BH3 Mimetics in Hematologic Malignancies

. 2021 Sep 21 ; 22 (18) : . [epub] 20210921

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid34576319

Grantová podpora
AZV NU21-03-00386 Agentura Pro Zdravotnický Výzkum České Republiky
GACR17-14007S and GACR19-08772S Grantová Agentura České Republiky
Center of Excellence UNCE/MED/016 Univerzita Karlova v Praze
PROGRES Q26/LF1 and PROGRES Q28/LF1 Ministerstvo Školství, Mládeže a Tělovýchovy

Hematologic malignancies (HM) comprise diverse cancers of lymphoid and myeloid origin, including lymphomas (approx. 40%), chronic lymphocytic leukemia (CLL, approx. 15%), multiple myeloma (MM, approx. 15%), acute myeloid leukemia (AML, approx. 10%), and many other diseases. Despite considerable improvement in treatment options and survival parameters in the new millennium, many patients with HM still develop chemotherapy‑refractory diseases and require re-treatment. Because frontline therapies for the majority of HM (except for CLL) are still largely based on classical cytostatics, the relapses are often associated with defects in DNA damage response (DDR) pathways and anti-apoptotic blocks exemplified, respectively, by mutations or deletion of the TP53 tumor suppressor, and overexpression of anti-apoptotic proteins of the B-cell lymphoma 2 (BCL2) family. BCL2 homology 3 (BH3) mimetics represent a novel class of pro-apoptotic anti-cancer agents with a unique mode of action-direct targeting of mitochondria independently of TP53 gene aberrations. Consequently, BH3 mimetics can effectively eliminate even non-dividing malignant cells with adverse molecular cytogenetic alterations. Venetoclax, the nanomolar inhibitor of BCL2 anti-apoptotic protein has been approved for the therapy of CLL and AML. Numerous venetoclax-based combinatorial treatment regimens, next-generation BCL2 inhibitors, and myeloid cell leukemia 1 (MCL1) protein inhibitors, which are another class of BH3 mimetics with promising preclinical results, are currently being tested in several clinical trials in patients with diverse HM. These pivotal trials will soon answer critical questions and concerns about these innovative agents regarding not only their anti-tumor efficacy but also potential side effects, recommended dosages, and the optimal length of therapy as well as identification of reliable biomarkers of sensitivity or resistance. Effective harnessing of the full therapeutic potential of BH3 mimetics is a critical mission as it may directly translate into better management of the aggressive forms of HM and could lead to significantly improved survival parameters and quality of life in patients with urgent medical needs.

Zobrazit více v PubMed

Nagata S. Apoptosis and clearance of apoptotic cells. Annu. Rev. Immunol. 2018;36:489–517. doi: 10.1146/annurev-immunol-042617-053010. PubMed DOI

Ramirez M.L.G., Salvesen G.S. A primer on caspase mechanisms. Semin. Cell Dev. Biol. 2018;82:79–85. doi: 10.1016/j.semcdb.2018.01.002. PubMed DOI PMC

Van Opdenbosch N., Lamkanfi M. Caspases in cell death, inflammation, and disease. Immunity. 2019;50:1352–1364. doi: 10.1016/j.immuni.2019.05.020. PubMed DOI PMC

Certo M., Del Gaizo Moore V., Nishino M., Wei G., Korsmeyer S., Armstrong S.A., Letai A. Mitochondria primed by death signals determine cellular addiction to antiapoptotic BCL-2 family members. Cancer Cell. 2006;9:351–365. doi: 10.1016/j.ccr.2006.03.027. PubMed DOI

Carneiro B.A., El-Deiry W.S. Targeting apoptosis in cancer therapy. Nat. Rev. Clin. Oncol. 2020;17:395–417. doi: 10.1038/s41571-020-0341-y. PubMed DOI PMC

Leveille E., Johnson N.A. Genetic events inhibiting apoptosis in diffuse large B cell lymphoma. Cancers. 2021;13:2167. doi: 10.3390/cancers13092167. PubMed DOI PMC

Hanahan D., Weinberg R.A. Hallmarks of cancer: The next generation. Cell. 2011;144:646–674. doi: 10.1016/j.cell.2011.02.013. PubMed DOI

Adams J.M., Cory S. The BCL-2 arbiters of apoptosis and their growing role as cancer targets. Cell Death Differ. 2018;25:27–36. doi: 10.1038/cdd.2017.161. PubMed DOI PMC

Glab J.A., Mbogo G.W., Puthalakath H. BH3-only proteins in health and disease. Int. Rev. Cell Mol. Biol. 2017;328:163–196. doi: 10.1016/bs.ircmb.2016.08.005. PubMed DOI

Chen L., Willis S.N., Wei A., Smith B.J., Fletcher J.I., Hinds M.G., Colman P.M., Day C.L., Adams J.M., Huang D.C. Differential targeting of prosurvival Bcl-2 proteins by their BH3-only ligands allows complementary apoptotic function. Mol. Cell. 2005;17:393–403. doi: 10.1016/j.molcel.2004.12.030. PubMed DOI

Reed J.C. Bcl-2 family proteins. Oncogene. 1998;17:3225–3236. doi: 10.1038/sj.onc.1202591. PubMed DOI

Chi X., Nguyen D., Pemberton J.M., Osterlund E.J., Liu Q., Brahmbhatt H., Zhang Z., Lin J., Leber B., Andrews D.W. The carboxyl-terminal sequence of bim enables bax activation and killing of unprimed cells. Elife. 2020;9 doi: 10.7554/eLife.44525. PubMed DOI PMC

Ye K., Meng W.X., Sun H., Wu B., Chen M., Pang Y.P., Gao J., Wang H., Wang J., Kaufmann S.H., et al. Characterization of an alternative BAK-binding site for BH3 peptides. Nat. Commun. 2020;11:3301. doi: 10.1038/s41467-020-17074-y. PubMed DOI PMC

Dengler M.A., Robin A.Y., Gibson L., Li M.X., Sandow J.J., Iyer S., Webb A.I., Westphal D., Dewson G., Adams J.M. BAX activation: Mutations near its proposed non-canonical BH3 binding site reveal allosteric changes controlling mitochondrial association. Cell Rep. 2019;27:359–373.e6. doi: 10.1016/j.celrep.2019.03.040. PubMed DOI

Kale J., Osterlund E.J., Andrews D.W. BCL-2 family proteins: Changing partners in the dance towards death. Cell Death Differ. 2018;25:65–80. doi: 10.1038/cdd.2017.186. PubMed DOI PMC

Ichim G., Lopez J., Ahmed S.U., Muthalagu N., Giampazolias E., Delgado M.E., Haller M., Riley J.S., Mason S.M., Athineos D., et al. Limited mitochondrial permeabilization causes DNA damage and genomic instability in the absence of cell death. Mol. Cell. 2015;57:860–872. doi: 10.1016/j.molcel.2015.01.018. PubMed DOI PMC

Fukuhara S., Rowley J.D., Variakojis D., Golomb H.M. Chromosome abnormalities in poorly differentiated lymphocytic lymphoma. Cancer Res. 1979;39:3119–3128. PubMed

Tsujimoto Y., Finger L.R., Yunis J., Nowell P.C., Croce C.M. Cloning of the chromosome breakpoint of neoplastic B cells with the t(14;18) chromosome translocation. Science. 1984;226:1097–1099. doi: 10.1126/science.6093263. PubMed DOI

Tsujimoto Y., Croce C.M. Analysis of the structure, transcripts, and protein products of bcl-2, the gene involved in human follicular lymphoma. Proc. Natl. Acad. Sci. USA. 1986;83:5214–5218. doi: 10.1073/pnas.83.14.5214. PubMed DOI PMC

Hockenbery D., Nuñez G., Milliman C., Schreiber R.D., Korsmeyer S.J. Bcl-2 is an inner mitochondrial membrane protein that blocks programmed cell death. Nature. 1990;348:334–336. doi: 10.1038/348334a0. PubMed DOI

Strasser A., Harris A.W., Bath M.L., Cory S. Novel primitive lymphoid tumours induced in transgenic mice by cooperation between myc and bcl-2. Nature. 1990;348:331–333. doi: 10.1038/348331a0. PubMed DOI

Vaux D.L., Cory S., Adams J.M. Bcl-2 gene promotes haemopoietic cell survival and cooperates with c-myc to immortalize pre-B cells. Nature. 1988;335:440–442. doi: 10.1038/335440a0. PubMed DOI

McDonnell T.J., Deane N., Platt F.M., Nunez G., Jaeger U., McKearn J.P., Korsmeyer S.J. bcl-2-immunoglobulin transgenic mice demonstrate extended B cell survival and follicular lymphoproliferation. Cell. 1989;57:79–88. doi: 10.1016/0092-8674(89)90174-8. PubMed DOI

Zheng J.H., Viacava Follis A., Kriwacki R.W., Moldoveanu T. Discoveries and controversies in BCL-2 protein-mediated apoptosis. FEBS J. 2016;283:2690–2700. doi: 10.1111/febs.13527. PubMed DOI

Krajewski S., Tanaka S., Takayama S., Schibler M.J., Fenton W., Reed J.C. Investigation of the subcellular distribution of the bcl-2 oncoprotein: Residence in the nuclear envelope, endoplasmic reticulum, and outer mitochondrial membranes. Cancer Res. 1993;53:4701–4714. PubMed

Veis D.J., Sorenson C.M., Shutter J.R., Korsmeyer S.J. Bcl-2-deficient mice demonstrate fulminant lymphoid apoptosis, polycystic kidneys, and hypopigmented hair. Cell. 1993;75:229–240. doi: 10.1016/0092-8674(93)80065-M. PubMed DOI

Nakayama K., Nakayama K., Negishi I., Kuida K., Shinkai Y., Louie M.C., Fields L.E., Lucas P.J., Stewart V., Alt F.W., et al. Disappearance of the lymphoid system in Bcl-2 homozygous mutant chimeric mice. Science. 1993;261:1584–1588. doi: 10.1126/science.8372353. PubMed DOI

Bouillet P., Cory S., Zhang L.C., Strasser A., Adams J.M. Degenerative disorders caused by Bcl-2 deficiency prevented by loss of its BH3-only antagonist Bim. Dev. Cell. 2001;1:645–653. doi: 10.1016/S1534-5807(01)00083-1. PubMed DOI

Gross A., Katz S.G. Non-apoptotic functions of BCL-2 family proteins. Cell Death Differ. 2017;24:1348–1358. doi: 10.1038/cdd.2017.22. PubMed DOI PMC

Morris J.L., Gillet G., Prudent J., Popgeorgiev N. Bcl-2 family of proteins in the control of mitochondrial calcium signalling: An old chap with new roles. Int. J. Mol. Sci. 2021;22:3730. doi: 10.3390/ijms22073730. PubMed DOI PMC

Lewis A., Hayashi T., Su T.P., Betenbaugh M.J. Bcl-2 family in inter-organelle modulation of calcium signaling; Roles in bioenergetics and cell survival. J. Bioenerg. Biomembr. 2014;46:1–15. doi: 10.1007/s10863-013-9527-7. PubMed DOI PMC

Vervliet T., Clerix E., Seitaj B., Ivanova H., Monaco G., Bultynck G. Modulation of Ca2+ signaling by anti-apoptotic B-cell lymphoma 2 proteins at the endoplasmic reticulum-mitochondrial interface. Front. Oncol. 2017;7:75. doi: 10.3389/fonc.2017.00075. PubMed DOI PMC

Janumyan Y.M., Sansam C.G., Chattopadhyay A., Cheng N., Soucie E.L., Penn L.Z., Andrews D., Knudson C.M., Yang E. Bcl-xL/Bcl-2 coordinately regulates apoptosis, cell cycle arrest and cell cycle entry. EMBO J. 2003;22:5459–5470. doi: 10.1093/emboj/cdg533. PubMed DOI PMC

O’Reilly L.A., Huang D.C., Strasser A. The cell death inhibitor Bcl-2 and its homologues influence control of cell cycle entry. EMBO J. 1996;15:6979–6990. doi: 10.1002/j.1460-2075.1996.tb01090.x. PubMed DOI PMC

Chen Z.X., Pervaiz S. Involvement of cytochrome c oxidase subunits Va and Vb in the regulation of cancer cell metabolism by Bcl-2. Cell Death Differ. 2010;17:408–420. doi: 10.1038/cdd.2009.132. PubMed DOI

Manfredi G., Kwong J.Q., Oca-Cossio J.A., Woischnik M., Gajewski C.D., Martushova K., D’Aurelio M., Friedlich A.L., Moraes C.T. BCL-2 improves oxidative phosphorylation and modulates adenine nucleotide translocation in mitochondria of cells harboring mutant mtDNA. J. Biol. Chem. 2003;278:5639–5645. doi: 10.1074/jbc.M203080200. PubMed DOI

Schuetz J.M., Johnson N.A., Morin R.D., Scott D.W., Tan K., Ben-Nierah S., Boyle M., Slack G.W., Marra M.A., Connors J.M., et al. BCL2 mutations in diffuse large B-cell lymphoma. Leukemia. 2012;26:1383–1390. doi: 10.1038/leu.2011.378. PubMed DOI

Iqbal J., Sanger W.G., Horsman D.E., Rosenwald A., Pickering D.L., Dave B., Dave S., Xiao L., Cao K., Zhu Q., et al. BCL2 translocation defines a unique tumor subset within the germinal center B-cell-like diffuse large B-cell lymphoma. Am. J. Pathol. 2004;165:159–166. doi: 10.1016/S0002-9440(10)63284-1. PubMed DOI PMC

Saito M., Novak U., Piovan E., Basso K., Sumazin P., Schneider C., Crespo M., Shen Q., Bhagat G., Califano A., et al. BCL6 suppression of BCL2 via Miz1 and its disruption in diffuse large B cell lymphoma. Proc. Natl. Acad. Sci. USA. 2009;106:11294–11299. doi: 10.1073/pnas.0903854106. PubMed DOI PMC

Dierlamm J., Murga Penas E.M., Bentink S., Wessendorf S., Berger H., Hummel M., Klapper W., Lenze D., Rosenwald A., Haralambieva E., et al. Gain of chromosome region 18q21 including the MALT1 gene is associated with the activated B-cell-like gene expression subtype and increased BCL2 gene dosage and protein expression in diffuse large B-cell lymphoma. Haematologica. 2008;93:688–696. doi: 10.3324/haematol.12057. PubMed DOI

Beltran E., Fresquet V., Martinez-Useros J., Richter-Larrea J.A., Sagardoy A., Sesma I., Almada L.L., Montes-Moreno S., Siebert R., Gesk S., et al. A cyclin-D1 interaction with BAX underlies its oncogenic role and potential as a therapeutic target in mantle cell lymphoma. Proc. Natl. Acad. Sci. USA. 2011;108:12461–12466. doi: 10.1073/pnas.1018941108. PubMed DOI PMC

Malarikova D., Berkova A., Obr A., Blahovcova P., Svaton M., Forsterova K., Kriegova E., Prihodova E., Pavlistova L., Petrackova A., et al. Concurrent TP53 and CDKN2A gene aberrations in newly diagnosed mantle cell lymphoma correlate with chemoresistance and call for innovative upfront therapy. Cancers. 2020;12:2120. doi: 10.3390/cancers12082120. PubMed DOI PMC

Cimmino A., Calin G.A., Fabbri M., Iorio M.V., Ferracin M., Shimizu M., Wojcik S.E., Aqeilan R.I., Zupo S., Dono M., et al. miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc. Natl. Acad. Sci. USA. 2005;102:13944–13949. doi: 10.1073/pnas.0506654102. PubMed DOI PMC

Pekarsky Y., Balatti V., Croce C.M. BCL2 and miR-15/16: From gene discovery to treatment. Cell Death Differ. 2018;25:21–26. doi: 10.1038/cdd.2017.159. PubMed DOI PMC

Touzeau C., Dousset C., Le Gouill S., Sampath D., Leverson J.D., Souers A.J., Maïga S., Béné M.C., Moreau P., Pellat-Deceunynck C., et al. The Bcl-2 specific BH3 mimetic ABT-199: A promising targeted therapy for t(11;14) multiple myeloma. Leukemia. 2014;28:210–212. doi: 10.1038/leu.2013.216. PubMed DOI PMC

Klanova M., Andera L., Brazina J., Svadlenka J., Benesova S., Soukup J., Prukova D., Vejmelkova D., Jaksa R., Helman K., et al. Targeting of BCL2 family proteins with ABT-199 and homoharringtonine reveals BCL2- and MCL1-dependent subgroups of diffuse large B-cell lymphoma. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2015 doi: 10.1158/1078-0432.CCR-15-1191. PubMed DOI

Ewald L., Dittmann J., Vogler M., Fulda S. Side-by-side comparison of BH3-mimetics identifies MCL-1 as a key therapeutic target in AML. Cell Death Dis. 2019;10:917. doi: 10.1038/s41419-019-2156-2. PubMed DOI PMC

Zhou J.D., Zhang T.J., Xu Z.J., Gu Y., Ma J.C., Li X.X., Guo H., Wen X.M., Zhang W., Yang L., et al. BCL2 overexpression: Clinical implication and biological insights in acute myeloid leukemia. Diagn. Pathol. 2019;14:68. doi: 10.1186/s13000-019-0841-1. PubMed DOI PMC

Mehta S.V., Shukla S.N., Vora H.H. Overexpression of Bcl2 protein predicts chemoresistance in acute myeloid leukemia: Its correlation with FLT3. Neoplasma. 2013;60:666–675. doi: 10.4149/neo_2013_085. PubMed DOI

Haes I., Dendooven A., Mercier M.L., Puylaert P., Vermeulen K., Kockx M., Deiteren K., Maes M.B., Berneman Z., Anguille S. Absence of BCL-2 expression identifies a subgroup of AML with distinct phenotypic, molecular, and clinical characteristics. J. Clin. Med. 2020;9:3090. doi: 10.3390/jcm9103090. PubMed DOI PMC

Tsuyama N., Sakata S., Baba S., Mishima Y., Nishimura N., Ueda K., Yokoyama M., Terui Y., Hatake K., Kitagawa M., et al. BCL2 expression in DLBCL: Reappraisal of immunohistochemistry with new criteria for therapeutic biomarker evaluation. Blood. 2017;130:489–500. doi: 10.1182/blood-2016-12-759621. PubMed DOI

Döhner H., Stilgenbauer S., Benner A., Leupolt E., Kröber A., Bullinger L., Döhner K., Bentz M., Lichter P. Genomic aberrations and survival in chronic lymphocytic leukemia. N. Engl. J. Med. 2000;343:1910–1916. doi: 10.1056/NEJM200012283432602. PubMed DOI

Campos L., Rouault J.P., Sabido O., Oriol P., Roubi N., Vasselon C., Archimbaud E., Magaud J.P., Guyotat D. High expression of bcl-2 protein in acute myeloid leukemia cells is associated with poor response to chemotherapy. Blood. 1993;81:3091–3096. doi: 10.1182/blood.V81.11.3091.3091. PubMed DOI

Iqbal J., Neppalli V.T., Wright G., Dave B.J., Horsman D.E., Rosenwald A., Lynch J., Hans C.P., Weisenburger D.D., Greiner T.C., et al. BCL2 expression is a prognostic marker for the activated B-cell-like type of diffuse large B-cell lymphoma. J. Clin. Oncol. 2006;24:961–968. doi: 10.1200/JCO.2005.03.4264. PubMed DOI

Iqbal J., Meyer P.N., Smith L.M., Johnson N.A., Vose J.M., Greiner T.C., Connors J.M., Staudt L.M., Rimsza L., Jaffe E., et al. BCL2 predicts survival in germinal center B-cell-like diffuse large B-cell lymphoma treated with CHOP-like therapy and rituximab. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2011;17:7785–7795. doi: 10.1158/1078-0432.CCR-11-0267. PubMed DOI PMC

Walker A.R., Marcucci G., Yin J., Blum W., Stock W., Kohlschmidt J., Mrózek K., Carroll A.J., Eisfeld A.K., Wang E.S., et al. Phase 3 randomized trial of chemotherapy with or without oblimersen in older AML patients: CALGB 10201 (Alliance) Blood Adv. 2021;5:2775–2787. doi: 10.1182/bloodadvances.2021004233. PubMed DOI PMC

Chanan-Khan A.A., Niesvizky R., Hohl R.J., Zimmerman T.M., Christiansen N.P., Schiller G.J., Callander N., Lister J., Oken M., Jagannath S. Phase III randomised study of dexamethasone with or without oblimersen sodium for patients with advanced multiple myeloma. Leuk. Lymphoma. 2009;50:559–565. doi: 10.1080/10428190902748971. PubMed DOI

O’Brien S.M., Claxton D.F., Crump M., Faderl S., Kipps T., Keating M.J., Viallet J., Cheson B.D. Phase I study of obatoclax mesylate (GX15-070), a small molecule pan-Bcl-2 family antagonist, in patients with advanced chronic lymphocytic leukemia. Blood. 2009;113:299–305. doi: 10.1182/blood-2008-02-137943. PubMed DOI PMC

Merino D., Kelly G.L., Lessene G., Wei A.H., Roberts A.W., Strasser A. BH3-mimetic drugs: Blazing the trail for new cancer medicines. Cancer Cell. 2018;34:879–891. doi: 10.1016/j.ccell.2018.11.004. PubMed DOI

Roberts A.W., Seymour J.F., Brown J.R., Wierda W.G., Kipps T.J., Khaw S.L., Carney D.A., He S.Z., Huang D.C., Xiong H., et al. Substantial susceptibility of chronic lymphocytic leukemia to BCL2 inhibition: Results of a phase I study of navitoclax in patients with relapsed or refractory disease. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2012;30:488–496. doi: 10.1200/JCO.2011.34.7898. PubMed DOI PMC

Wilson W.H., O’Connor O.A., Czuczman M.S., LaCasce A.S., Gerecitano J.F., Leonard J.P., Tulpule A., Dunleavy K., Xiong H., Chiu Y.L., et al. Navitoclax, a targeted high-affinity inhibitor of BCL-2, in lymphoid malignancies: A phase 1 dose-escalation study of safety, pharmacokinetics, pharmacodynamics, and antitumour activity. Lancet Oncol. 2010;11:1149–1159. doi: 10.1016/S1470-2045(10)70261-8. PubMed DOI PMC

Tse C., Shoemaker A.R., Adickes J., Anderson M.G., Chen J., Jin S., Johnson E.F., Marsh K.C., Mitten M.J., Nimmer P., et al. ABT-263: A potent and orally bioavailable Bcl-2 family inhibitor. Cancer Res. 2008;68:3421–3428. doi: 10.1158/0008-5472.CAN-07-5836. PubMed DOI

Oltersdorf T., Elmore S.W., Shoemaker A.R., Armstrong R.C., Augeri D.J., Belli B.A., Bruncko M., Deckwerth T.L., Dinges J., Hajduk P.J., et al. An inhibitor of Bcl-2 family proteins induces regression of solid tumours. Nature. 2005;435:677–681. doi: 10.1038/nature03579. PubMed DOI

Kotschy A., Szlavik Z., Murray J., Davidson J., Maragno A.L., Le Toumelin-Braizat G., Chanrion M., Kelly G.L., Gong J.N., Moujalled D.M., et al. The MCL1 inhibitor S63845 is tolerable and effective in diverse cancer models. Nature. 2016;538:477–482. doi: 10.1038/nature19830. PubMed DOI

Souers A.J., Leverson J.D., Boghaert E.R., Ackler S.L., Catron N.D., Chen J., Dayton B.D., Ding H., Enschede S.H., Fairbrother W.J., et al. ABT-199, a potent and selective BCL-2 inhibitor, achieves antitumor activity while sparing platelets. Nat. Med. 2013;19:202–208. doi: 10.1038/nm.3048. PubMed DOI

Lessene G., Czabotar P.E., Sleebs B.E., Zobel K., Lowes K.N., Adams J.M., Baell J.B., Colman P.M., Deshayes K., Fairbrother W.J., et al. Structure-guided design of a selective BCL-X(L) inhibitor. Nat. Chem. Biol. 2013;9:390–397. doi: 10.1038/nchembio.1246. PubMed DOI

Leverson J.D., Phillips D.C., Mitten M.J., Boghaert E.R., Diaz D., Tahir S.K., Belmont L.D., Nimmer P., Xiao Y., Ma X.M., et al. Exploiting selective BCL-2 family inhibitors to dissect cell survival dependencies and define improved strategies for cancer therapy. Sci. Transl. Med. 2015;7:279ra240. doi: 10.1126/scitranslmed.aaa4642. PubMed DOI

Tao Z.F., Hasvold L., Wang L., Wang X., Petros A.M., Park C.H., Boghaert E.R., Catron N.D., Chen J., Colman P.M., et al. Discovery of a potent and selective BCL-XL inhibitor with in vivo activity. ACS Med. Chem. Lett. 2014;5:1088–1093. doi: 10.1021/ml5001867. PubMed DOI PMC

Ashkenazi A., Fairbrother W.J., Leverson J.D., Souers A.J. From basic apoptosis discoveries to advanced selective BCL-2 family inhibitors. Nat. Rev. Drug Discov. 2017;16:273–284. doi: 10.1038/nrd.2016.253. PubMed DOI

Krishna S., Kumar S.B., Murthy T.P.K., Murahari M. Structure-based design approach of potential BCL-2 inhibitors for cancer chemotherapy. Comput. Biol. Med. 2021;134:104455. doi: 10.1016/j.compbiomed.2021.104455. PubMed DOI

Roberts A.W., Davids M.S., Pagel J.M., Kahl B.S., Puvvada S.D., Gerecitano J.F., Kipps T.J., Anderson M.A., Brown J.R., Gressick L., et al. Targeting BCL2 with venetoclax in relapsed chronic lymphocytic leukemia. N. Engl. J. Med. 2016;374:311–322. doi: 10.1056/NEJMoa1513257. PubMed DOI PMC

Jones J.A., Mato A.R., Wierda W.G., Davids M.S., Choi M., Cheson B.D., Furman R.R., Lamanna N., Barr P.M., Zhou L., et al. Venetoclax for chronic lymphocytic leukaemia progressing after ibrutinib: An interim analysis of a multicentre, open-label, phase 2 trial. Lancet Oncol. 2018;19:65–75. doi: 10.1016/S1470-2045(17)30909-9. PubMed DOI PMC

Stilgenbauer S., Eichhorst B., Schetelig J., Coutre S., Seymour J.F., Munir T., Puvvada S.D., Wendtner C.M., Roberts A.W., Jurczak W., et al. Venetoclax in relapsed or refractory chronic lymphocytic leukaemia with 17p deletion: A multicentre, open-label, phase 2 study. Lancet Oncol. 2016;17:768–778. doi: 10.1016/S1470-2045(16)30019-5. PubMed DOI

Fischer K., Al-Sawaf O., Bahlo J., Fink A.M., Tandon M., Dixon M., Robrecht S., Warburton S., Humphrey K., Samoylova O., et al. Venetoclax and obinutuzumab in patients with CLL and coexisting conditions. N. Engl. J. Med. 2019;380:2225–2236. doi: 10.1056/NEJMoa1815281. PubMed DOI

Al-Sawaf O., Zhang C., Tandon M., Sinha A., Fink A.M., Robrecht S., Samoylova O., Liberati A.M., Pinilla-Ibarz J., Opat S., et al. Venetoclax plus obinutuzumab versus chlorambucil plus obinutuzumab for previously untreated chronic lymphocytic leukaemia (CLL14): Follow-up results from a multicentre, open-label, randomised, phase 3 trial. Lancet Oncol. 2020;21:1188–1200. doi: 10.1016/S1470-2045(20)30443-5. PubMed DOI

Davids M.S., Roberts A.W., Seymour J.F., Pagel J.M., Kahl B.S., Wierda W.G., Puvvada S., Kipps T.J., Anderson M.A., Salem A.H., et al. Phase I first-in-human study of venetoclax in patients with relapsed or refractory non-hodgkin lymphoma. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2017;35:826–833. doi: 10.1200/JCO.2016.70.4320. PubMed DOI PMC

Premkumar V.J., Lentzsch S., Pan S., Bhutani D., Richter J., Jagannath S., Liedtke M., Jaccard A., Wechalekar A.D., Comenzo R., et al. Venetoclax induces deep hematologic remissions in t(11;14) relapsed/refractory AL amyloidosis. Blood Cancer J. 2021;11:10. doi: 10.1038/s41408-020-00397-w. PubMed DOI PMC

Kitadate A., Terao T., Narita K., Ikeda S., Takahashi Y., Tsushima T., Miura D., Takeuchi M., Takahashi N., Matsue K. Multiple myeloma with t(11;14)-associated immature phenotype has lower CD38 expression and higher BCL2 dependence. Cancer Sci. 2021 doi: 10.1111/cas.15073. PubMed DOI PMC

Morschhauser F., Feugier P., Flinn I.W., Gasiorowski R., Greil R., Illés Á., Johnson N.A., Larouche J.F., Lugtenburg P.J., Patti C., et al. A phase 2 study of venetoclax plus R-CHOP as first-line treatment for patients with diffuse large B-cell lymphoma. Blood. 2021;137:600–609. doi: 10.1182/blood.2020006578. PubMed DOI PMC

Zelenetz A.D., Salles G., Mason K.D., Casulo C., Le Gouill S., Sehn L.H., Tilly H., Cartron G., Chamuleau M.E.D., Goy A., et al. Venetoclax plus R- or G-CHOP in non-Hodgkin lymphoma: Results from the CAVALLI phase 1b trial. Blood. 2019;133:1964–1976. doi: 10.1182/blood-2018-11-880526. PubMed DOI PMC

Al-Sawaf O., Lilienweiss E., Bahlo J., Robrecht S., Fink A.M., Patz M., Tandon M., Jiang Y., Schary W., Ritgen M., et al. High efficacy of venetoclax plus obinutuzumab in patients with complex karyotype and chronic lymphocytic leukemia. Blood. 2020;135:866–870. doi: 10.1182/blood.2019003451. PubMed DOI

Cramer P., Tausch E., von Tresckow J., Giza A., Robrecht S., Schneider C., Fürstenau M., Langerbeins P., Al-Sawaf O., Pelzer B.W., et al. Durable remissions following combined targeted therapy in patients with CLL harboring TP53 deletions and/or mutations. Blood. 2021 doi: 10.1182/blood.2020010484. PubMed DOI PMC

Vazquez R., Breal C., Zalmai L., Friedrich C., Almire C., Contejean A., Barreau S., Grignano E., Willems L., Deau-Fischer B., et al. Venetoclax combination therapy induces deep AML remission with eradication of leukemic stem cells and remodeling of clonal haematopoiesis. Blood Cancer J. 2021;11:62. doi: 10.1038/s41408-021-00448-w. PubMed DOI PMC

Lew T.E., Anderson M.A., Lin V.S., Handunnetti S.M., Came N.A., Blombery P., Westerman D.A., Wall M., Tam C.S., Roberts A.W., et al. Undetectable peripheral blood MRD should be the goal of venetoclax in CLL, but attainment plateaus after 24 months. Blood Adv. 2020;4:165–173. doi: 10.1182/bloodadvances.2019000864. PubMed DOI PMC

Koehler A.B., Leung N., Call T.G., Rabe K.G., Achenbach S.J., Ding W., Kenderian S.S., Leis J.F., Wang Y., Muchtar E., et al. Incidence and risk of tumor lysis syndrome in patients with relapsed chronic lymphocytic leukemia (CLL) treated with venetoclax in routine clinical practice. Leuk. Lymphoma. 2020;61:2383–2388. doi: 10.1080/10428194.2020.1768384. PubMed DOI

Gribben J.G. Practical management of tumour lysis syndrome in venetoclax-treated patients with chronic lymphocytic leukaemia. Br. J. Haematol. 2020;188:844–851. doi: 10.1111/bjh.16345. PubMed DOI PMC

Esparza S., Muluneh B., Galeotti J., Matson M., Richardson D.R., Montgomery N.D., Coombs C.C., Jamieson K., Foster M.C., Zeidner J.F. Venetoclax-induced tumour lysis syndrome in acute myeloid leukaemia. Br. J. Haematol. 2020;188:173–177. doi: 10.1111/bjh.16235. PubMed DOI PMC

Thijssen R., Diepstraten S.T., Moujalled D., Chew E., Flensburg C., Shi M.X., Dengler M.A., Litalien V., MacRaild S., Chen M., et al. Intact TP-53 function is essential for sustaining durable responses to BH3-mimetic drugs in leukemias. Blood. 2021;137:2721–2735. doi: 10.1182/blood.2020010167. PubMed DOI PMC

Tausch E., Schneider C., Robrecht S., Zhang C., Dolnik A., Bloehdorn J., Bahlo J., Al-Sawaf O., Ritgen M., Fink A.M., et al. Prognostic and predictive impact of genetic markers in patients with CLL treated with obinutuzumab and venetoclax. Blood. 2020;135:2402–2412. doi: 10.1182/blood.2019004492. PubMed DOI

Kim K., Maiti A., Loghavi S., Pourebrahim R., Kadia T.M., Rausch C.R., Furudate K., Daver N.G., Alvarado Y., Ohanian M., et al. Outcomes of TP53-mutant acute myeloid leukemia with decitabine and venetoclax. Cancer. 2021 doi: 10.1002/cncr.33689. PubMed DOI PMC

Lagadinou E.D., Sach A., Callahan K., Rossi R.M., Neering S.J., Minhajuddin M., Ashton J.M., Pei S., Grose V., O’Dwyer K.M., et al. BCL-2 inhibition targets oxidative phosphorylation and selectively eradicates quiescent human leukemia stem cells. Cell Stem Cell. 2013;12:329–341. doi: 10.1016/j.stem.2012.12.013. PubMed DOI PMC

Liu F., Kalpage H.A., Wang D., Edwards H., Hüttemann M., Ma J., Su Y., Carter J., Li X., Polin L., et al. Cotargeting of mitochondrial complex I and Bcl-2 shows antileukemic activity against acute myeloid leukemia cells reliant on oxidative phosphorylation. Cancers. 2020;12:2400. doi: 10.3390/cancers12092400. PubMed DOI PMC

Roca-Portoles A., Rodriguez-Blanco G., Sumpton D., Cloix C., Mullin M., Mackay G.M., O’Neill K., Lemgruber L., Luo X., Tait S.W.G. Venetoclax causes metabolic reprogramming independent of BCL-2 inhibition. Cell Death Dis. 2020;11:616. doi: 10.1038/s41419-020-02867-2. PubMed DOI PMC

Lee J.B., Khan D.H., Hurren R., Xu M., Na Y., Kang H., Mirali S., Wang X., Gronda M., Jitkova Y., et al. Venetoclax enhances T cell-mediated antileukemic activity by increasing ROS production. Blood. 2021;138:234–245. doi: 10.1182/blood.2020009081. PubMed DOI PMC

Blombery P., Thompson E.R., Nguyen T., Birkinshaw R.W., Gong J.N., Chen X., McBean M., Thijssen R., Conway T., Anderson M.A., et al. Multiple BCL2 mutations cooccurring with Gly101Val emerge in chronic lymphocytic leukemia progression on venetoclax. Blood. 2020;135:773–777. doi: 10.1182/blood.2019004205. PubMed DOI PMC

Bhatt S., Pioso M.S., Olesinski E.A., Yilma B., Ryan J.A., Mashaka T., Leutz B., Adamia S., Zhu H., Kuang Y., et al. Reduced mitochondrial apoptotic priming drives resistance to BH3 mimetics in acute myeloid leukemia. Cancer Cell. 2020;38:872–890.e6. doi: 10.1016/j.ccell.2020.10.010. PubMed DOI PMC

Haselager M., Thijssen R., West C., Young L., Van Kampen R., Willmore E., Mackay S., Kater A., Eldering E. Regulation of Bcl-XL by non-canonical NF-κB in the context of CD40-induced drug resistance in CLL. Cell Death Differ. 2021 doi: 10.1038/s41418-020-00692-w. PubMed DOI PMC

Hernandez-Luna M.A., Rocha-Zavaleta L., Vega M.I., Huerta-Yepez S. Hypoxia inducible factor-1α induces chemoresistance phenotype in non-Hodgkin lymphoma cell line via up-regulation of Bcl-xL. Leuk. Lymphoma. 2013;54:1048–1055. doi: 10.3109/10428194.2012.733874. PubMed DOI

Chen N., Chen X., Huang R., Zeng H., Gong J., Meng W., Lu Y., Zhao F., Wang L., Zhou Q. BCL-xL is a target gene regulated by hypoxia-inducible factor-1{alpha} J. Biol. Chem. 2009;284:10004–10012. doi: 10.1074/jbc.M805997200. PubMed DOI PMC

Haselager M.V., Kielbassa K., Ter Burg J., Bax D.J.C., Fernandes S.M., Borst J., Tam C., Forconi F., Chiodin G., Brown J.R., et al. Changes in Bcl-2 members after ibrutinib or venetoclax uncover functional hierarchy in determining resistance to venetoclax in CLL. Blood. 2020;136:2918–2926. doi: 10.1182/blood.2019004326. PubMed DOI

Lucas F., Larkin K., Gregory C.T., Orwick S., Doong T.J., Lozanski A., Lozanski G., Misra S., Ngankeu A., Ozer H.G., et al. Novel BCL2 mutations in venetoclax-resistant, ibrutinib-resistant CLL patients with BTK/PLCG2 mutations. Blood. 2020;135:2192–2195. doi: 10.1182/blood.2019003722. PubMed DOI PMC

Blombery P., Anderson M.A., Gong J.N., Thijssen R., Birkinshaw R.W., Thompson E.R., Teh C.E., Nguyen T., Xu Z., Flensburg C., et al. Acquisition of the recurrent Gly101Val mutation in BCL2 confers resistance to venetoclax in patients with progressive chronic lymphocytic leukemia. Cancer Discov. 2019;9:342–353. doi: 10.1158/2159-8290.CD-18-1119. PubMed DOI

Birkinshaw R.W., Gong J.N., Luo C.S., Lio D., White C.A., Anderson M.A., Blombery P., Lessene G., Majewski I.J., Thijssen R., et al. Structures of BCL-2 in complex with venetoclax reveal the molecular basis of resistance mutations. Nat. Commun. 2019;10:2385. doi: 10.1038/s41467-019-10363-1. PubMed DOI PMC

Zhang X., Qian J., Wang H., Wang Y., Zhang Y., Qian P., Lou Y., Jin J., Zhu H. Not BCL2 mutation but dominant mutation conversation contributed to acquired venetoclax resistance in acute myeloid leukemia. Biomark. Res. 2021;9:30. doi: 10.1186/s40364-021-00288-7. PubMed DOI PMC

Zhang H., Nakauchi Y., Köhnke T., Stafford M., Bottomly D., Thomas R., Wilmot B., McWeeney S.K., Majeti R., Tyner J.W. Integrated analysis of patient samples identifies biomarkers for venetoclax efficacy and combination strategies in acute myeloid leukemia. Nat. Cancer. 2020;1:826–839. doi: 10.1038/s43018-020-0103-x. PubMed DOI PMC

Nechiporuk T., Kurtz S.E., Nikolova O., Liu T., Jones C.L., D’Alessandro A., Culp-Hill R., d’Almeida A., Joshi S.K., Rosenberg M., et al. The TP53 apoptotic network is a primary mediator of resistance to BCL2 inhibition in AML cells. Cancer Discov. 2019;9:910–925. doi: 10.1158/2159-8290.CD-19-0125. PubMed DOI PMC

Chen X., Glytsou C., Zhou H., Narang S., Reyna D.E., Lopez A., Sakellaropoulos T., Gong Y., Kloetgen A., Yap Y.S., et al. Targeting mitochondrial structure sensitizes acute myeloid leukemia to venetoclax treatment. Cancer Discov. 2019;9:890–909. doi: 10.1158/2159-8290.CD-19-0117. PubMed DOI PMC

Shi X., Jiang Y., Kitano A., Hu T., Murdaugh R.L., Li Y., Hoegenauer K.A., Chen R., Takahashi K., Nakada D. Nuclear NAD+ homeostasis governed by NMNAT1 prevents apoptosis of acute myeloid leukemia stem cells. Sci. Adv. 2021;7 doi: 10.1126/sciadv.abf3895. PubMed DOI PMC

Stevens B.M., Jones C.L., Pollyea D.A., Culp-Hill R., D’Alessandro A., Winters A., Krug A., Abbott D., Goosman M., Pei S., et al. Fatty acid metabolism underlies venetoclax resistance in acute myeloid leukemia stem cells. Nat. Cancer. 2020;1:1176–1187. doi: 10.1038/s43018-020-00126-z. PubMed DOI PMC

Zhao S., Kanagal-Shamanna R., Navsaria L., Ok C.Y., Zhang S., Nomie K., Han G., Hao D., Hill H.A., Jiang C., et al. Efficacy of venetoclax in high risk relapsed mantle cell lymphoma (MCL)—Outcomes and mutation profile from venetoclax resistant MCL patients. Am. J. Hematol. 2020;95:623–629. doi: 10.1002/ajh.25796. PubMed DOI

Jin S., Cojocari D., Purkal J.J., Popovic R., Talaty N.N., Xiao Y., Solomon L.R., Boghaert E.R., Leverson J.D., Phillips D.C. 5-Azacitidine induces NOXA to prime AML cells for venetoclax-mediated apoptosis. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2020;26:3371–3383. doi: 10.1158/1078-0432.CCR-19-1900. PubMed DOI

Nguyen L.X.T., Troadec E., Kalvala A., Kumar B., Hoang D.H., Viola D., Zhang B., Nguyen D.Q., Aldoss I., Ghoda L., et al. The Bcl-2 inhibitor venetoclax inhibits Nrf2 antioxidant pathway activation induced by hypomethylating agents in AML. J. Cell. Physiol. 2019;234:14040–14049. doi: 10.1002/jcp.28091. PubMed DOI PMC

Pollyea D.A., Stevens B.M., Jones C.L., Winters A., Pei S., Minhajuddin M., D’Alessandro A., Culp-Hill R., Riemondy K.A., Gillen A.E., et al. Venetoclax with azacitidine disrupts energy metabolism and targets leukemia stem cells in patients with acute myeloid leukemia. Nat. Med. 2018;24:1859–1866. doi: 10.1038/s41591-018-0233-1. PubMed DOI PMC

Moujalled D.M., Pomilio G., Ghiurau C., Ivey A., Salmon J., Rijal S., Macraild S., Zhang L., Teh T.C., Tiong I.S., et al. Combining BH3-mimetics to target both BCL-2 and MCL1 has potent activity in pre-clinical models of acute myeloid leukemia. Leukemia. 2019;33:905–917. doi: 10.1038/s41375-018-0261-3. PubMed DOI PMC

Jain N., Gandhi V., Wierda W. Ibrutinib and venetoclax for first-line treatment of CLL. reply. N. Engl. J. Med. 2019;381:789. doi: 10.1056/NEJMc1908754. PubMed DOI

Hillmen P., Rawstron A.C., Brock K., Muñoz-Vicente S., Yates F.J., Bishop R., Boucher R., MacDonald D., Fegan C., McCaig A., et al. Ibrutinib plus venetoclax in relapsed/refractory chronic lymphocytic leukemia: The CLARITY study. J. Clin. Oncol. Off. J. Am. Soc. Clin. Oncol. 2019;37:2722–2729. doi: 10.1200/JCO.19.00894. PubMed DOI PMC

Lu P., Wang S., Franzen C.A., Venkataraman G., McClure R., Li L., Wu W., Niu N., Sukhanova M., Pei J., et al. Ibrutinib and venetoclax target distinct subpopulations of CLL cells: Implication for residual disease eradication. Blood Cancer J. 2021;11:39. doi: 10.1038/s41408-021-00429-z. PubMed DOI PMC

Luo Q., Pan W., Zhou S., Wang G., Yi H., Zhang L., Yan X., Yuan L., Liu Z., Wang J., et al. A novel BCL-2 inhibitor APG-2575 exerts synthetic lethality with BTK or MDM2-p53 inhibitor in diffuse large B-cell lymphoma. Oncol. Res. 2020;28:331–344. doi: 10.3727/096504020X15825405463920. PubMed DOI PMC

Kozopas K.M., Yang T., Buchan H.L., Zhou P., Craig R.W. MCL1, a gene expressed in programmed myeloid cell differentiation, has sequence similarity to BCL2. Proc. Natl. Acad. Sci. USA. 1993;90:3516–3520. doi: 10.1073/pnas.90.8.3516. PubMed DOI PMC

Leuenroth S.J., Grutkoski P.S., Ayala A., Simms H.H. The loss of Mcl-1 expression in human polymorphonuclear leukocytes promotes apoptosis. J. Leukoc. Biol. 2000;68:158–166. PubMed

Yang T., Kozopas K.M., Craig R.W. The intracellular distribution and pattern of expression of Mcl-1 overlap with, but are not identical to, those of Bcl-2. J. Cell Biol. 1995;128:1173–1184. doi: 10.1083/jcb.128.6.1173. PubMed DOI PMC

Day C.L., Chen L., Richardson S.J., Harrison P.J., Huang D.C., Hinds M.G. Solution structure of prosurvival Mcl-1 and characterization of its binding by proapoptotic BH3-only ligands. J. Biol. Chem. 2005;280:4738–4744. doi: 10.1074/jbc.M411434200. PubMed DOI

Senichkin V.V., Streletskaia A.Y., Gorbunova A.S., Zhivotovsky B., Kopeina G.S. Saga of Mcl-1: Regulation from transcription to degradation. Cell Death Differ. 2020;27:405–419. doi: 10.1038/s41418-019-0486-3. PubMed DOI PMC

Thomas L.W., Lam C., Edwards S.W. Mcl-1; the molecular regulation of protein function. FEBS Lett. 2010;584:2981–2989. doi: 10.1016/j.febslet.2010.05.061. PubMed DOI

Gomez-Bougie P., Menoret E., Juin P., Dousset C., Pellat-Deceunynck C., Amiot M. Noxa controls Mule-dependent Mcl-1 ubiquitination through the regulation of the Mcl-1/USP9X interaction. Biochem. Biophys. Res. Commun. 2011;413:460–464. doi: 10.1016/j.bbrc.2011.08.118. PubMed DOI

Wu X., Luo Q., Liu Z. Ubiquitination and deubiquitination of MCL1 in cancer: Deciphering chemoresistance mechanisms and providing potential therapeutic options. Cell Death Dis. 2020;11:556. doi: 10.1038/s41419-020-02760-y. PubMed DOI PMC

Zhong Q., Gao W., Du F., Wang X. Mule/ARF-BP1, a BH3-only E3 ubiquitin ligase, catalyzes the polyubiquitination of Mcl-1 and regulates apoptosis. Cell. 2005;121:1085–1095. doi: 10.1016/j.cell.2005.06.009. PubMed DOI

Xiang W., Yang C.Y., Bai L. MCL-1 inhibition in cancer treatment. OncoTargets Ther. 2018;11:7301–7314. doi: 10.2147/OTT.S146228. PubMed DOI PMC

Rinkenberger J.L., Horning S., Klocke B., Roth K., Korsmeyer S.J. Mcl-1 deficiency results in peri-implantation embryonic lethality. Genes Dev. 2000;14:23–27. PubMed PMC

Chin H.S., Fu N.Y. Physiological functions of Mcl-1: Insights from genetic mouse models. Front. Cell Dev. Biol. 2021;9:704547. doi: 10.3389/fcell.2021.704547. PubMed DOI PMC

Koss B., Morrison J., Perciavalle R.M., Singh H., Rehg J.E., Williams R.T., Opferman J.T. Requirement for antiapoptotic MCL-1 in the survival of BCR-ABL B-lineage acute lymphoblastic leukemia. Blood. 2013;122:1587–1598. doi: 10.1182/blood-2012-06-440230. PubMed DOI PMC

Opferman J.T., Letai A., Beard C., Sorcinelli M.D., Ong C.C., Korsmeyer S.J. Development and maintenance of B and T lymphocytes requires antiapoptotic MCL-1. Nature. 2003;426:671–676. doi: 10.1038/nature02067. PubMed DOI

Perciavalle R.M., Stewart D.P., Koss B., Lynch J., Milasta S., Bathina M., Temirov J., Cleland M.M., Pelletier S., Schuetz J.D., et al. Anti-apoptotic MCL-1 localizes to the mitochondrial matrix and couples mitochondrial fusion to respiration. Nat. Cell Biol. 2012;14:575–583. doi: 10.1038/ncb2488. PubMed DOI PMC

Escudero S., Zaganjor E., Lee S., Mill C.P., Morgan A.M., Crawford E.B., Chen J., Wales T.E., Mourtada R., Luccarelli J., et al. Dynamic regulation of long-chain fatty acid oxidation by a noncanonical interaction between the MCL-1 BH3 helix and VLCAD. Mol. Cell. 2018;69:729–743.e7. doi: 10.1016/j.molcel.2018.02.005. PubMed DOI PMC

Wei A.H., Roberts A.W., Spencer A., Rosenberg A.S., Siegel D., Walter R.B., Caenepeel S., Hughes P., McIver Z., Mezzi K., et al. Targeting MCL-1 in hematologic malignancies: Rationale and progress. Blood Rev. 2020;44:100672. doi: 10.1016/j.blre.2020.100672. PubMed DOI PMC

Beroukhim R., Mermel C.H., Porter D., Wei G., Raychaudhuri S., Donovan J., Barretina J., Boehm J.S., Dobson J., Urashima M., et al. The landscape of somatic copy-number alteration across human cancers. Nature. 2010;463:899–905. doi: 10.1038/nature08822. PubMed DOI PMC

Zhou P., Levy N.B., Xie H., Qian L., Lee C.Y., Gascoyne R.D., Craig R.W. MCL1 transgenic mice exhibit a high incidence of B-cell lymphoma manifested as a spectrum of histologic subtypes. Blood. 2001;97:3902–3909. doi: 10.1182/blood.V97.12.3902. PubMed DOI

Grabow S., Delbridge A.R., Aubrey B.J., Vandenberg C.J., Strasser A. Loss of a single Mcl-1 allele inhibits MYC-driven lymphomagenesis by sensitizing pro-B cells to apoptosis. Cell Rep. 2016;14:2337–2347. doi: 10.1016/j.celrep.2016.02.039. PubMed DOI

Wenzel S.S., Grau M., Mavis C., Hailfinger S., Wolf A., Madle H., Deeb G., Dörken B., Thome M., Lenz P., et al. MCL1 is deregulated in subgroups of diffuse large B-cell lymphoma. Leukemia. 2013;27:1381–1390. doi: 10.1038/leu.2012.367. PubMed DOI

Awan F.T., Kay N.E., Davis M.E., Wu W., Geyer S.M., Leung N., Jelinek D.F., Tschumper R.C., Secreto C.R., Lin T.S., et al. Mcl-1 expression predicts progression-free survival in chronic lymphocytic leukemia patients treated with pentostatin, cyclophosphamide, and rituximab. Blood. 2009;113:535–537. doi: 10.1182/blood-2008-08-173450. PubMed DOI PMC

Pepper C., Lin T.T., Pratt G., Hewamana S., Brennan P., Hiller L., Hills R., Ward R., Starczynski J., Austen B., et al. Mcl-1 expression has in vitro and in vivo significance in chronic lymphocytic leukemia and is associated with other poor prognostic markers. Blood. 2008;112:3807–3817. doi: 10.1182/blood-2008-05-157131. PubMed DOI

Kaufmann S.H., Karp J.E., Svingen P.A., Krajewski S., Burke P.J., Gore S.D., Reed J.C. Elevated expression of the apoptotic regulator Mcl-1 at the time of leukemic relapse. Blood. 1998;91:991–1000. doi: 10.1182/blood.V91.3.991.991_991_1000. PubMed DOI

Slomp A., Moesbergen L.M., Gong J.N., Cuenca M., von dem Borne P.A., Sonneveld P., Huang D.C.S., Minnema M.C., Peperzak V. Multiple myeloma with 1q21 amplification is highly sensitive to MCL-1 targeting. Blood Adv. 2019;3:4202–4214. doi: 10.1182/bloodadvances.2019000702. PubMed DOI PMC

Kelly G.L., Grabow S., Glaser S.P., Fitzsimmons L., Aubrey B.J., Okamoto T., Valente L.J., Robati M., Tai L., Fairlie W.D., et al. Targeting of MCL-1 kills MYC-driven mouse and human lymphomas even when they bear mutations in p53. Genes Dev. 2014;28:58–70. doi: 10.1101/gad.232009.113. PubMed DOI PMC

Tron A.E., Belmonte M.A., Adam A., Aquila B.M., Boise L.H., Chiarparin E., Cidado J., Embrey K.J., Gangl E., Gibbons F.D., et al. Discovery of Mcl-1-specific inhibitor AZD5991 and preclinical activity in multiple myeloma and acute myeloid leukemia. Nat. Commun. 2018;9:5341. doi: 10.1038/s41467-018-07551-w. PubMed DOI PMC

Yi X., Sarkar A., Kismali G., Aslan B., Ayres M., Iles L.R., Keating M.J., Wierda W.G., Long J.P., Bertilaccio M.T.S., et al. AMG-176, an Mcl-1 antagonist, shows preclinical efficacy in chronic lymphocytic leukemia. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2020;26:3856–3867. doi: 10.1158/1078-0432.CCR-19-1397. PubMed DOI PMC

Rasmussen M.L., Taneja N., Neininger A.C., Wang L., Robertson G.L., Riffle S.N., Shi L., Knollmann B.C., Burnette D.T., Gama V. MCL-1 inhibition by selective BH3 mimetics disrupts mitochondrial dynamics causing loss of viability and functionality of human cardiomyocytes. iScience. 2020;23:101015. doi: 10.1016/j.isci.2020.101015. PubMed DOI PMC

Phillips D.C., Jin S., Gregory G.P., Zhang Q., Xue J., Zhao X., Chen J., Tong Y., Zhang H., Smith M., et al. A novel CDK9 inhibitor increases the efficacy of venetoclax (ABT-199) in multiple models of hematologic malignancies. Leukemia. 2020;34:1646–1657. doi: 10.1038/s41375-019-0652-0. PubMed DOI PMC

Cidado J., Boiko S., Proia T., Ferguson D., Criscione S.W., San Martin M., Pop-Damkov P., Su N., Roamio Franklin V.N., Sekhar Reddy Chilamakuri C., et al. AZD4573 is a highly selective CDK9 inhibitor that suppresses MCL-1 and induces apoptosis in hematologic cancer cells. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2020;26:922–934. doi: 10.1158/1078-0432.CCR-19-1853. PubMed DOI

Zhang Y., Zhou L., Bandyopadhyay D., Sharma K., Allen A.J., Kmieciak M., Grant S. The covalent CDK7 inhibitor THZ1 potently induces apoptosis in multiple myeloma cells in vitro and in vivo. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2019;25:6195–6205. doi: 10.1158/1078-0432.CCR-18-3788. PubMed DOI PMC

Boiko S., Proia T., San Martin M., Gregory G.P., Wu M.M., Aryal N., Hattersley M., Shao W., Saeh J.C., Fawell S.E., et al. Targeting Bfl-1 via acute CDK9 inhibition overcomes intrinsic BH3-mimetic resistance in lymphomas. Blood. 2021;137:2947–2957. doi: 10.1182/blood.2020008528. PubMed DOI PMC

Boise L.H., Gonzalez-Garcia M., Postema C.E., Ding L., Lindsten T., Turka L.A., Mao X., Nunez G., Thompson C.B. bcl-x, a bcl-2-related gene that functions as a dominant regulator of apoptotic cell death. Cell. 1993;74:597–608. doi: 10.1016/0092-8674(93)90508-N. PubMed DOI

Muchmore S.W., Sattler M., Liang H., Meadows R.P., Harlan J.E., Yoon H.S., Nettesheim D., Chang B.S., Thompson C.B., Wong S.L., et al. X-ray and NMR structure of human Bcl-xL, an inhibitor of programmed cell death. Nature. 1996;381:335–341. doi: 10.1038/381335a0. PubMed DOI

Motoyama N., Wang F., Roth K.A., Sawa H., Nakayama K., Nakayama K., Negishi I., Senju S., Zhang Q., Fujii S., et al. Massive cell death of immature hematopoietic cells and neurons in Bcl-x-deficient mice. Science. 1995;267:1506–1510. doi: 10.1126/science.7878471. PubMed DOI

Kaufmann T., Schlipf S., Sanz J., Neubert K., Stein R., Borner C. Characterization of the signal that directs Bcl-x(L), but not Bcl-2, to the mitochondrial outer membrane. J. Cell Biol. 2003;160:53–64. doi: 10.1083/jcb.200210084. PubMed DOI PMC

Lee E.F., Fairlie W.D. The structural biology of Bcl-xL. Int. J. Mol. Sci. 2019;20:2234. doi: 10.3390/ijms20092234. PubMed DOI PMC

Liu X., Dai S., Zhu Y., Marrack P., Kappler J.W. The structure of a Bcl-xL/Bim fragment complex: Implications for Bim function. Immunity. 2003;19:341–352. doi: 10.1016/S1074-7613(03)00234-6. PubMed DOI

Edlich F., Banerjee S., Suzuki M., Cleland M.M., Arnoult D., Wang C., Neutzner A., Tjandra N., Youle R.J. Bcl-x(L) retrotranslocates Bax from the mitochondria into the cytosol. Cell. 2011;145:104–116. doi: 10.1016/j.cell.2011.02.034. PubMed DOI PMC

Monaco G., Decrock E., Akl H., Ponsaerts R., Vervliet T., Luyten T., De Maeyer M., Missiaen L., Distelhorst C.W., De Smedt H., et al. Selective regulation of IP3-receptor-mediated Ca2+ signaling and apoptosis by the BH4 domain of Bcl-2 versus Bcl-Xl. Cell Death Differ. 2012;19:295–309. doi: 10.1038/cdd.2011.97. PubMed DOI PMC

Vander Heiden M.G., Li X.X., Gottleib E., Hill R.B., Thompson C.B., Colombini M. Bcl-xL promotes the open configuration of the voltage-dependent anion channel and metabolite passage through the outer mitochondrial membrane. J. Biol. Chem. 2001;276:19414–19419. doi: 10.1074/jbc.M101590200. PubMed DOI

Williams A., Hayashi T., Wolozny D., Yin B., Su T.C., Betenbaugh M.J., Su T.P. The non-apoptotic action of Bcl-xL: Regulating Ca2+ signaling and bioenergetics at the ER-mitochondrion interface. J. Bioenerg. Biomembr. 2016;48:211–225. doi: 10.1007/s10863-016-9664-x. PubMed DOI PMC

Maiuri M.C., Le Toumelin G., Criollo A., Rain J.C., Gautier F., Juin P., Tasdemir E., Pierron G., Troulinaki K., Tavernarakis N., et al. Functional and physical interaction between Bcl-X(L) and a BH3-like domain in Beclin-1. EMBO J. 2007;26:2527–2539. doi: 10.1038/sj.emboj.7601689. PubMed DOI PMC

Afreen S., Bohler S., Muller A., Demmerath E.M., Weiss J.M., Jutzi J.S., Schachtrup K., Kunze M., Erlacher M. BCL-XL expression is essential for human erythropoiesis and engraftment of hematopoietic stem cells. Cell Death Dis. 2020;11:8. doi: 10.1038/s41419-019-2203-z. PubMed DOI PMC

Chao D.T., Linette G.P., Boise L.H., White L.S., Thompson C.B., Korsmeyer S.J. Bcl-XL and Bcl-2 repress a common pathway of cell death. J. Exp. Med. 1995;182:821–828. doi: 10.1084/jem.182.3.821. PubMed DOI PMC

Kelly P.N., Grabow S., Delbridge A.R., Strasser A., Adams J.M. Endogenous Bcl-xL is essential for Myc-driven lymphomagenesis in mice. Blood. 2011;118:6380–6386. doi: 10.1182/blood-2011-07-367672. PubMed DOI PMC

Konopleva M., Zhao S., Hu W., Jiang S., Snell V., Weidner D., Jackson C.E., Zhang X., Champlin R., Estey E., et al. The anti-apoptotic genes Bcl-XL and Bcl-2 are over-expressed and contribute to chemoresistance of non-proliferating leukaemic CD34+ cells. Br. J. Haematol. 2002;118:521–534. doi: 10.1046/j.1365-2141.2002.03637.x. PubMed DOI

Shoemaker A.R., Oleksijew A., Bauch J., Belli B.A., Borre T., Bruncko M., Deckwirth T., Frost D.J., Jarvis K., Joseph M.K., et al. A small-molecule inhibitor of Bcl-XL potentiates the activity of cytotoxic drugs in vitro and in vivo. Cancer Res. 2006;66:8731–8739. doi: 10.1158/0008-5472.CAN-06-0367. PubMed DOI

Kerkhofs M., Vervloessem T., Stopa K.B., Smith V.M., Vogler M., Bultynck G. DLBCL Cells with acquired resistance to Venetoclax are not sensitized to BIRD-2 but can be resensitized to venetoclax through Bcl-XL inhibition. Biomolecules. 2020;10:1081. doi: 10.3390/biom10071081. PubMed DOI PMC

Pullarkat V.A., Lacayo N.J., Jabbour E., Rubnitz J.E., Bajel A., Laetsch T.W., Leonard J., Colace S.I., Khaw S.L., Fleming S.A., et al. Venetoclax and navitoclax in combination with chemotherapy in patients with relapsed or refractory acute lymphoblastic leukemia and lymphoblastic lymphoma. Cancer Discov. 2021;11:1440–1453. doi: 10.1158/2159-8290.CD-20-1465. PubMed DOI PMC

Arulananda S., O’Brien M., Evangelista M., Jenkins L.J., Poh A.R., Walkiewicz M., Leong T., Mariadason J.M., Cebon J., Balachander S.B., et al. A novel BH3-mimetic, AZD0466, targeting BCL-XL and BCL-2 is effective in pre-clinical models of malignant pleural mesothelioma. Cell Death Discov. 2021;7:122. doi: 10.1038/s41420-021-00505-0. PubMed DOI PMC

Balachander S.B., Criscione S.W., Byth K.F., Cidado J., Adam A., Lewis P., Macintyre T., Wen S., Lawson D., Burke K., et al. AZD4320, a dual inhibitor of Bcl-2 and Bcl-xL, induces tumor regression in hematologic cancer models without dose-limiting thrombocytopenia. Clin. Cancer Res. Off. J. Am. Assoc. Cancer Res. 2020;26:6535–6549. doi: 10.1158/1078-0432.CCR-20-0863. PubMed DOI

Gibson L., Holmgreen S.P., Huang D.C., Bernard O., Copeland N.G., Jenkins N.A., Sutherland G.R., Baker E., Adams J.M., Cory S. bcl-w, a novel member of the bcl-2 family, promotes cell survival. Oncogene. 1996;13:665–675. PubMed

O’Reilly L.A., Print C., Hausmann G., Moriishi K., Cory S., Huang D.C., Strasser A. Tissue expression and subcellular localization of the pro-survival molecule Bcl-w. Cell Death Differ. 2001;8:486–494. doi: 10.1038/sj.cdd.4400835. PubMed DOI

Print C.G., Loveland K.L., Gibson L., Meehan T., Stylianou A., Wreford N., de Kretser D., Metcalf D., Kontgen F., Adams J.M., et al. Apoptosis regulator bcl-w is essential for spermatogenesis but appears otherwise redundant. Proc. Natl. Acad. Sci. USA. 1998;95:12424–12431. doi: 10.1073/pnas.95.21.12424. PubMed DOI PMC

Yan W., Samson M., Jegou B., Toppari J. Bcl-w forms complexes with Bax and Bak, and elevated ratios of Bax/Bcl-w and Bak/Bcl-w correspond to spermatogonial and spermatocyte apoptosis in the testis. Mol. Endocrinol. 2000;14:682–699. doi: 10.1210/mend.14.5.0443. PubMed DOI

Adams C.M., Kim A.S., Mitra R., Choi J.K., Gong J.Z., Eischen C.M. BCL-W has a fundamental role in B cell survival and lymphomagenesis. J. Clin. Investig. 2017;127:635–650. doi: 10.1172/JCI89486. PubMed DOI PMC

Beverly L.J., Varmus H.E. MYC-induced myeloid leukemogenesis is accelerated by all six members of the antiapoptotic BCL family. Oncogene. 2009;28:1274–1279. doi: 10.1038/onc.2008.466. PubMed DOI PMC

Diepstraten S.T., Chang C., Tai L., Gong J.N., Lan P., Dowell A.C., Taylor G.S., Strasser A., Kelly G.L. BCL-W is dispensable for the sustained survival of select Burkitt lymphoma and diffuse large B-cell lymphoma cell lines. Blood Adv. 2020;4:356–366. doi: 10.1182/bloodadvances.2019000541. PubMed DOI PMC

D’Sa-Eipper C., Chinnadurai G. Functional dissection of Bfl-1, a Bcl-2 homolog: Anti-apoptosis, oncogene-cooperation and cell proliferation activities. Oncogene. 1998;16:3105–3114. doi: 10.1038/sj.onc.1201851. PubMed DOI

Lin E.Y., Orlofsky A., Wang H.G., Reed J.C., Prystowsky M.B. A1, a Bcl-2 family member, prolongs cell survival and permits myeloid differentiation. Blood. 1996;87:983–992. doi: 10.1182/blood.V87.3.983.bloodjournal873983. PubMed DOI

Ottina E., Grespi F., Tischner D., Soratroi C., Geley S., Ploner A., Reichardt H.M., Villunger A., Herold M.J. Targeting antiapoptotic A1/Bfl-1 by in vivo RNAi reveals multiple roles in leukocyte development in mice. Blood. 2012;119:6032–6042. doi: 10.1182/blood-2011-12-399089. PubMed DOI PMC

Schenk R.L., Tuzlak S., Carrington E.M., Zhan Y., Heinzel S., Teh C.E., Gray D.H., Tai L., Lew A.M., Villunger A., et al. Characterisation of mice lacking all functional isoforms of the pro-survival BCL-2 family member A1 reveals minor defects in the haematopoietic compartment. Cell Death Differ. 2017;24:534–545. doi: 10.1038/cdd.2016.156. PubMed DOI PMC

Carrington E.M., Zhan Y., Brady J.L., Zhang J.G., Sutherland R.M., Anstee N.S., Schenk R.L., Vikstrom I.B., Delconte R.B., Segal D., et al. Anti-apoptotic proteins BCL-2, MCL-1 and A1 summate collectively to maintain survival of immune cell populations both in vitro and in vivo. Cell Death Differ. 2017;24:878–888. doi: 10.1038/cdd.2017.30. PubMed DOI PMC

Karsan A., Yee E., Harlan J.M. Endothelial cell death induced by tumor necrosis factor-alpha is inhibited by the Bcl-2 family member, A1. J. Biol. Chem. 1996;271:27201–27204. doi: 10.1074/jbc.271.44.27201. PubMed DOI

Mensink M., Anstee N.S., Robati M., Schenk R.L., Herold M.J., Cory S., Vandenberg C.J. Anti-apoptotic A1 is not essential for lymphoma development in Emicro-Myc mice but helps sustain transplanted Emicro-Myc tumour cells. Cell Death Differ. 2018;25:797–808. doi: 10.1038/s41418-017-0045-8. PubMed DOI PMC

Sochalska M., Schuler F., Weiss J.G., Prchal-Murphy M., Sexl V., Villunger A. MYC selects against reduced BCL2A1/A1 protein expression during B cell lymphomagenesis. Oncogene. 2017;36:2066–2073. doi: 10.1038/onc.2016.362. PubMed DOI PMC

Yecies D., Carlson N.E., Deng J., Letai A. Acquired resistance to ABT-737 in lymphoma cells that up-regulate MCL-1 and BFL-1. Blood. 2010;115:3304–3313. doi: 10.1182/blood-2009-07-233304. PubMed DOI PMC

D’Souza B., Rowe M., Walls D. The bfl-1 gene is transcriptionally upregulated by the Epstein-Barr virus LMP1, and its expression promotes the survival of a Burkitt’s lymphoma cell line. J. Virol. 2000;74:6652–6658. doi: 10.1128/JVI.74.14.6652-6658.2000. PubMed DOI PMC

Brien G., Trescol-Biemont M.C., Bonnefoy-Berard N. Downregulation of Bfl-1 protein expression sensitizes malignant B cells to apoptosis. Oncogene. 2007;26:5828–5832. doi: 10.1038/sj.onc.1210363. PubMed DOI

Esteve-Arenys A., Roue G. BFL-1 expression determines the efficacy of venetoclax in MYC+/BCL2+ double hit lymphoma. Oncoscience. 2018;5:59–61. doi: 10.18632/oncoscience.402. PubMed DOI PMC

Li X., Dou J., You Q., Jiang Z. Inhibitors of BCL2A1/Bfl-1 protein: Potential stock in cancer therapy. Eur. J. Med. Chem. 2021;220:113539. doi: 10.1016/j.ejmech.2021.113539. PubMed DOI

Ni Chonghaile T., Sarosiek K.A., Vo T.T., Ryan J.A., Tammareddi A., Moore Vdel G., Deng J., Anderson K.C., Richardson P., Tai Y.T., et al. Pretreatment mitochondrial priming correlates with clinical response to cytotoxic chemotherapy. Science. 2011;334:1129–1133. doi: 10.1126/science.1206727. PubMed DOI PMC

Montero J., Sarosiek K.A., DeAngelo J.D., Maertens O., Ryan J., Ercan D., Piao H., Horowitz N.S., Berkowitz R.S., Matulonis U., et al. Drug-induced death signaling strategy rapidly predicts cancer response to chemotherapy. Cell. 2015;160:977–989. doi: 10.1016/j.cell.2015.01.042. PubMed DOI PMC

Deng J., Carlson N., Takeyama K., Dal Cin P., Shipp M., Letai A. BH3 profiling identifies three distinct classes of apoptotic blocks to predict response to ABT-737 and conventional chemotherapeutic agents. Cancer Cell. 2007;12:171–185. doi: 10.1016/j.ccr.2007.07.001. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...