. 2014;53:750–768. doi: 10.1002/gcc.22184. PubMed DOI PMC
Pasqualucci L., Khiabanian H., Fangazio M., Vasishtha M., Messina M., Holmes A.B., Ouillette P., Trifonov V., Rossi D., Tabbò F., et al. Genetics of follicular lymphoma transformation. Cell Rep. 2014;6:130–140. doi: 10.1016/j.celrep.2013.12.027. PubMed DOI PMC
The EHA Research Roadmap: Malignant Lymphoid Diseases
BH3 Mimetics in Hematologic Malignancies